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Abstract

Deep learning under FHE is difficult due to two aspects: (1) for-
midable amount of ciphertext computations like convolutions, so
frequent bootstrapping is inevitable which in turn exacerbates the
problem; (2) lack of the support to various non-linear functions in
terms of the diversity and accuracy. Previous work primarily used
the CKKS-based approach, which requires large parameters and
places a heavy burden on the hardware. In this paper, we propose
Athena, including a novel framework targeting quantized convo-
lutional neural networks under FHE, and a specialized accelerator
to release the maximum potential of the framework. Unlike the
classic CKKS-based approach, Athena only requires much smaller
parameters, i.e., 21> degree and approximately 5 MB ciphertext size.
Athena uses a uniform representation, functional bootstrapping, to
accurately support any type of activation functions, and is not lim-
ited to polynomial approximate fitted functions such as ReLU and
sigmoid. We highlight the following results: (1) the accuracy varies
by +0.01% /—0.24% compared with the plaintext quantized CNN;
(2) the inference performance on the Athena accelerator achieves
a speedup of 1.5X to 2.3%, an EDAP improvement of 3.8X to 9.9,
compared with state-of-the-art FHE accelerators.
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1 Introduction

The global tech industry recognizes the increasing importance of
privacy-enhanced computation for securing personal information.
Fully Homomorphic Encryption (FHE), at the forefront of main-
stream privacy-enhanced computation, is a powerful methodology
that enables computations on encrypted data without accessing
sensitive or personal information [6, 11, 14, 40]. Recent research has
focused on using FHE in cloud datacenters for machine learning in-
ference. For example, Google has introduced the capability for video
deblurring and object detection with FHE-based machine learning;
Amazon has integrated FHE with its SageMaker endpoints [3] for
the clients to perform secure and real-time inference. Supporting a
variety of machine learning models and achieving fast and accurate
inference on the encrypted data is highly desirable in the industry
today.

Deploying complex Convolutional Neural Networks (CNNs) with
large-scale is challenging under FHE due to its intractable computa-
tion. The reason lies in two aspects. Firstly, large-scale CNNs usually
consist of tens to hundreds of convolution layers. Computing these
layers under FHE will require frequent bootstrapping, a.k.a., the
most complex and time-consuming operation. That is also why
existing solutions only apply to very tiny CNNs [4, 9, 13, 15], be-
cause the chosen parameters are just enough to perform the target
CNN without bootstrapping. Secondly, CNN is usually composed of
substantial non-linear layers in addition to the linear layers. Exist-
ing arithmetic-based FHE algorithms like CKKS enables SIMD-like
batched operations which is very suitable for the linear operations
like convolution and the fully-connected. Non-linear operations
such as ReLU, and Sigmoid require approximation methods, such
as Taylor or Chebyshev expansions, to estimate their results. Even
if the computations of the transformed SIMD-alike operation can
be effectively dealt with, the accuracy may degrade because of the
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error added by such approximation, especially when the layers of a
particular CNN are much deeper.

Speaking of the error, the accuracy after decrypting the result
compared with the plaintext CNN is significantly affected by the
error. The FHE-based CNN will add error at each individual step
during inference, i.e., boostrapping, keyswitch, rotation for the
accumulation, etc. If we use the classic CKKS FHE, the accuracy
is reflected by the precision of the binary decimals. Along with
performing the convolutions and non-linear functions layer by
layer, the error incrementally invades the binary decimals and
ultimately degrades the precision of the results. The accuracy hence
becomes highly unpredictable. Therefore, the parameter setting
usually requires a large scaling factor and enough binary decimals to
tolerate the precision loss during inference. However as mentioned
before, large parameters lead to substantial hardware overhead in
terms of on-chip storage and data movement bandwidth.

Numerous previous FHE accelerator designs aim to accommo-
date such large-parameter settings to mitigate the accuracy loss,
while simultaneously achieving satisfactory speedup. This design
paradigm is inevitably costly due to the considerable amount of
chip resources and area required, especially when dealing with
highly complex FHE operations like bootstrapping. Specifically, the
speedup heavily relies on the on-chip storage capacity, i.e., the un-
conventional 256 MB + 26MB for Craterlake [38]; 512MB and more
for ARK [23] and BTS [24], due to the large size of the ciphertext and
various public keys. A large on-chip data movement bandwidth is
also imperative under such circumstances to provide the matching
amounts of operands to the computing cores like NTT and auto-
morphism units, i.e., 84TB/s for Craterlake, 92TB/s for ARK, and
330TB/s for BTS, as reported in the literature. HEAP [1] proposes
an idea to accelerate CKKS bootstrapping across multiple FPGA
cards using TFHE’s programmable bootstrapping (PBS). However,
it essentially trades increased computational overhead for paral-
lelism, requiring more FPGA cards to provide sufficient compute
resources. Cheetah [35] and [36] propose accelerator architectures
for BFV FHE, primarily focusing on improving BFV efficiency with-
out considering parameter settings in CNN implementations, thus
still facing challenges similar to CKKS-based accelerators. More-
over, CNNs impose even more severe burdens on bootstrapping
and non-linear functions. ResNet-20 [27, 28] requires bootstrap-
ping at least twice per residue block and more than 19 times in
total; ResNet-56 [27] is even deeper and more computationally
complex compared to ResNet-20. Existing FHE accelerators find it
challenging (or even impossible) to further enhance performance
by simply adding more scratchpad resources, even slightly, making
the deployment of CNNs under FHE a daunting task.

