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Abstract—Deep neural network (DNN) has demonstrated
promising performance in various machine learning tasks. Due
to the privacy issue and the unpredictable transmission latency,
inferring DNN models directly on edge devices trends the
development of intelligent systems, like self-driving cars, smart
Internet-of-Things (IoTs) and autonomous robotics. The on-
device DNN model is obtained by expensive training via vast
volumes of high-quality training data in the cloud datacenter,
and then deployed into these devices, expecting it to work
effectively at the edge. However, edge device always deals with
low-quality images caused by compression or environmental
noise pollutions. The well-trained model, though could work
perfectly on the cloud, cannot adapt to these edge-specific
conditions without remarkable accuracy drop. In this paper,
we propose an automated strategy, called “AutoMask”, to
embrace effective machine learning and accelerate DNN
inference on edge devices. AutoMask comprises end-to-end
trainable software strategies and cost-effective hardware
accelerator architecture to improve the adaptability of the
device without compromising the constrained computation and
storage resources. Extensive experiments, over ImageNet
dataset and various state-of-the-art DNNs, show that
AutoMask achieves significant inference acceleration and
storage reduction while maintains comparable accuracy level
on embedded Xilinx Z7020 FPGA, as well as NVIDIA Jetson
TX2.

L

Edge devices like cellphones, unmanned aerial vehicles and
autonomous robotics, are important sources for us to sense the
physical world. The tremendous data collected from these devices
could help us recognize the environment in a more convenient and
insightful way. Traditionally, researchers are putting emphasis on
cloud-based solutions to deal with the real-time collected data from
these devices, seeking to rely on the powerful computation and vast
storage on the cloud to accomplish deep learning tasks at a higher
speed. However, due to the fluctuated network connection quality
and privacy issues, it arises a growing interest in recent years in
deploying deep learning directly in these devices, releasing their
potentials to avoid the unpredictable data transmission latency and
alleviate the burden imposed on the cloud.

INTRODUCTION

Although as a critical step to migrate artificial intelligence from
the cloud to the edge, the situation faced by edge devices in
performing deep learning task is totally different from the situation
on the cloud. Usually, training DNNs are through large scale
datasets, i.e. ImageNet [2], with ideal, large amounts of high-
quality images. The responsibility of the cloud is to obtain a
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Figure 1 Typical mis-classification encountered on edge devices. Well-
trained deep learning models could make wrong decisions
facing these compressed images.

complex and accuracy-satiable model by testing it with high-
quality images as well. The second step is to deploy the well-
trained model into edge devices and expect it to work properly,
one-case-for-all. However, it differs from the real-world scenario
in two key factors: firstly, in order to alleviate the local storage and
transmission pressure, it is widely adopted that raw images
collected by the front-end camera must be compressed to a certain
level before handed to back-end deep learning tasks. Adopting the
cloud-trained models to the compressed input images does not
bring satisfying performance that can be expected on the cloud. For
example, JPEG [3] is a widely used compression framework
designed for trading the image quality with compromised raw sizes.
The compression ratio is denoted by the “quality factor” (QF
hereafter), and is tunable to balance the image quality and local
storage. For human vision systems, a lower QF value that generates
higher compression ratio does not impact the recognition of the
images, but for the DNNSs, the error rate could be as high as 62%
as shown in Section II. Even for less aggressive QF (at nearly 3x
compression ratio), the degradation could still reach ~8% that is
even on par with the accuracy improvement by revolutionizing
DNNg, i.e. from AlexNet to ResNet [4, 5, 6, 7, 8] . Secondly, the
edge devices often work outside the warehouse under different
illumination and noisy surroundings. For example, security
cameras may encounter different extreme weathers like rain snow
or fog, all of which will add environmental noises that degrade the
quality of the images collected by the camera. Worse still, its
impact is non-uniform and highly unpredictable, varied with time
and location, which imposes a significant challenge to the edge
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Figure 2 Top1 error rate versus JPEG quality factor (QF) over VGG-16
model and four state-of-the-art DNNs. The lower the quality
factor (QF), the higher the compression ratio.

level intelligence — the adaptability problem. Adaptability means
the ability for edge devices to tackle exotic interference and adapt
to the environmental changes. Existing edge intelligence only
focuses on the high accuracy brought by the DNN, while it lacks
considerations to make the device robust enough to maintain its
performance by redeeming the lost accuracy facing these edge-
specific cases.

