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Abstract—Nowadays, the importance of data privacy protection has
grown significantly. Privacy Set Intersection (PSI) based on Fully Ho-
momorphic Encryption (FHE) is widely applied in various privacy pro-
tection scenarios, such as federated learning and password verification.
Nevertheless, the substantial computational demands of FHE and the
vast scale of databases in PSI result in inefficient processing, thereby
necessitating specialized accelerator architectures to enhance usability.
Current general-purpose FHE accelerators do not adequately address
the unique requirements of PSI applications, leading to suboptimal data
handling and underutilization of hardware, which impedes their effective
deployment for PSI acceleration. This paper introduces Ares, a practical
hardware-software co-designed FHE-based PSI FPGA accelerator. We
propose Lazy Relinearization to optimize redundant calculations in
PSI and reduce computational complexity without changing the PSI
protocol. At the same time, through the analysis and decoupling of the
PSI computing pattern, we design an efficient hardware acceleration
architecture that fully utilizes the bandwidth and computing resources
of the hardware to achieve excellent acceleration performance. We
highlight the following result: (1) a 47.99× speedup relative to CPU;
(2) performance improvements of 1.79× and 1.93× over the state-of-the-
art FPGA FHE accelerators, Poseidon and FAB, respectively; (3) achieves
7.96× and 10.95× energy efficiency improvement compared to Poseidon
and FAB, respectively.

I. INTRODUCTION

In the era of big data, the demand for efficient and secure data pro-
cessing has become paramount. The concept of privacy computation
was proposed to address the issue of data privacy breaches in complex
environments. PSI is a foundational cryptographic protocol in privacy
computation, allowing two parties to determine the intersection
of their sets without revealing any additional information. Among
various implementations, the PSI implementation based on FHE is
the most widely used. The HE-based PSI protocol can perform set
intersections while data remains encrypted. For instance, Microsoft
integrated this technology into its Edge browser to detect leakage
of user passwords [1]. Similarly, Apple released a homomorphic
encryption library in Swift, which it employs in the latest iPhone
to support Live Caller ID Lookup functionality [2]. In real-world
PSI applications, the database size often easily reaches the level of
the billions [3]. Such large computational workloads and databases
make it impractical for general-purpose hardware such as CPUs to
perform FHE-Based PSI.

Currently, many dedicated FHE accelerators—such as ARK [4],
SHARP [5], CL [6], Poseidon [7] and FAB [8] have been developed
to accelerate FHE computations. These architectures can also be
applied to HE-based PSI. Fig. 1 illustrates the architecture of a
traditional FHE accelerator and its main components and processes
involved in PSI computation. However, employing these general FHE
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Fig. 1. The data path for executing PSI query with general FHE accelerators.
These accelerators are typically connected to the host system as PCIe
expansion cards, meaning that when processing large-scale datasets, data must
first be read from external storage devices (e.g., SSDs or HDDs).

accelerators to perform PSI queries directly would be extremely
inefficient.

Firstly, due to the PSI protocol’s requirement to perform compu-
tations on each entry in the database, large-scale datasets cannot be
entirely stored in the onboard memory of FHE accelerators. Instead,
they must be stored on the host’s SSD or HDD and transferred to
the accelerator via the PCIe interface during computation. Although
DMA can reduce CPU involvement by facilitating data transfer
between the SSD and host, a large portion of execution time is still
spent on data transfer over the busy (heavy-load) system PCIe bus.

Secondly, another limitation of using general-purpose FHE ac-
celerators is their low hardware utilization. These architectures are
designed to accelerate generic FHE schemes without considering the
specific requirements of PSI applications. The PSI query flow, as
illustrated in the lower part of Fig. 1, shows that the database is
encoded into plaintext polynomial form, where the key computation
is polynomial evaluation. This process requires only a subset of
FHE computational functions, leading to inefficient use of both
computational and bandwidth resources in prior FHE accelerators.
Therefore, FHE-based PSI requires specialized hardware acceleration
architecture to optimize performance according to its requirements.