We propose Athena, a low-cost, fast, and accurate methodology
for FHE-based quantized CNN acceleration. Athena is a univer-
sal acceleration framework designed to adapt to various model
parameters and nonlinear functions, supporting a wide range of
CNNs. Athena abandons the de-facto design paradigm of using the
cryptosystem for CKKS-based FHE in floating-point CNN inference
with large-parameter settings for bootstrapping and long multi-
plicative depth, by targeting quantized CNN inference under FHE.
It accommodates various quantization precision and can flexibly
adjust the mapping space of non-linear function to optimize sys-
tem performance. Athena co-designs the software and hardware,
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encompassing the Athena framework with a five-step consecutive
loop on the software side, and the Athena accelerator. In terms
of architecture, Athena’s inference framework is closely aligned
with hardware architecture, focusing on reducing encryption pa-
rameters for better compatibility, which reduces the scratchpad
capacity requirement by over 4X. We also design the “FBS and
RNS Base changing unit” (FRU) and specific dataflow to support
the computational bottlenecks. Quantization is a widely used and
mature methodology. Despite its comparable (or sometimes even
higher [31]) accuracy to its floating-point counterpart, it is very
compatible with FHE, as the input activation, model weights, and
their arithmetic are all integer-based. Thus, it provides a favor-
able condition for re-architecting the inference mechanism in an
accuracy-controllable yet cost-effective manner with much smaller
parameters (as detailed in Section 5.2). The contributions of this
paper are listed as follows:

(1) The Athena framework for the light-weight, lossless deep learn-
ing under FHE. It utilizes the coefficient encoding-based optimiza-
tion mechanism for efficient computation of linear layers. Addi-
tionally, it incorporates a noise control mechanism that includes
modulus switching, ciphertext conversion (from RLWE to LWE
and back), and a functional bootstrapping (FBS) mechanism that
enables batch processing of precise non-linear functions and remap-
ping. In theory, the Athena framework can support any non-linear
function in CNNs, as detailed in Section 3.2.3, and can easily ac-
commodate various models. The accuracy obtained using Athena
is 94.65% and 94.66% in ciphertext for ResNet-56, compared with
94.89% and 94.79% in the plaintext quantized ResNet-56.

(2) The Athena accelerator - a cost-effective hardware implementa-
tion specialized for the Athena framework. The Athena accelerator
is specifically designed for the Athena framework, featuring signif-
icantly smaller ciphertext degrees (and therefore smaller ciphertext
sizes), public key sizes, and ciphertext moduli, leading to a 4X reduc-
tion in scratchpad capacity. We also design the Sample Extraction
(SE) unit to effectively support the conversion of ciphertext formats
within the Athena framework and instantiate customized modules
FRU designed to reuse many computational cores through different
data paths, addressing Athena’s computational bottlenecks. Based
on the versatile FRU and the design of the computational dataflow,
the Athena accelerator can well match the inference framework to
achieve excellent performance. We highlight the following results:
1.5% to 2.3X speedup compared with the state-of-the-art accelera-
tors, together with 2.4X to 6.2Xx EDP improvement and over 1.53%
area reduction.

2 CNNs under FHE

2.1 Challenges

2.1.1 Large-parameter Setting. In FHE, the parameter selection
presents a tradeoff with implementation overhead. Table 1 com-
pares six solutions from the literature. Early-stage pure leveled
homomorphic encryption (LHE) [9, 13, 15] uses a small degree,
such as 8192, and the ciphertext modulus, Q, never exceeds 220 bits.
This conservative setting results in a solution incapable of boot-
strapping, limiting its application to small-scale deep learning, such
as CNNs with three or fewer layers [4, 26] trained on the MINIST
dataset. More aggressive solutions [27, 28] use a larger degree (i.e.,
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Table 1: Solutions for CNN under FHE. L: Linear; NL: Non-Linear; E: Evaluation; B: Bootstrapping; Q: Quantized; NQ: Non-Quantized;
FBS: Functional Bootstrapping. We use the multiplicative depth to denote E and B levels for the CKKS-based FHE methods. For
the LHE-based methods and our Athena, there is no multiplicative depth, which is marked by NA.