In essence, both front-end compressions and environmental
interference will degrade the image quality, which is also the root
reason that current well-trained DNN cannot work effectively, and
how to release the potentials of device adaptability still has no
effective solution. Therefore in this work, we propose an
automated strategy, termed as AutoMask, to embrace effective
deep learning and at the same time, accelerate the DNN inference
on edge devices. AutoMask is a combination of software strategy
and hardware architectures. It differs from previous approaches
because it does not train and store multiple copies of the DNN for
the individual use case, but employs an end-to-end trainable
manner to learn an extra parameter or what we call the “mask” in
this paper. Mask is just represented as 1-bit parameter associated
with each weight, either bit 0 or 1, and could switch between each
other based on the input image quality automatically, in order to
maintain the inference accuracy under complex conditions. By
supporting multiple sets of masks, the device adaptability is
augmented without compromising precious resources in terms of
computation and storage. Generally speaking, this paper makes the
following contributions:

* We propose an automated strategy, AutoMask, to unlock
efficient machine learning at the edge. In the software training
part, we use the dataset with images pre-processed with
different QFs and only train the “masks” for each QF, while
the original DNN model remains intact. If we observe an
accuracy degradation caused by the inferior image quality due
to external factors, the masks trained for higher QF will be
activated, masking the original DNN to redeem the lost
accuracy. The storage only involves one copy of the original
DNN and multiple copies of 1-bit masks. The tiny volume of
masks introduced in our scheme can not only improve the
adaptability, but also avoid burdening precious resources on
edge devices.

We implement a specialized hardware accelerator to support
AutoMask on edge devices. In the hardware part, the
accelerator is customized to handle mask based inference with
minimal increased hardware cost. We implement and verify
the accelerator on Xilinx Z7020 FPGA using Vivado HLS tool,
and observed 1.47X inference speedup and up to 5.2X storage
and 4.86X energy reduction compared with previous solutions.
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Figure 3 Top1 error rate under three noise levels. The fine-tuned (FT)
DNN model for each QF responds with severe accuracy
degradation under noise. We use Gaussian noise because it
is the universally existing type of noise in nature [1].

On GPU-based platform - NVIDIA Jetson TX2, we also
observe up to 6.5X acceleration due to the high utlization of
CUDA cores and high efficiency of global/shared memory
accesses.

The rest of this paper is organized as follows: Section II
quantitatively illustrates the adaptability problem by presenting its
existence over various DCNN models. Section III elaborates our
methodology including software training and the accelerator
design. Section IV gives the evaluations in terms of parameter
scaling, the adaptability analysis, storage consumption as well as
the FPGA/GPU results. Section V briefs the related work and
Section VI concludes the whole paper.

II. CHALLENGES FOR DNNS AT THE EDGE

Massive images and videos are produced timely on edge
devices. As the major contents to feed deep neural networks, it is
widely agreed that these contents dominate the device storage, so
data compression is very important to reduce the data volume to be
stored and transferred. That also explains why front-end camera is
usually configured taking JPEG compression with a certain QF as
the major output format for image post-processing [3]. However,
the compression optimized for alleviating the local storage cost
would greatly degrade the performance of DNN models. As
evidence, we conducted an experiment on the widely-used VGG-
16 model that was already trained with high quality (QF=100)
ImageNet dataset, but tested it with moderately low QF (QF=60,
~2.7 X compressed) image (Figure 1 (b)), as well as more
aggressive QF=30 (~4.2X compressed) image (Figure 1 (d)). We
test the model with the same original non-compressed images for
comparison (Figure 1 (a) and (c)). From human vision perspective,
we can conclude that (a) and (b) are both cats, and (c) and (d) are
both birds, but for the DNN model, it makes wrong decisions.
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Figure 4 Concept of fine-tuning (FT) based method. The storage
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To make things worse, the observed wrong decision making is
rather not a rare case. The error rate increase is inflicted on various
state-of-the-art DNNss and scales with QF as shown in Figure 2. For
VGG-16, the Top-1 error rate climbs from the original 28.41% to
47.4% at QF=20. Even for more powerful ResNet50 [6], the error
rate also increases from 23.97% to 36.06%, even larger than the
original accuracy of VGG-16, which means the precious accuracy
improvement from VGG to ResNet has been simply overshadowed
by the compressed images. Therefore, we conclude that expecting
one particular cloud-trained DNN model to deal with edge-level
image quality is unpractical.