Furthermore, the computational pattern in PSI protocols exhibits
some redundancy. As shown in the lower part of Fig. 1, the poly-
nomial evaluation involves a relinearization step immediately follow-
ing each ciphertext multiplication. These two steps are among the
most time-consuming in FHE. However, based on the computational
pattern of the PSI, relinearization does not need to be performed
immediately after every ciphertext multiplication. Therefore, to im-
prove the efficiency of FHE-based PSI, it is necessary not only to
conduct targeted designs at the hardware level but also to optimize



the computation pattern at the software level.
In this paper, we propose Ares, an FHE-based PSI accelerator

solution with hardware-software co-designed based on Near-Data
Processing (NDP). We introduce the lazy relinearization optimization
strategy to reduce the complexity of polynomial evaluation. Building
on this, we thoroughly explore the characteristics of PSI computations
and design a corresponding hardware accelerator architecture, which
significantly improves the performance of FHE-based PSI queries,
making them more suitable for practical applications.

In summary, our contributions are as follows:
• We introduce an optimization termed Lazy Relinearization,

which aims to reduce computational complexity by minimizing
redundant and costly relinearization operations during the PSI
computation process.

• We propose Ares, a dedicated HE-based PSI accelerator archi-
tecture. This architecture is optimized for computational patterns
and fully adapts to PSI’s characteristics, significantly enhancing
the efficiency of PSI queries.

• We implemented a prototype of Ares on the commercial NDP
platform SmartSSD. The results show that Ares has a 48×
acceleration compared to the CPU. Compared to the SOTA
FPGA FHE accelerator, it offers a 1.93× improvement in
performance and a 10.95× improvement in energy efficiency.

II. BACKGROUND & MOTIVATION

A. FHE-Based PSI

In a classic FHE-based PSI [9]–[11], the sender holds a larger
set X with size |X|, and the receiver holds a smaller set Y with
size |Y |. The receiver encrypts its set Y = {y1, y2, . . . , y|Y |}
into ciphertexts Y ′ = {c1, c2, . . . , c|Y |}. The sender computes an
interpolating polynomial FX(c) =

∏
m∈X(m−c) for each ci, which

is the key computation in PSI and also the most complex calculation.
At the end of the computation, the receiver decrypts the result:
FX(c1), FX(c2), . . . , FX(c|Y |), and if the result of any FX(ci) is
zero, the corresponding yi is an element of the intersection X ∩ Y .

The FHE-based PSI protocol is typically implemented using the
BFV scheme [12]. In BFV, When calculating FX1(c), FX2(c), . . . ,
FX(c|Y |), we take FX1(c) as an example. FX1(c) =

∑D
i=0 aic

i,
where D stands for the degree of FX1(c), ai is the encoded BFV
plaintext of the database, and c represents the encoded BFV ciphertext
of the user’s set Y. The FX(c) is called polynomial evaluation.

In polynomial evaluation, both plaintexts and ciphertexts are rep-
resented by polynomials. The number of polynomials in a ciphertext
or plaintext is denoted as Np. Initially, Np is 2 for ciphertexts
and 1 for plaintexts. During homomorphic multiplication(Hmul), the
Np of the result is the sum of the Np values of the two inputs
minus one. For instance, if A = (c0, c1) and B = (d0, d1), then
A × B = (c0d0, c0d1 + c1d0, c1d1). To manage the growth of the
polynomial number Np, relinearization (relin for short) is used to
reset the number back to 2.

It can be seen that FHE-based PSI essentially consists of a series
of polynomial evaluation computations. Therefore, in this paper,
we focus on optimizing and accelerating the polynomial evaluation
computations on the sender’s side.

B. Redundancy in PSI computation pattern

In the BFV scheme, to prevent the exponential growth of the
number of polynomials in ciphertexts during cascaded computations,
the relin operation is typically performed immediately after each
Hmul. However, in FHE-based PSI, the depth of operation cascades
is limited. As shown in Fig. 1, the Hmuls within the polynomial

evaluation in FHE-based PSI usually occur at the same depth and
do not result in an exponential increase in the number of polynomi-
als. Therefore, performing a relin operation immediately after each
ciphertext multiplication is unnecessary in PSI.