Q/ A (bits) Cipher. Key Size Accuracy (%)
Method CNN | Degree (E / B) (level) B &NL size (rot+relin) Dataset (cipher / plain)
YASHE (L) 191/ NA Seperated CryptoNets:
. MNIST
(LHE)[13] NQ | 8192 (NA / NA) (Taylor) | S/°KB | 315MB S 98.95 (99.0)
BGV (L) <220 /NA Seperated CryptoDL:
(LHE)[15] NQ | 8192 (NA / NA) (Taylor) | 48KB | 367MB | MNIST 99.5 (99.7)
BFV (L 219 /NA S ted Fast-CryptoNets:
(LHE)([9)] 0 8192 e Af NA) g’;;ﬁ) f) 48KB | 367MB | CIFAR-10 a;ﬁ 7?(1;3010‘; s

CKKS (L+NL+B) 1450 / 50 Seperated )

(FHE)[25] NQ 65536 (11/13) (Taylo) | 27 MB 1.9 GB CIFAR-10 | ResNet-20: 92.43 (92.95)

CKKS (L+NL+B) 1501/ 46 Seperated ResNet-20: 91.31 (91.52)

2 MB 2.1GB CIFAR-10
(FHE)[27] NQ | 65536 (16 / 14) (Taylor) | ° ¢ ResNet-56: 92.80 (93.07)
BFV(L)+FBS(NL+B) 720 / NA Merged ResNet-20: 93.63 (93.84)
32768 5.6 MB 720 MB CIFAR-10
(FHE), ours Q (19) (FBS) ResNet-56: 94.65 (94.89)
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Figure 1: The impact of A to the non-linear activation func-
tions and CNN model. The red line denotes the accuracy of
the plaintext expansion. Other lines denote the decrypted
accuracy of the ciphertext expansion under different A set-
tings. X-axis is the orders of the expansion, and Y-axis is the
accuracy in bits.

216) and a long modulus chain, or Q, in CKKS to accommodate nor-
mal multiplication and bootstrapping, enabling private inference
of more complex CNNs like “ResNet-20". However, the total key
size might be up to 50 larger than that of LHE, and one ciphertext
might reach tens of megabytes. Several proposed hardware acceler-
ators [22-24, 37, 38], although not specifically designed for deep
learning, can support these large-parameter settings and deploy
CNNs under FHE, but this increases ASIC chip size and reduces
efficiency.

2.1.2  Accuracy. CKKS-based solutions employ series expansion to
approximate the actual function value due to the non-linearity of
activation functions. As shown in Fig. 1, We adopt commonly used
Taylor and Chebyshev approximations of ReLU and Sigmoid as
representative nonlinear functions, and use ResNet-20 with ReLU
as a CNN benchmark. Bit accuracy is used to measure the differ-
ence between the computed results and the ground truth (40-bit)
of function values and model output probabilities. The series ex-
pansion introduces a certain level of error, denoted by the red line.
Ciphertext expansion under different A settings shows that more
expansion orders (X-axis) improve accuracy, except when A = 25.

around 2 bits, which is insufficient for practical use in typical CNN
models. This is why some CKKS-based approaches set it as large as
possible, i.e., 46 bits in [28] and 50 bits in [27]. This illustrates the
limitations of the traditional extension-based approach to imple-
menting nonlinear functions, i.e. it requires fine-tuning function
design and selection of appropriate parameters, which need to be
done by cryptography experts with expertise in cryptography. The
lack of a unified design framework increases the complexity of
FHE-based CNNss, thereby reducing their ease of use.

2.2 FHE’s Affinity to Quantized CNNs

2.2.1 Controllable Accuracy with Small Parameters. Quantization
aims to use integer precision for CNN inference while achieving
negligible accuracy loss. Unlike [28] and [27], which leverage the A
in CKKS to control decimal precision and tolerate precision loss due
to noise, quantized CNN inherently possesses much lower “inte-
ger” precision, usually 8 bits, meaning there are no decimals in the
plaintext. Therefore, no A setting is necessary, and we only need to
ensure the 8-bit integer is accurate after dequantization and decryp-
tion, rather than maintaining around 30 bits of decimal accuracy as
in the previous approach [27, 28]. This allows parameters such as
“degree” and Q to be set much smaller without sacrificing accuracy,
as the linear function result reflected in the intrinsic plaintext is an
8-bit integer multiply and accumulate (MAC). As shown in Table
1, our Athena, by targeting quantized CNN in FHE, only requires
a 21’ degree and 720 bits of Q, but achieves even closer final accu-
racy compared to its plaintext counterpart. The key and ciphertext
size also decrease significantly, to 3~6x, thereby alleviating the
hardware burden.

Besides the benefit of small parameters, the MAC of the quan-
tized CNN under FHE has fully controllable accuracy at each step
during inference, due to the exclusion of decimals. Some early-stage
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Figure 2: Athena framework. The five-step loop consecutively handles one linear layer (Conv or FC), and one non-linear layer
(Activation) fused with remapping and bootstrapping at a time. LUT contains the encrypted activation values.

FHE algorithms, like BFV, which aim at integer-only homomorphic
encryption, can be applied. Unlike CKKS, which relies on the ap-
proximate result of real numbers, BFV is designed for precise integer
results and could be leveraged for encrypting quantized CNNs. A
precise MAC contributes to maintaining the final accuracy.