As an intuitive solution to this problem, we could resort to
transfer learning [9, 10] to recognize low-quality images with the
same content by fine-tuning the original DNN with relevant low
quality training dataset. As a straightforward solution, it relies on
the similarity of the datasets, and the weights of lower layers, i.e.
Conv1~13 in VGG-16, could remain intact while the weights of
several higher layers, i.e. FC1~3 in VGG-16, are updated to suit
for the new dataset. Following the same concept, we can also fine
tune the original cloud-trained DNN using low-quality images until
an acceptable accuracy is obtained. Although deploying the fine-
tuned copy into the device could effectively deal with the accuracy
degradation caused by the front-end compressions, the adaptability
problem however, is still a huge barrier. Figure 3 shows the
accuracy comparison under three noise polluted scenarios. We use
the same test images but polluted them with three levels of
Gaussian noise before feeding them to the fine-tuned DNN. There
are two key observations from the figure: (1) for each QF, the error
rate increases significantly with noise level varied from 10 to 30,
i.e. from 35.9% to 38.1% at QF=30, from 32.2% to 34.5% at
QF=60 for VGG in (a), which proves that the environmental noise
is influential and should not be ignored when performing the
classification task at the edge. The DNNs should not only be
accurate, but most importantly, be robust to handle these cases; (2)
the second observation is that different fine-tuned (FT) copies
exhibit different sensitivities to the noise. As shown in (a), when
the noise level is 20, the error rate at QF=30 is 38.1%; at QF=60
however, it is 34.5% which is even lower than the noise-free
accuracy at QF=30 (35.9%). This observation provides a potential
opportunity to improve the adaptability problem for edge devices:
when the error rate increases beyond the tolerable bottom line due
to environmental noises, we could redeem the accuracy by
invoking the fine-tuned copy for higher QFs in the device. After
the accuracy turns back to the acceptable level, we could switch
back to the previous copy for the lower QF. In essence, it uses
larger image size -- higher quality and larger storage, to trade
higher accuracy. The same observations also appear in Figure 3 (b)
for ResNet.

In order to achieve such adaptability, edge devices should
support multiple FT copies and be able to dynamically switch
between them according to the accuracy variation. However,
storing these DNNs impose formidable burden to the hardware
resources of the edge device, primarily the storage resources. If we
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want to store all FT copies of VGG-16 in Figure 3(a), the storage
for parameters alone would reach 5.52GB (without intermediate
activations accounted), despite the significant computational
demand (30.7G MACs) for inference. The design goal of edge
intelligent systems is supposed to be more lightweight and
resource-constrained, so the appropriate solution should augment
the adaptability but still comply with the low power and storage
consumption. In this paper, we intend to resolve this challenge
using a cost-effective, software and hardware collaborated strategy,
called AutoMask, which will be elaborated in the following
sections.

III. AUTO-MASKING DEEP NEURAL NETWORKS

A. Problem definition

The DNNs for image classification can be expressed as the
function F (-) mapping the input image to the output classification
decision, formulated as: y = F(x, W) where y corresponds to the
classified label of image x and W is the parameter set of the DNN
model. When the input image is compressed by QF, the
classification result can be expressed as:

y, — T(xgt;mpressed‘ WQF) (1)
ar T = JPEG(x, QF) ©)
where xé’;,mpressed is the compressed image; QF = 10,20,30...N

denotes N quality factor candidates configured in JPEG(:)

compression; ¥’ is the output classification label with xg,’,mpressgd

as input and Wy as parameters. In order to redeem the accuracy

drop caused by the compressions, we formulated the problem as
follows:

minimize ||y’ — y||?

©)
constrained by: storage(Wyr) < storage(W)

Within our problem, the objective function is set to minimize
the error between high-quality input and the compressed input. We
use Euclid norm to denote this error quantitatively. The trick lies
on the constraint. We need to guarantee the parameter storage for
this QF is smaller than the original DNN. Thus, the parameters
stored for total QFs are definitively smaller than N copies of the
original DNN, which is N X W.