Taking the current state-of-the-art (SOTA) APSI protocol [13]
as an example, it also fails to recognize this fully and continues
to perform a relin after every Hmul. Since Relin is one of the
most time-consuming operations in the BFV scheme, this results in
significant redundant computation. In Ares, we propose the Lazy
Relinearization optimization for this phenomenon, which will be
detailed in Sec.III-A.

C. Mismatch with the General FHE Accelerators

There are two obvious limitations to directly using general-purpose
FHE accelerators to implement PSI applications.

Low hardware utilization. Traditional accelerator architectures
are built to handle large encryption parameters (e.g., N = 216, logQ
over 1500 bits) and complex bootstrapping operations. To support
these requirements, they must deploy substantial scratchpad memory
(180MB∼512MB) and high-bandwidth off-chip memory (e.g., two
HBM modules with 1TB bandwidth) to meet the data R/W demands
of the computation units. However, PSI requires significantly smaller
encryption parameters (e.g., N = 213, logQ less than 220 bits),
so using these accelerators results in considerable waste of storage
and bandwidth resources. Moreover, PSI employs only a subset
of FHE operations, excluding functions such as automorphism and
bootstrapping, which are commonly supported by general-purpose
accelerators. This further reduces hardware efficiency.

Significant data transfer overhead. These accelerators typically
face memory limitations when using traditional memory hierarchies,
meaning the entire database cannot be fully loaded into on-board
memory. However, SSD bandwidth is much lower than that of mem-
ory. The commonly used PCIe 3.0×4 interface in SSDs usually has
a bandwidth of only about 1.2 GiB/s for this fine-grained ciphertext
read operation [14]. During computation, each query requires simple
homomorphic operations (i.e., ciphertext addition) with all entries in
the dataset (encoded plaintext), and each piece of data is used only
once per query. This results in the database being used briefly with
no opportunity for reuse. It is difficult to simultaneously transmit the
next set of database during computation to mask the significant PCIe
communication overhead.

III. HARDWARE-SOFTWARE CO-DESIGN FOR ARES

In this section, we first explore how Lazy Relinearization optimiza-
tion can effectively reduce the relin overhead in PSI computations,
thereby enhancing efficiency. Next, we present design strategies for
optimizing the HE computation data flow in PSI, aiming to increase
the throughput of PSI computations. Subsequently, we provide a
detailed description of the Ares hardware architecture, which is based
on these optimizations. Finally, we analyze how the optimized PSI
computation workload is efficiently executed on the Ares hardware
architecture, ensuring high performance and energy efficiency even
when processing large-scale databases.

A. Lazy Relinearization

As discussed in Sec.II-B, there exists a certain amount of re-
dundant computation in the polynomial evaluation. We propose an
optimization strategy named Lazy Relinearization (LazyRelin for
short), which aims to eliminate these unnecessary computations.

The upper part of Fig. 2 illustrates an example procedure for
polynomial evaluation in previous PSI implementations. Here, the
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Fig. 2. Example of LazyRelin Optimization. The figure demonstrates the
changes in polynomial evaluation computations before and after applying
LazyRelin. The red box highlights the polynomial that requires evaluation.

red box denotes a 12th-degree polynomial to be evaluated, where PM
stands for polynomial multiplication and PA for polynomial addition.
The polynomial is initially decomposed into several sub-polynomials
to reduce the required computational power. Notably, in these sub-
polynomials, the query x and its powers are in ciphertext form,
while other terms are in plaintext. The difference is in Stage ❷, after
completing Hmul, we do not perform the relinearization immediately.
Instead, we keep the number of polynomials at three until all Hadd
aggregations are finished. Then, we perform a single relinearization
on the final result.

As mentioned earlier, Hmul operations performed at the same
depth do not cause a surge in polynomial numbers. Since all Hmul
operations in the polynomial evaluation of PSI occur at the same
depth, delaying relinearization is both feasible and merely alters
the computation pattern without affecting the accuracy of the PSI
protocol execution.