2.2.2  Non-linearity and Bootstrapping Friendly. Non-linear func-
tions and bootstrapping are the key design challenges in FHE-based
CNN. CKKS-based solutions [27, 28] utilize the Taylor series expan-
sion to approximate the results of non-linear functions, and the com-
plex sine function to approximate the homomorphic modulo opera-
tion in bootstrapping. Some approaches resort to the CKKS/TFHE
hybrid method to tackle the large overhead of bootstrapping and the
inflexibility when dealing with arbitrary non-linear functions. For
example, TOTA [42] leverages TFHE to perform blind rotation on
the look-up table (LUT), mapping data to arbitrary function values.
To maintain high accuracy, this approach requires multiple TFHE
bootstrappings of data segments. Although TFHE bootstrapping is
flexible, the possible permutation space of the LUT is proportional
to the plaintext precision. For example, PEGASUS [30] uses 45-bit
floating point precision, so its LUT has 2%° combinations, and the
blind rotation requires passing through thousands of CMUX gates
to maintain complete precision. Since the computational model of
TFHE is SISD, using it to support high-precision activation and
bootstrapping for large data in CNNs will introduce a huge compu-
tational overhead and significantly impact system performance.
Benefiting from the lower precision in the quantized CNN, the
LUT space naturally has a reduced size (less than 2!7 in Athena).
This makes operations relevant to the LUT more cost-effective
for hardware implementation and more flexible in supporting any
type of non-linear functions, as we only need to encode a limited
number of discrete values in the LUT. Additionally, quantization
usually works with 8-bit or lower integers by remapping the MAC
result back to 8 bits. It is also possible to further reduce the noise
while controlling the plaintext within its pre-set modulus. Athena
leverages these significant advantages to make a new solution for

deep learning under FHE possible. The details will be elaborated in
the next section.

3 Athena

3.1 Framework

In the practical industrial use, the weights of a CNN are always
kept within the company domain. Therefore, only user privacy data,
such as an image or audio fragment, is encrypted by FHE as input,
while the weights remain in plaintext form [2, 5, 9, 18]. Athena
targets quantized CNN inference under FHE. As a mature method-
ology in Al research, a considerable amount of work has been
proposed for the high-accuracy model quantization [17, 19, 33, 43].
The general-purpose quantization procedure for CNN inference
involves three classic steps: quantizing the activations of each layer
into 8-bit (or lower) precision with scaling factors, issuing the mul-
tiply and accumulations, and dequantizing the results back to 8-bit
integers (usually called remapping) [8]. Well-known deep learning
frameworks like TensorRT, PyTorch, and Tensorflow have built-in
quantization methods that follow this procedure, achieving compa-
rable or slightly higher accuracy than non-quantized versions [31].
Within the scope of Athena, this procedure is issued under FHE. In
each inference phase, such as the quantized convolution layer, the
non-linear activation layer, and even the remapping, the interme-
diate activations are strictly kept under cover as FHE ciphertexts,
ensuring accurate inference results and absolute user data security.

The Athena framework, as shown in Fig. 2, comprises five tightly
coupled steps. Due to the negative impact of the added noise men-
tioned in the previous section, Athena proposes using the combi-
nation of modulus switching (Step @), ciphertext conversion (Step
® and 0) to reduce the inherent noise introduced by FHE-specific
operations like ciphertext multiplication and addition. To address
the encrypted inference of non-linear activation functions, Athena
proposes a uniform representation of these functions, a.k.a LUT,
and collaboratively accomplishes bootstrapping and the activation
function in tandem. This step, illustrated by Step @, is termed as
functional bootstrapping (FBS). The core of the framework involves
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Table 2: Ratios of valid data in the result polynomials under
common convolution layer.

(HW, Cin, Cout, Wi, stride, padding) | Cheetah [16] | Athena
(322,3,16,3,1,1) 25 % 50 %
(32%,16,16,3,1,1) 313 % 50 %
(322,16,32, 1, 2,0) 1.56 % 25 %
(16%,32,32,3,1,1) 227 % 25 %
(16%,32,64,1,2,0) 0.78 % 6.25 %
(82,64,64,3,1,1) 0.96 % 125 %

converting ciphertexts from RLWE to LWE, homomorphically de-
crypting, and packing back the LWE ciphertexts into one RLWE
ciphertext. The uniform representation by LUT enables Athena to
be applicable to any non-linear functions. In FBS, the remapping
is merged inside the non-linear functions. In the next section, we
delve into the details regarding its implications with the quantized
CNN and the control and increment of noise.

3.2 Procedures

3.2.1 Encoding and Linear Functions. The classic encoding method
(in “slots”) requires a number of high overhead rotation operations
for the accumulation in linear layers. To circumvent this issue and
prepare for subsequent ciphertext conversion and noise refresh, we
employ the coefficient encoding method proposed and utilized in
[16, 21] for the implementation of the linear function and adjust
the encoding sequence, which allows the result to be distributed
compactly across the ciphertexts, minimizing the number of result
ciphertexts for efficient implementation of the subsequent steps of
the Athena framework (Step @ and Step ).