B. AutoMask
1) Prerequisites

As mentioned in Section I1.B, achieving the objective of Eq. (3)
could resort to straightforward solutions. Intuitively, instantiating
multiple copies of the original DNN, one QF apiece, and fine-
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Algorithm 1 AutoMask Training Procedure. C is the cost function,
Binarize(m) specifies how to binarize mask weights, F is the DNN
model, L is the number of layers.
Require: a minibatch of training images corresponding to a specific
QF and their labels, original parameters W and the learning rate n
Ensure: trained binary mask m,.

1. Forward propagation

my, « Binarize(m)

Forl = 1to L, compute a; = F;(my, © w;_; - a;_1), with w;_;

and a;_, already known.

2. Backward propagation

Forl = L to 2, compute §a;_;, §m,;, with §a; and m,, already

known.

3.  Parameter update

Update the real-value m « m —ném,

tuning each copy to the target accuracy using compressed training
images could simply solve this problem. However, we must
consider the huge model size that is not endurable even for a single
copy under the restrained storage, let alone handling multiple
copies. In the FT based approach, the parameter amount of Wy is
always equal to W and supporting N QFs would still store N x W
parameters, so it does not optimize the storage of the device. Figure
4 illustrates the concept of this method under three QF settings. If
the image is of 100% high quality, the original DNN will be
employed (D). When the image is compressed by QF, however, it
replaces the original model with the FT model (). Note that in
this example, fine-tuning does not aim at convolutional layers but
the fully connected layers (FCs), because in VGG-16 the features
extracted by the former convolutional layers remain nearly the
same for the compressed and non-compressed images. Even so,
storing multiple copies of FCs is still a huge burden. Quantitatively,
it accounts for 90% of the total parameters in VGG-16:
122M/138M. If we use the concept shown in Figure 4, it means
that we need to store 122M X3 extra parameters to serve three QF
levels. Transformed into actual storage u sing floating point 32
mode for each weight, it could reach 122MBx4x3=1.43GB, and
might be even larger if more QFs are required. Therefore, this
approach is unpractical to improve the adaptability of the device.

2) Solution Details

The key idea of AutoMask is to keep the original DNN intact,
while learn an extra parameter called “mask” during training. The
mask is a binary value adhering to each weight, and during
inference, only the weights with mask “1” will be involved in
computation. The training target this time is to obtain a set of masks
that can lead to optimal accuracy for each QF. The greatest benefit
is that we do not need to handle the annoying copies of huge DNNSs,
but only store the cost-effective masks in the device. Figure 5
shows the AutoMask concept, the original DNN model is lodged
with a series of masks this time. Because each mask is only 1bit,
the actual storage for each mask is 1/32 of the normal weight if we
still use floating point 32 precision mode, so the size of total masks
is only 51.75MB for supporting 3 QFs in the figure. The overall
storage only involves the original DNN and these extra masks,
which is only 552MB+51.75MB = 603.75MB in total. Compared
with the FT based solution, AutoMask is obviously more efficient
in storage.

AutoMask is a software and hardware collaborative approach.
At the software level, it involves training the masks but the training
procedure is a little bit different compared with directly training
weights. As shown in Algorithm 1, we start from analyzing the
forward propagation process. Masks work as independent
parameters besides the normal weights, and we use matrix m to
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Figure 6 AutoMask Accelerator. Compared with conventional designs in
the literature, the augmentation is adding the “mask” lanes, in
which each element is only 1 bit.

denote the masks initialized using real values. m is then binarized
by the function Binarize(-). The resulting matrix m, is the
binarized masks which are used for computing the output of layer
1, as the forward propagation output.

In detail, we use Eq. (4) to binarize the real-value m, decided
by a preset threshold 7. Then, m,; is used in the forward
propagation through performing the elementwise multiplication
operation () with weights w,_; and the layer input a;_,, as defined
in Eq. (5). These values are already obtained in advance using
stochastic gradient descent (SGD) algorithm.