In this example, the polynomial evaluation process eliminates two
time-consuming relinearization steps, with the trade-off being a minor
increase in PAs, which has negligible overhead. The experimental
results of applying this optimization strategy to practical-scale PSI
will be presented in Sec.IV-C

B. Architecture

Ares is a NDP architecture that integrates storage, memory, and
computing within a single Computational Storage Device (CSD),
effectively alleviating bottlenecks associated with data movement
over a busy system PCIe bus. The Fig.3 (a) illustrates the overall
architecture of Ares. Within the CSD, the programmable circuit con-
tains the computational architecture. And, the remaining components
of the CSD consist of DRAM and SSD storage units, along with a
PCIe switch. The PCIe switch facilitates communication not only
between the host and the device but also supports point-to-point
(P2P) communication between the computing circuits and the SSD
storage. Databases stored in the SSD are first cached in DRAM before
being read into two regions designated for computation, which are
partitioned according to the optimized PSI computation pattern. These
regions transfer data through a unidirectional Polynomial Evaluation
Intermediate Result (PEIR) buffer.

As discussed in Sec.II-A, the primary computational workload in
PSI is concentrated in the polynomial evaluation. The database is

stored in plaintext form and processed with the query ciphertexts. As
shown in the lower half of Fig.2, Stage ❶ involves the computation of
sub-polynomials, which includes operations such as plaintext multi-
plication (Pmul) and ciphertext addition (Hadd). In contrast, Stage ❷

focuses on Hmul, a process with significantly higher computational
complexity—typically two orders of magnitude more complex—than
the operations in Stage ❶.

Based on these observations, the polynomial evaluation can be de-
composed into two components: one is memory-intensive (Pmul and
Hadd) and another is compute-intensive (Hmul and relinearization).
These two components are computationally independent but exhibit
memory locality in their data dependencies. The result of the former is
just the input of the latter. However, traditional general-purpose FHE
accelerators do not incorporate specialized data pathways tailored to
the requirements of polynomial evaluation in PSI, thereby failing to
fully leverage the benefits of this decoupling in terms of memory
access and computation. Ares could optimize the parallelism and
locality inherent between the two components.

As shown in the right half of Fig.3 (a), we divide the computation
into two parts in the hardware architecture: the Memory-Bound (MB)
Region and the Computation-Bound (CB) Region. This unidirectional
dataflow minimizes redundant data transfer, aligning closely with the
characteristics of PSI computations to reduce pressure on memory
access. After an assignment of computational resources, these two
parts achieved a balance in performance, and a high-performance
bubble-free pipeline architecture was implemented with some buffer.
The advantages of this unidirectional dataflow will be seen in
Sec.III-C. Below we will introduce the Ares computing architecture
in detail.

MB Region is responsible for executing Pmul and Hadd. Although
these operations have low computational complexity but need to be
executed an extremely large number of times, thus requiring high
memory bandwidth. Data is retrieved from DRAM and processed
through cascaded Pmul and Hadd units to complete sub-polynomial
evaluation calculations. The results of these evaluations are temporar-
ily stored in a PEIR buffer before being forwarded to the CB Region
for subsequent processing.

CB Region is much more complex. It can be subdivided into two
primary components: one module dedicated to Hmul and another
unit for the accumulation of multiple sub-polynomials, known as the
HAccumulate unit. The hardware design for Hmul includes modular
multiplication (MM), modular addition (MA), Number Theoretic
Transform (NTT), and a separate Evaluation Key (EVK) buffer. The
modular multiplication operation employs Barrett reduction, while
the NTT unit adopts an 8-Radix structure inspired by the Poseidon
architecture. The HAccumulate unit is a higher-performance variant
of the Hadd unit equipped with independent caching. Unlike the
Hadd units in the MB Region, the ciphertext polynomials have not
undergone relinearization, leading to a larger input dimension for
the Hadd computation. The accumulated unrelin results are then
transferred via a Local Buffer. Notably, since the basic operators for
relin and Hmul computations are identical, coupled with the use of
relinearization keys stored in the EVK buffer, the relin process can
be completed, with the final output written back to DDR through the
outbuffer.