To compactly distribute the results of the computation into a
small number of result ciphertexts, we need to adjust the encoding
of the data. For the general case with input M € ng*H*W and

kernel K € Zg"“’ *Cin

K described in Eq. 1, where T = HW(CoutCin — 1) + W(Wj, —
1)+ Wi —1,¢ € [0,Cip), h € [0,H), w € [0,W), " € [0,Cout),
and i, j € [0,W,). Ci, and Cyy; represent the number of input
and output channels, W and H represent the width and height of
feature map, and Wy represents the size of the convolutional kernel.
Here we assume Cyy;Cin HW < N for simplicity. This extends the
single-channel single-kernel example to multi-channels and multi-
kernels of convolution, with results obtained in coeflicients of M-K.
The FC layer is essentially the inner product operation, similar to
convolution, completed by setting W = Wy = Cip, = 1.

*We*We | data location is arranged as M and

M[cHW + hW +w] = M[c, h, w]

. (1)
K[T - /'CinHW — cHW —iW — j] = K[/, ¢, i, j]

When Cy,;Cin HW > N, the entire convolutional layer cannot
be completed with a single ciphertext. Therefore, a batching strat-
egy is employed to divide the feature map and convolution kernel
into b; based on the channel dimension. Unlike Cheetah [16], whose
encoding aims to minimize computational overhead, Athena pri-
oritizes the arrangement of features and kernels across different
Cour dimensions, and adaptively selects H and W’ for feature par-
titioning. Table 2 compares the effective data ratios in the resulting
polynomials for both methods under several common convolution
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Algorithm 1: Sample Extraction
Input: BFV ciphertext ctgry = (A, B); A and B are both
coefficient vectors.
Result: N LWE ciphertexts (cto, ct1, -, ctN—1)

1 fori«—20,---,N—1do

2 Initialize ct; = (@i, b;);

3 for j«—0,---,N—1do

. | @ [jl=j<i?Ali-jl:-A[N+i-jl;
5 end

6 bi =B [i];

7 end

8 return (cto, cty, -+ ,CEN—1)

parameter sets. Taking the (322, 16,16, 3, 1, 1) parameters as an ex-
ample, Cheetah prioritizes packing features from 16 input channels
into a single ciphertext during encoding. This results in the final
output being distributed across 16 ciphertexts. In contrast, Athena’s
encoding prioritizes packing features corresponding to 16 output
channels into a single ciphertext. Although this approach increases
the number of ciphertext multiplications and additions, the final
computed result is distributed across only one ciphertext, substan-
tially improving the effective data ratio, which can facilitate the
subsequent steps of the framework, such as sample extraction (Step

® in Fig. 2).

3.2.2  Noise Control and Ciphertext Conversion. Linear functions
introduce noise and shrink the noise budget in the ciphertext, affect-
ing subsequent calculations. After each linear layer, noise control is
essential for accuracy. In BFV, the plaintext is scaled by the factor
A during encryption, which means the valid values of the plain-
text m; are located at the MSBs of the ciphertext modulus Q. As
shown in Fig. 3, e denotes the noise introduced by the linear func-
tions, and the noise increment has consumed its payload A/2. t is
the plaintext modulus that frames the inner product of the linear
functions within itself. Athena targets the quantized CNN and the
inner product result might have much larger precision. Therefore,
it requires proper ¢ setting to prevent the inner product precision
from exceeding the plaintext modulus itself. From our case study in
Section 3.3, setting ¢ to 17 bits is adequate for this purpose. In order
to diminish the noise, Athena leverages “modulus switching” as
shown in Step @ in Fig. 2. It switches the modulus of the ciphertext
encrypting the inner product to a smaller modulus. Specifically, it
converts the previous BFV ciphertext in Fig. 3 under Q to ¢, i.e.,
ctgry = (a,b) = (a,—as + m+ eys) € 72? following Eq. 2.
ctgry = (a,b) € RZQ )
ModSwitch(ctppy,t) :== (La*t/Q], [b*t/Q]) @

The modulus switching has a twofold impact. On the one hand,

it removes the large noise in the Q/t range, refreshing the noise
increment space in the ciphertext. On the other hand, it introduces
some noise ey to the plaintext in ¢ due to rounding operation in
Eq. 2. Despite potentially affecting accuracy, the Athena framework
is not susceptible to it (see Section 5.2 for the accuracy evaluation),
as t is set as 17 bits and the noise only contaminates the LSBs in
t. Since Athena deals with the quantized model and remaps the
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Figure 3: FBS and noise control. The modulus switching in-
troduces e, but eliminates the noise e introduced by linear
functions. Sample extraction and packing refreshes the noise
in the RLWE ciphertext. The headroom is enough for the
next round Athena loop.

intermediate inner product back to int8 precision, the contaminated
LSBs (1 bit at most) have minimal impact on the final accuracy. The
detail will be introduced in Section 3.3.