(1, ifm>rt
my = {O, otherwise )
a, = F(mp O wi_y - a;_4) (5)

In the backpropagation process, however, the goal is to
minimize the value of the loss function C by computing the
gradients of a;_, and m,, for layer I, denoted as §a;_, and dm,,
respectively. §m,, could be easily obtained by the chained rule in
backpropagation as shown in Eq. (6). The ultimate goal is to update
the value of m, and we implement it through Eq. (7). 1 is the preset
learning rate. Once m is updated, we loopback to Eq. (4) again for
the iterative forward propagation.

ac ) da;

da; 0F;
0F;

da; dmy = l amy, (6)

m e m—némy, N

It is worth noting that in Eq. (7), updating m is through the
gradient of m,, (§m,), rather than the gradient of m itself. That is
because Eq. (4) is a continuous non-differentiable function. If we
directly compute the derivatives of m, the result would be zero
everywhere except for the threshold point . The incoming
gradients to this threshold function would be multiplied by zero
during backpropagation, so the network will learn nothing.
Therefore, in order to let the gradients pass through to the input
layer and make the whole process end-to-end trainable, we adopt
the “straight-through estimator” method proposed in [11]. It has
proved that the outgoing gradients of the threshold function could
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be estimated by the incoming gradients, and the result also behaves
very well [11]. We also use this trick in training AutoMask: using
the gradients of thresholding masks m,, to “estimate” the gradients
of the real-value masks m. By updating m using m,,, the entire
system can be trained in an end-to-end differentiable manner,
which makes AutoMask easy to handle from the software training
perspective. The concept is very similar to training binary neural
networks [12, 13, 14], but the difference is that these works directly
train the binarized weights while AutoMask trains the binarized
masks and keeps the original weights intact. After we obtain the
binary masks m,, we could discard the intermediate matrix m and
only store the original DNN and its binary masks.

3) Accelerator Design

AutoMask requires specialized hardware accelerator when
used in real-world edge devices, because the masks introduced in
our scheme are also involved during inference. The major
difference compared with conventional DNN accelerators [15, 16,
17, 18] is that AutoMask needs to skip over some unnecessary
weights, indicated by the ‘0’ mask. As shown in Figure 6, the ‘1’
masks act as the enabler for the weight/activation pairs passing
through to the multiple-and-accumulate (MAC) units. Mask lanes
store the weight masks in the central embedded DRAM, and emit
one mask element at a time to the processing element (PE). The
specific ‘switch module’, denoted by ‘S’ in the figure,
differentiates between mask 0 or 1 upon receiving the mask bit.
The zero mask will make the switch closed and impede the
incoming data proceeding to the MAC unit. At the same time, it
notifies the lane to emit a new mask iteratively, until it receives a
valid mask “1°.

Although the storage overhead is increased, each element in the
mask lane is just one bit, either ‘0’ or ‘1°. Compared with storing
the whole DNN for each QF, the trivial increase in storage will not
burden the device. As extra bonus, it brings with significant
throughput and energy improvement. Even on a GPU-based SoC,
we also observe significant performance improvement due to the
efficient resource utilization. In the next section, we will
thoroughly evaluate AutoMask, in terms of its accuracy, energy
efficiency, storage and inference speedup over various DNNs and
hardware platforms.

IV. EVALUATION

Software platform. Before hardware deployment, we need to
train the masks on top of the original model for each quality factor.
The training procedure are implemented using PyTorch [19] on
TITAN Xp GPUs, and we empirically study our method on large-
scale ImageNet ILSVRC-2012 dataset [2, 4]. Various state-of-the-
art DNN models, i.e. VGG, ResNet and DenseNet, are evaluated.
We compare AutoMask with the fine-tuning based approach,
served as our baseline and termed as “Multi-FT”. For fairness, both
methods use the same hyper-parameters: the optimizer is stochastic
gradient descent (SGD) [20], and the epochs are set to 20 with
learning rate 0.001 for the first 10 epochs and 0.0001 for the last
10 epochs. In terms of AutoMask specifics, m in Eq.(4) is
initialized to 0.01 and the threshold T is set to 5X 1073, The accuracy
is reported with the test dataset of ImageNet, processed under 6
QFs: 60 (~2.7x compression ratio), 50 (~3.0x), 40 (~3.4x), 30
(~4.2%), 20 (~5.1x), and 10 (~8.4x). We want to prove that by
applying the trained masks to the original DNN, the accuary could
be well maintained when handling low quality images. Besides, we
also intentionally add Guassian noise to the test images to verify
the adaptability of AutoMask. This is also a way of simulating edge
devices working at outdoors. By switching to the masks for higher
QF, the device is able to sustain the original performance facing
noises.
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Figure 7 Top-1 error comparisons (w/ and w/o noise), tested under 6
QFs in JPEG compression.