PEIR Buffer can be conceptualized as a dual-port asynchronous
FIFO designed to cache the ciphertext results of sub-polynomial
computations and transmit them sequentially to the CB Region. Given
the generally balanced performance between the two regions, the
buffer’s capacity does not need to be extensive. In our design, it
is configured to hold three ciphertexts.
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Fig. 3. The left half of part (a) shows the collaborative process between Ares and Host to complete a PSI query, while the right half is the overall computing
architecture of Ares. Part (b) illustrates how PSI workload is allocated and executed on two specific regions under the hardware architecture of Ares.

Scheduler is implemented as a finite state machine (FSM) that
is responsible for communicating with the Runtime on the Host
side. Its primary functions include receiving the ciphertext of the
query x and its powers from the host, initiating the transition of
the computational unit’s state. Upon query completion, the resulting
ciphertext is returned to the host.

C. Workload Distribution to different Regions

In Sec.III-A, we explain how the optimized PSI computation pat-
tern performs polynomial evaluation. This section further elaborates
on how our hardware design effectively supports these optimizations
in conjunction with the Ares hardware architecture. Through a co-
design approach that integrates both software and hardware, we have
divided the core computational process of polynomial evaluation in
PSI into three stages. As shown in Fig.3 (b), we provide a typical
polynomial evaluation that illustrates the workload distribution when
evaluating a 12th-degree polynomial. This example serves as an
extension and concretization of the content described in the lower
half of Fig.2.

Stage ❶: At this stage, the plaintext database and the power of
x are read from DRAM. The polynomial is divided into several
sub-polynomials; for example, Plain b represents b0, b1, b2 in Fig.2.
The CB Region calculates the required powers of x, and for the
same user, the calculation of x’s power needs to be performed only
once throughout the process. Meanwhile, the MB Region begins
to calculate the sub-polynomials; for instance, Hmac b indicates
calculating b0 + b1x

1 + b2x
2, and then the result is written into

the PEIR buffer.
Stage ❷: This stage focuses on performing efficient Hmul. This

part involves multiplying the results of computing sub-polynomials
such as PEIR b by x3, x6, and x9 in Hmul b, Hmul c, and Hmul d
respectively.

Stage ❸: In the final stage, Hadd is utilized to aggregate the
results of Hmul. Subsequently, only one Relin computation needs to
be performed on this result to convert the high-order polynomial back
into a decryptable form, thereby yielding the complete polynomial
evaluation result.

This example remains effective when extended to practical PSI
polynomial evaluations. For instance, in the evaluation of a poly-
nomial of degree 2000, during Stage ❶, the degree of the sub-
polynomials that need to be computed is 40. For Stage ❷, the required
powers of x are x40, x80, etc. Through hardware design, operations
such as Hadd, Hmul, and Relin are balanced in performance to ensure
that the pipeline can execute efficiently.

There is another subtle optimization worth noting. Observing the
order in which plaintext database reads from DRAM, it’s evident
that the reading of sub-polynomial plain a is not performed at
the beginning as one might intuitively expect, but rather delayed
until the end of the entire read process. As shown in Fig. 2, after
sub-polynomial plain a completes Hmac a, it does not need to
participate in the Hmul operation in Stage ❷. Therefore, by reading
sub-polynomial plain a last, we can directly use it in the Hadd
computation of Stage ❸ immediately after completing Hmac a, thus
better utilizing the limited bandwidth resources. Although the effect
of this optimization may not be significant during a single polynomial
evaluation. However, when dealing with large-scale databases, where
PSI computation involves thousands of polynomial evaluations, this
fine-tuning can cumulatively have a positive impact on overall per-
formance.

IV. EVALUATION

A. Experimental Setup

Software Platform: We conducted the software performance
testing of Ares on a server platform equipped with an Intel Xeon
W-1370 CPU, which features 16 threads. The server is also outfitted
with 64 GB of DDR4 RAM and 4 TiB of SSD storage.