After modulus switching, the noise is effectively reduced. How-
ever, the ciphertext’s modulus is now t, much smaller than the
original Q, limiting subsequent computations. Step ® and @ col-
laboratively resolve this issue. Step ® first converts the current
BFV ciphertexts from RLWE to LWE form via “sample extraction”,
as described in Alg. 1. To decrease Step @’s overhead, we switch
the degree of ciphertext from N to n using the method described
in [12] before sample extraction. It is essentially the keyswitching
operation. A single LWE ciphertext encrypts only one m; of the
plaintext; an BFV ciphertext corresponds to multiple LWE cipher-
texts, as shown in Fig. 2 and Fig. 3. We could formalize the LWE
ciphertext as ct; (Iwe) = (d;, b;) = (&, —d; -S+m;+e;) mod t, where
§ is the private key of the LWE ciphertexts, and i € [0, N). The
noise eps is amortized into each LWE ciphertext as well according
to the algorithm. Step @ packs the LWE ciphertexts back into one
BFV ciphertext in RLWE form, with the large modulus Q for the
subsequent non-linear functions. The packing involves the homo-
morphic decryption of the LWE ciphertext with the packing key
encrypted private key s in RLWE form. The operation is a multipli-
cation between the plaintext LWE matrix (a and b of LWE cipher)
and the ciphertext vector (packing key) and the Baby-Step Gaint-
Step (BSGS) algorithm [7] can be used to reduce the computational
complexit. Taking an LWE ciphertext ct;,,, = (4, b) as an example,
@oRLWE(s)+b = RLWE(ag*sg+aj sy +---+ap—1 *Sp—1+b) =
RLWE(dec(ctyyye)), where o represents inner product operation.
After this step, the data is encrypted in the slots of the RLWE
ciphertext, i.e. ctgry = (a,b) = (a,—as+ m+e) € RZQ, where
m(e;) = m; and ¢; is the twiddle factor.
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3.2.3  Non-linear Functions and Functional Bootstrapping. Boot-
strapping is well-known for its huge overhead , and is inevitable
because the vast layers of CNN will consume the multiplicative
depth rapidly in, for example, the CKKS-based scheme [27, 28]. In
[27], bootstrapping is inserted right after each linear and non-linear
functions, and the whole CNN inference attains nearly 0.6 hours
(2271s for ResNet-20) on a standard high-end CPU as reported.
Athena abandons the pure-CKKS based bootstrapping approach by
replacing it with low-cost but accuracy-maintainable “table look-up”
proposed in [29], as shown in @ in Fig. 2. Function bootstrapping
accomplishes three key operations: the non-linear functions, the
remapping which is performed in conjunction with the non-linear
functions and the bootstrapping itself.

=1 t-1
FBS(x) = LUT(0) —inZLUT(k)kt—l—i 3)
=0 k=0

FBS essentially embeds the required data mapping relationship,
i.e., the lookup table (LUT), into a polynomial function using in-
terpolation. This enables nonlinear mapping of encrypted data
by evaluating a linear polynomial over ciphertexts. The core of
this method is to construct a linear polynomial function, FBS(x),
based on a given discrete LUT, which is formally expressed in
Eq. 3. Here, t represents the plaintext modulus, defining the map-
ping space of the LUT. The function FBS(x) takes the form of a
polynomial where x’ denotes different power terms, ensuring that
FBS(x) = LUT(x). Taking the ReLU function as an example under
t = 5, the constructed polynomial is computed modulo ¢, satis-
fying the equivalences —2 = 3 mod 5 and —1 = 4 mod 5. The
LUT mapping is LUT(0) = ReLU(0) = 0,LUT(1) = 1,LUT(2) =
2,LUT(3) = LUT(-2) = 0,LUT(4) = 0. Substituting this LUT
into Eq. 3 yields the polynomial FBS(x) = 3x + x? + 2x* and
FBS(1) = 1 = LUT(1) mod 5,FBS(3) = 0 = LUT(3) mod 5.
Therefore, by computing FBS(x), each ciphertext item m; becomes
LUT (m;), i.e. Enc(FBS(m;)) = Enc(LUT(m;)) as shown in Fig. 3.

Athena targets quantized CNNs under FHE, so remapping, which
lowers the precision of the plaintext inner product back to quantita-
tive range, is an essential step. Athena merges remapping with the
non-linear function as: LUT(x) = | Act(x X scale)], enabling simul-
taneous accomplishment of both the remapping and the non-linear
function through one ciphertext evaluation. One of Athena’s key
features is its support for various non-linear functions, including
commonly used ones such as ReLU, Sigmoid, Gelu, etc. We discuss
some examples of non-linear functions that fit in the Athena frame-
work as follows:

ReLU & Sigmoid alike. For single-input nonlinear functions,
we can directly construct the function mapping relationship into a
LUT. Taking ReLU as an example, the non-linear function can be
performed homomorphically by constructing LUT (x) = ReLU (x)
and evaluating it by FBS only once.