Hardware platform. We implement AutoMask accelerator on
our embedded Xilinx Z7020 FPGA, and employ Vivado HLS
(v2016.2) to conduct C simulation and C/RTL hybrid simulation to
extract the hardware runtime statistics like inference time, memory
accesses etc. For energy consumption, we use PrimeTime tool [21]
after HLS to analyze the intrinsic components of the accelerator.
We instantiate 256 PEs and each PE is clocked at 125MHz. In order
to evaluate its performance on GPU-based platform, we use
NVIDIA Jetson TX2, an edge-level SoC, and the associate NV
Profiler tool [22] to observe some key GPU performance metrics
like GPU utilization, global load/store efficiency of the CPU-GPU
shared memory and the warp execution efficiency. We want to
show that if the user is not willing to spend time and money
designing accelerator, GPU is also a feasible option for AutoMask
with proved performance enhancement.

A. Accuracy and Adaptability

We firstly illustrate the platform-free results. Figure 7 shows
the Top-1 error comparisons between AutoMask and the baseline.
The original DNN is tested with the images of different qualities as
well. We can observe that it deteriorates the accuracy with QF
scaling smaller, while AutoMask can redeem the accuracy loss
facing low quality images for all the evaluated DNNs. For example,
at the QF=60 position of VGG model, AutoMask outperforms the
original by 2.36% accuracy improvement, while at more
aggressive QF=10, the improvement enlarges to 28.11%. The
benefit stems from adapting compressed images by training masks
for each QF, which also confirms that simply using onefold DNN
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Figure 9 Comparison of actual inference time of VGG-16 model in Vivado
HLS simulation on Xilinx Z7020 FPGA platform.

Table 1 Threshold parameter scaling and its impact to the final accuracy
of VGG-16 model. Top-1 and Top-5 error rate vary within 1%,
which means the binarization threshold setting is not critical for
training masks.

T 0.002 0.003 0.004 0.005 0.006 0.007 0.008
Top-1 (%) | 66.99 67.04 67.11 6729 6724 6695 67.14
Top-5(%) | 87.68 87.64 87.73 87.81 87.65 87.67 87.75

model trained only for the lossless images is inadequate to enforce
effective machine learning on edge devices. AutoMask also
performs better than the Multi-FT baseline: i.e. 2.33% and 1.85%
lower error rate at QF=60, 8.23% and 7.17% lower error rate at
QF=10, for ResNet and DenseNet respectively. Although Multi-
FT targets individual QF as well, it shows that the fine-tuning
based scheme is more fragile facing compressed images, while
AutoMask retrains the masks from scratch and proves to be more
effective.

In addition to the noise-free accuracy, we also evaluate the
performance under noise pollution and verify the adaptability of
AutoMask. Figure 7 demonstrates the error rate comparison with
noise level set to 10. We observe that it causes trivial error rate
increase at each QF: from 35.1% to 37.3% at QF=20 taking VGG
as the example, but it decreases from 37.3% down to 33.9% if we
switch the input from QF=20 to QF=40. Therefore, if the accuracy
loss exceeds the acceptable limit, we could switch to higher QF to
redeem the accuracy. In the next set of experiments, we will show
that by switching the masks instead of the whole model, the
alleviated storage burden makes it possible to improve the device
adaptability in practical use.

B. Storage

Figure 8 shows the storage comparison between the baselines
and AutoMask for 6 QFs. AutoMask exhibits 4.56 X (2992MB
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Figure 10 The layer-wise percentage of zero masks in VGG-16 model.
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Figure 11 Comparison of the normalized energy consumption for

inferring one compressed image with size 224x224.

/655.5MB), 5.05 X (624MB/123.5MB) and 5.07 x (192MB
/37.86MB) less storage than Multi-FT for the three models
respectively. There are two reasons for the storage improvement:
first, AutoMask only stores the masks instead of multiple copies of
the original DNN, so the memory consumption does not increase
in proportion to the number of QFs. For the Multi-FT baseline,
however, it needs to store one copy for each QF so the storage must
be allocated 6X size of the original model. Secondly, the mask
itself is also tiny in size. Each mask is just one bit, in conjunction
with each weight, so the masks in total only occupy 15.7% portion
of the total storage. Therefore, we conclude that AutoMask is more
storage efficient to augment the device adaptability.