Hardware Platform: We implement Arse’s hardware architecture
in SAMSUNG SmartSSD device [15]. The SmartSSD has a 4TB
NVMe SSD which directly communicates with Kintex UltraScale+
KU15P FPGA through a PCIe Gen3.0 x4 bus. The attached FPGA
has approximately 522K LUTs, 984BRAMs, 1968 DSPs, and DDR4
4GB DRAM.

Baseline: In our experiment, we first evaluate the performance of
the basic CPU. Subsequently, we compared Ares with SOTA FPGA-
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TABLE I
SIZES OF BENCHMARK DATABASES

Database Receiver.Num Sender.Num DB Size Entry Length

Small 4096 228 1.68GB 16B

Medium 4096 230 6.75GB 16B

Large 4096 232 27GB 16B

VLarge 4096 234 108GB 16B

based FHE accelerators like FAB [8] and Poseidon [7]. None of these
accelerators have implemented the PSI protocol, but each accelerator
is fully capable of executing PSI. To facilitate comparison, we
evaluated each accelerator architecture according to the complexity
of the benchmark.

Benchmark: As shown in TableI, we selected four databases of
different sizes for evaluation. The size of the receiver (user) set in
all four benchmarks is 4096, so the polynomial size N for BFV is
configured to 8192. The DB Size refers to the size of the database
after undergoing cuckoo hashing and OFPR. For the purpose of
experimental evaluation, the specific values in these four databases
are randomly generated.

B. Performance

As illustrated in TableII, we initially present an overall system
performance analysis for executing identical PSI queries across four
databases of varying sizes, using Ares, CPU, and two SOTA FPGA-
based FHE accelerators. Ares demonstrates an approximate 47×
speedup over the CPU across all four datasets, primarily because HE
operations constitute the primary bottleneck for PSI queries under the
CPU architecture, rather than memory access becoming the limiting
factor. In contrast, for smaller-scale datasets, both Ares and FPGA-
based accelerators experience performance enhancements constrained
by certain memory access limitations, resulting in Ares achieving
only a 1.38× speedup. For larger-scale datasets, specifically Large
and VLarge, Ares leverages its advantages in co-designed software
and hardware to exhibit nearly double the performance improvement
relative to FPGA-based accelerators.

C. Ablation

Due to the excessive resource consumption of FPGA Baseline FAB
and Poseidon, they cannot be deployed on the resource-limited CSD
platform. We evaluated the performance improvement of deploying
LazyRelin optimization on these architectures based on their design
complexity. In Figure 4, we normalized the data to the performance of
FAB+APSI. The results show that, across four different benchmarks,
the performance improvement of the two baselines with LazyRelin

TABLE II
PERFORMANCE COMPARISON OF CPU AND FPGA-BASED FHE

ACCELERATORS ACROSS FOUR BENCHMARKS

Platforms Small(s) Medium(s) Large(s) VLarge(s)

CPU 61.82 183.84 711.63 2822.79

FPGA

FAB 1.97 7.19 28.52 113.82

Poseidon 1.77 6.63 26.38 105.38

Ares 1.42 3.92 14.91 58.88

optimization was only approximately 3%, exhibiting a similar minor
enhancement trend in each benchmark. This limited improvement is
attributed to the general FHE accelerator architecture’s inability to
effectively align with the specific computational patterns of PSI.

In contrast, even using the original APSI computation patterns,
the Ares architecture still performs better than the general FHE
accelerator. Moreover, after applying the LazyRelin optimization,
Ares’s performance was further significantly improved, especially in
the VLarge database tests, where the maximum performance achieved
up to 1.933×. These results not only highlight the high compatibility
between the LazyRelin optimization and the Ares architecture but
also indirectly confirm the high alignment of the Ares architecture
with the PSI computation patterns in its design.