Softmax alike. The evaluation of the multiple-inputs function
softmax - e¥i / (Z;:ol €*J), is divided into three steps. Step (D: eval-
uate the function f(x) = | e¥]. Note that in integer-only inference,
the result of e¥ would exceed the quantization bit widths. Therefore,
we replace the LUT with | e* X scale] to keep the bit width within
the appropriate range. Step (2): evaluate the inverse function of
scale X Z;?:_OI e*J. Step (3): perform the ciphertext-ciphertext multi-

plication (CMult hereafter) to obtain the result e*i / (Z;’:_OI e¥).
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Table 3: Computational complexity analysis. N: polynomial
degree; f: width/height of kernels; C: the number of in-
put/output channels; p and r: degree of linear fit polynomials
(ReLU and Boot); t: plaintext modulus.

Solutions | Operations | # of PMult | # of CMult | # of HRot
Conv 0(f%0) / o(f%) +0(0)
_bacsff[sm ReLU o(p) ) /
Bootstrap | O(VN) + O(r) O(r) O(VN)
Conv o(0) / /
Packing 0(C) / 0(0)
Athena FBS o) o) /
S2C O(VN) / O(VN)

Average-pooling. Average-pooling, which is straightforward,
can be completed by evaluating the function LUT(x) = [x/k] in
FBS, where k is the kernel size.

Max-pooling. Max-pooling is implemented using FBS with the
max-tree method proposed by PEGASUS [30]. For a max-pooling
layer with the kernel size k, O(k) times LUT lookups are required.

Between Step ® and @, the Slot-to-Coeflicient (S2C) operation
transforms the FBS result, encrypted in slots, back into the coeffi-
cients (the m;s in Fig. 3), preparing for the subsequent loop in the
Athena framework.

3.3 Specifics

Computational complexity analysis. Table 3 compares the com-
putational complexity between Athena framework and conven-
tional CKKS-based CNN implementation [27]. Unlike traditional
designs, Athena omits ReLU and bootstrapping operations, as its
FBS integrates both functionalities. The Packing and S2C in Athena
serve as bridges between coefficient-encoded convolution and the
FBS operation. As shown in the table, Athena’s convolution avoids
homomorphic rotation (HRot) operations due to the use of coef-
ficient encoding, reducing computational overhead. Additionally,
the complexity of Packing and S2C in Athena is lower than that in
CKKS-based schemes for both CMult and PMult operations. Thus,
the dominant computational cost in Athena lies in the FBS module,
making its efficiency a critical factor for overall performance.

FBS essentially performs homomorphic table lookup, the number
of entries in the LUT determines the number of terms in FBS(x),
i.e., smaller LUTs necessitate simpler polynomials. We adopt an
optimized algorithm [34] to implement FBS. As shown in Alg. 2,
the computation of the polynomial FBS(x) is implemented using
Baby-Step Giant-Step (BSGS) approach. Essentially, the original
polynomial is partitioned into sub-polynomials and computed as
a summation of products with corresponding powers of x. For
example, FBS(x) = 2x + 3x% + 4x3 + 5x* = (2 + 3x)x + (4 + 5x)x>.
The complexity of scalar-ciphertext multiplication (SMult hereafter)
and homomorphic addition (HAdd hereafter) operations (line 4 and
6) is O(t), and the complexity of CMult (line 6) operation is O(Vt).
Additionally, as the results of different layers have varying MAC
results, (as shown in Fig. 4), we can construct a matching small
LUT for layers. Therefore, the FBS module in Athena is designed to
be flexible. For models with smaller intermediate values or lower
quantization precision, its computational complexity is lower. It is
worth noting that beyond computational complexity, Athena’s key
advantage lies in its smaller encryption parameters, which result in
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Algorithm 2: FBS
t-1

Input: BFV ciphertext ct; Polynomial FBS(x) = X!} ¢ix”.
Result: BFV ciphertext ct,es

1 bs « [\/f];gs<— [b—ts"|; fori«——1,---,gsdo

2 for j«—1,---,bsdo

3 ‘ tmp «— HAdd(tmp, SMult(ctj, Ciupssj))s
4 end

5 Ctres < HAdd(ctres, CMult(tmp, ctiwps));

6 end

// ctp is the k-th power of ct
7 Return ctyeg

Max. MAC —e— Error ratio
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Figure 4: The rationality of parameter ¢ setting (orange line)
and the data error ratio introduced by noise e, (blue line).