C. Parameter Sensitivity

As the only design parameter, the threshold setting t decides
the real-value mask is binarized to 0 or 1, and further affects the
training accuracy. We scale T from 0.002 to 0.008 in training
VGG-16, and the accuracy varies within 1% for both Top-1 and
Top-5 as shown in Table 1, which means this parameter is not that
critical in training masks. We hence uniformly use 0.005 when
training the three DNNs in our evaluations.

D. FPGA Results
1) Inference Speedup.

In order to study the acceleration on edge devices, we evaluate
the real-world inference time on our embedded Xilinx 27020
FPGA. We let the accelerator infer one 224 X224 image using
VGG-16 model and record the inference time. As shown in Figure
9, different instances of AutoMask demonstrate slightly different
speed, around 650ms~680ms, and that is because we train masks
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Table 2 DNN forward propagation time (in seconds). We infer 5k images
selected from ImageNet test dataset using PyTorch framework.
The hardware platform is NVIDIA Jetson TX2.

DNN Models Model scheduling (s) | Inference (s)
Multi-FT 61.94 525.97
VGG-16 A utoMask 2.16 446.85
Multi-FT 18.47 124.31
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Figure 12 FPS data from NVIDIA Jetson TX2.

for each QF and the resulting masks are not identical across QFs.
Compared with the inference time using original DNN (970ms), it
achieves 1.47X acceleration on average due to skipping over zero
masks, while Multi-FT does not exhibit any acceleration because

fine-tuning operation does not reduce the computations of the DNN.

We also present the layer-wise percentage of ‘0’ masks in Figure
10 for VGG-16. Different QF configurations demonstrate similar
behavior, that is, lower layers like Convl have relatively less 0
masks compared with deeper layers like Conv13 and the fully
connected layers, indicating that the lower layers are more
important that contain useful information for the accurate
classification.

2) Energy Consumption

In this set of experiment, we evaluate the energy consumption
under the same platform. As shown in Figure 11, we normalize the
data to Multi-FT over VGG-16. AutoMask exhibits 5.0%, 5.25%
and 4.62X energy reduction in memory accesses, and 1.51%, 1.34x
and 1.41 X reduction in computations. Because memory access
dominates the overall energy consumption, the abundant energy
reduction of AutoMask in this point also results in 4.93X%, 5.16X
and 4.45% overall energy reduction (not shown in the figure). As
mentioned in Section I, less storage also leads to less energy
consumption. Especially for edge devices powered by batteries,
efficient energy consumption is conductive to the battery life when
working outdoors and AutoMask provides both promising
adaptability and endurance, thus a feasible solution for deploying
machine intelligence at the edge.

E. GPU Results
1) Frames per Second (fps)

The application of masks on top of the original DNN model
will breach the regularity of filters, so intuitively, we must design
specialized accelerators as the only way to accelerate DNN
inference. However, for the users who are reluctant to afford the
expense, an alternative plan is supposed to apply AutoMask on off-
the-shelf GPGPU-based platform. Amazingly, we also observe
substantial acceleration in supporting the adaptability on GPU-
based SoCs. In this experiment, we use NVIDIA Jetson TX2 as the
representative, and mimic a real-world scenario by dynamically
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Figure 13 GPU utilization obtained via NV profiler. We only care about
the region of interest, in which Multi-FT exhibits frequent
vibrations from the top utilization to the bottom, while
AutoMask does not. The utilization drop is caused by the
model switching to redeem the degraded accuracy.

switching the models iteratively in the device to deal with the
accuracy drop due to the noise-polluted input images. As shown in
Table 2, we select 5000 images from ImageNet test dataset, and
after inferring every 100 images we switch to another QF to
seemingly redeem the classification accuracy. After continuously
inferring all the test images, we record and compare the overall
inference time. We can see that the model switching time of Multi-
FT is very expensive: 28.7X more than AutoMask for VGG-16,
and even 44.0x more for ResNet-50. The reason is that model
switching involves interaction with the device memory, storage
and the file system. Multi-FT switches the whole model which is
very huge in volume, and moving the vast number of parameters
into the device memory is very time consuming. By sharp contrast,
AutoMask only switches the cost-effective masks, and the
switching time only occupies 0.04%, 0.03% and 0.01% over total
time for the three DNNs respectively. The results in Figure 12 also
confirm that AutoMask has higher frames per second (fps). Even
used on GPU-based platform, it is also more feasible in real-time
machine learning applications.