D. Resources And Utilization

Ares exhibits significant efficiency in resource utilization. As
shown in the left half of TableIII, a comparison is made between
Ares and two other FPGA-based FHE accelerators regarding their
primary resource consumption. The data indicate that Ares achieves a
reduction of 2∼5× compared to previous FPGA accelerators, whether
it pertains to the usage of logical or storage resources. The right half
of TableIII evaluates the pure computational performance of the core
calculation in PSI query—polynomial evaluation, where D represents
the degree of the polynomial. The findings reveal that, despite a
marked reduction in hardware resource usage, Ares performs slightly
lower than Poseidon in polynomial evaluation but is comparable to
FAB. This phenomenon can be attributed to the fact that traditional
FPGA-based FHE accelerator designs have not adequately considered
the characteristics of PSI computations, lacking dedicated data paths
optimized for PSI tasks. Consequently, even with substantial invest-
ments in computational and storage resources, the actual utilization
rate of hardware remains low. In contrast, Ares effectively maximizes
the performance of PSI computations through the optimal use of
limited hardware resources, demonstrating its advanced and targeted
design approach.



TABLE III
RESOURCE UTILIZATION ANALYSIS: COMPARISON OF RESOURCE USAGE

BETWEEN ARES AND BASELINE FPGA ACCELERATORS; POLYNOMIAL
EVALUATION LATENCY

Works
Resources Latency(ms)

LUT(K) FF BRAM DSP D=214 D=218

FAB 899 2,073 3,840 5,120 94.4 1511.3

Poseidon 728 977 2,048 8,640 61.3 981.8

Ares 343 474 912 1,728 80.5 1288.7

TABLE IV
EFFICIENCY ANALYSIS. ENERGY-DELAY PRODUCT (EDP) IS USED AS
THE METRIC, WHERE LOWER IS BETTER. MAX GAIN INDICATES THE

MAXIMUM GAIN ACROSS FOUR BENCHMARKS.

Works Small Medium Large Vlarge Max Gain

FAB 464.15 6,182 97,281 1,549,417 10.95

Poseidon 317.67 4,457 70,564 1,126,041 7.96

Ares 82.26 626 9,070 141,447 1.0

E. Energy Efficiency

To evaluate Ares’ performance in terms of energy efficiency, we
adopted the Energy-Delay Product (EDP) as the metric. The power
consumption data for FAB and Poseidon were obtained through the
Xilinx Power Estimator (XPE) [16], while Ares’ power consumption
data were derived from Power Reports generated after synthesis
using the Vitis Development Tool (VDT). It is worth noting that
the EDP data for the CPU are not listed in the table because its EDP
value is significantly higher—approximately 5500× greater than the
accelerators, hence not directly represented in the table. As shown
in TableIV, Ares demonstrates superior energy efficiency across four
benchmarks, achieving a 10.95× increase in energy efficiency com-
pared to FAB and a maximum 7.96× improvement over Poseidon. On
one hand, these notable gains in energy efficiency can be attributed
to Ares’ efficient utilization of hardware resources, which allows
it to maintain high-performance PSI computation capabilities even
at lower power levels. On the other hand, the gains are also due
to its architecture specifically designed for PSI computations and
optimized data transfer paths, further enhancing Ares’ competitive
edge in energy efficiency.

V. CONCLUSION

In this paper, we present Ares, a hardware-software co-designed
accelerator for FHE-based PSI. We optimize the computation pattern
using the LazyRelin strategy, which significantly reduces the number
of relinearization operations, one of the most time-consuming opera-
tions in FHE computations. In terms of hardware architecture design,
Ares leverages NDP to minimize data transfer latency and designs
matching hardware computational circuits tailored to the PSI com-
putation pattern, thereby maximizing the accelerator’s performance.

The proposed Ares accelerator not only enhances the performance
and energy efficiency of FHE-based PSI but also paves the way
for more practical and scalable applications in real-world scenarios.
Overall, our work demonstrates the feasibility and advantages of
specialized hardware acceleration for FHE-based PSI, making it a
promising solution for large-scale, privacy-preserving data process-
ing. We hope that the progress made in this research will contribute
to the broader field of privacy-preserving computation.
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