2) Efficiency

GPU Utilization. We use NV profiler to study the runtime
GPU utilization, as shown in Figure 13. Under the same
configuration as the previous experiment, we find that CUDA
cores are frequently interrupted by model switching in Multi-FT.
The utilization fluctuates between ~95% and ~1%. AutoMask does
not exhibit obvious fluctuation, and the utilization stables at ~95%.
This again confirms that if we want to improve the adaptability of
the device by supporting multiple QFs, instantiating equivalent
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warp execution.

number of FT copies is suboptimal w.r.t. the device storage and
even computation.

Memory Efficiency. In terms of the memory efficiency, we
use four metrics: global load efficiency, global store efficiency,
shared memory efficiency and warp execution efficiency. The
former three metrics represent the ratio of requested memory
operation throughput to the required memory operation throughput,
expressed as percentage, while the last metric represents the ratio
of the average active threads per warp to the maximum number of
threads per warp supported on a CUDA core [23]. For the three
evaluated DNNs shown in Figure 14, AutoMask outperforms
Multi-FT in all four metrics; especially for the global load,
AutoMask does not need to load voluminous parameters because
the original parameters are shared by different set of masks, so it
does not impose significant global load requests from each warp
that may outweigh the memory access bandwidth.

V. RELATED WORK

A plethora of work are dedicated to the high-accuracy image
classification, and most of them try to propose novel DNN models
with deeper and more complex layers [5, 6, 24]. Although these
models perform well in boosting the ever increasing accuracy,
none of them focuses on the adaptability behavior when these
DNNSs are deployed on edge devices. AutoMask is designed to
adapt to different image conditions polluted by environmental
noise or intentional compression like JPEG, in order to redeem the
lost accuracy and at the same time alleviate the storage burden that
is critical to the battery powered edge devices. It is applicable
across a wide range of DNN models, from the huge models
commonly used in object detection and semantic segmentation, i.e.
VGG-16, VGG-19 [5], to small compact models used in
lightweight image classification, i.e. MobileNet [25], ResNet-18 [6]
and DenseNet-121 [8].

Some other quantization schemes like training binary [14, 26],
ternary [27] and even power of two weights [28] are proposed to
reduce the parameter size. Although these schemes could alleviate
the storage burden, the price is the severe accuracy loss. Even if we
use the most state-of-the-art binary quantization [29], the accuracy
still drops by 5.8% on top of the non-quantized ResNet-18 model,
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and these schemes are not designed for descent adaptability as well.
There are also no data reported when these quantized models are
tested with low quality images. However, it has been proved that
our AutoMask could maintain the lossless accuracy using
comparable storage space, and most importantly it resolves the
adaptability problem when the device is facing low quality images.

Some recently proposed pruning schemes [30, 31, 32, 33] could
blank out trivial weights but still keeps the accuracy nearly intact.
Intuitively, we could use pruning to reduce the model size, which
has potentials in dealing with multiple quality levels of the input
images. However, pruning also relies on iterative FTs until the
accuracy is satiable, which means different quality levels require
their respective pruned model to suit for each case. Therefore, the
pruned models in total also consume significant storage as the FT-
based approach. To make things worse, the extra indices also need
to be stored and fetched together with the weights for inference, so
the actual storage demand might be even larger. Comparatively,
AutoMask could achieve both lossless accuracy and minimally
reduced storage at the same time, by only applying different set of
masks without pruning or quantizing the original model.

VI. CONCLUSION

In this paper, we propose a novel method -- AutoMask to make
machine learning efficiently work at the edge. Targeting the
accuracy drop due to the compressed images that are frequently
encountered on edge devices, we mask the original DNN model to
automatically identify computable parameters and skip over
unnecessary parameters under different use cases, without
compromising the key design constraints like accuracy, storage,
inference speed and the energy consumption. It provides a unique
opportunity to improve the adaptability of the device, by switching
to a set of masks trained for higher level QFs in order to redeem
the accuracy drop caused by the environmental noises. We also
design a specialized hardware accelerator on embedded FPGA
platform to support AutoMask in DNN inference. As an extra
bonus, if the user is not willing to design specific accelerator for
existing edge devices, abundant acceleration is also observed on
GPU-based platform. We hope our proposed scheme could bring
up new considerations in deploying effective machine learning in
future intelligent systems like cyber-physical systems, internet-of-
things, as well as autonomous robotics.
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