reduced computation overhead and improved hardware efficiency.
This software-hardware co-design enables effective acceleration.
Parameter settings and noise analysis. The parameters we
selected are as follows: for RLWE, degree N = 215, ciphertext mod-
ulus log, Q = 720, plaintext modulus t = 65537, The setting of ¢
can hold the “maximum” MAC results (left Y-axis of Fig. 4) for each
layer of CNN models under the w7a7 quantization. It guarantees
the correctness of the ciphertext computation based on BFV; for
LWE, degree n = 2048, modulus q = t = 65537; These parameters
guarantee > 128 bits security. Parameter settings are tied to noise
control, and the noise analysis has two aspects: (1) computational
correctness. In Athena, the noise budget of the BFV ciphertext is
consumed by linear operation, packing, FBS, and S2C. It’s necessary
to ensure that the noise growth does not exceed A/2, where A = Q/t.
CMult, which is equivalent to plaintext-ciphertext multiplication
(PMult hereafter), will introduce log, N + log, t bits noise per com-
putational depth, while SMult and HAdd will contribute log, t bits
and 1 bit of noise growth, respectively. Table 4 shows the noise
budget consumed by Athena. The total noise, which is < 706 bits
and less than A/2, ensures computational correctness. (2) Impact
on model accuracy. As outlined in Section 3.2.2, after switching the

2
modulus to ¢, a small noise e, following the N (0, (%’)2 + qu_zﬂ)
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Table 4: The maximum noise (in bits) introduced by different
steps of Athena. C;, is the number of channels of input data
in convolution layer.

PMult CMult SMult HAdd Noise

(depth) | (depth) (depth) (depth) (bits)
Linear 1 0 0 log, Cin(6) 37
Packing 1 0 0 12 43
FBS 0 17 1 15 558
S2C 2 0 0 6 68

[ Total [ 4 17 1 39 706

distribution, is introduced in the result of the linear layer. Here, o is
the standard deviation of the ciphertext before modulus switching,

s is the secret key and ||s|| = Zfio_l sl.2

falls within about 4 bits. Remapping further compresses e;;s by
multiplying it by scale as shown in @ in Fig. 3, and after | x X scale],
ems introduces a maximum error of +1 to the remapping result.
Also, only a small portion of the output data from the linear layer
will be affected. Fig. 4 demonstrates the ratio of data with errors
to the total per layer (right Y-axis). Most layers have error rates
of less than 6%, or even 1%, with the highest not exceeding 11%.
Such minor errors have a minimal impact on model accuracy, as
demonstrated in Section 5.2.

3.4 Generalization

General QCNNs encompass linear, nonlinear, and re-quantization
(remapping) operations. In Athena, the coefficient encoding based
on BFV serves as a general method for linear functions. FBS can
implement precise arbitrary nonlinear functions while also han-
dling remapping. Different QCNN models can be implemented by
simply performing the appropriate linear layer data position map-
ping based on the Athena framework according to their model
parameters and activation functions, as well as adjusting the LUT
function of the FBS. Therefore, Athena can support various neural
networks. Furthermore, quantizing CNNs to enhance inference effi-
ciency is widely accepted in the AI community. NVIDIA has proved
using its PTQ or QAT could achieve comparable accuracy with its
non-quantized counterpart [31]. Numerous quantized models and
methodologies are available in the literature. Therefore, focusing
on QCNNs under FHE does not restrict Athena’s application scope.

. In practice, e typically

4 Accelerator
4.1 Overall Architecture

Fig. 5 depicts the overall Athena accelerator architecture. It con-
tains five computational units (CUs), i.e., Automorphism, ()NTT,
Pseudo-random number generator (PRNG) , Sample Extract (SE),
and the FRU, which denotes the "FBS and RNS Base changing unit”.
The PRNG is utilized to halve the storage and bandwidth require-
ments of keyswitch keys, as with CraterLake [38] and SHARP [22].
SE is used to convert ciphertext formats between different FHE
schemes (Step ® in Fig. 2). The FRU is capable of supporting mod-
ulo addition, modulo multiplication and base conversion through
resource multiplexing. In addition, the accelerator is divided into
two regions, i.e. Region 0 and Region 1, which interact with each
other through an inter-region buffer. Region 0 contains all types
of CUs to support the full range of FHE operations, while Region
1is an FRU array, primarily utilized for accelerating a substantial
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Figure 5: The overall architecture of the Athena accelerator.

number of PMult and HAdd within the Athena framework. The
primary objective of region division is to facilitate the design of
inter-regional data flows to efficiently support the bottleneck, i.e.,
FBS, of Athena framework (detailed in 4.3). All the CUs have their
own local buffers, and the scratchpad is connected to the buffer via
NoC. The parallelism of the accelerator is 2048.

Unlike some recently proposed architectures like ARK or Crater-
Lake, the Athena accelerator does not instantiate large scratchpad
memory because the optimized Athena framework has smaller pa-
rameters and unique non-linear and bootstrapping manner, i.e.,
FBS. The performance of FBS relies on the FRU Array, which has
2048x16 Modular Adders (MAs) and Modular Multipliers (MMs),
and optimized data flow design based on the regional division.
Importantly, the FRU is a versatile unit. It is employed not only
for modulo addition and modulo multiplication, but also for base
conversion within the Athena framework.

The design of the Athena accelerator architecture is based on two
key observation: (1) the FBS involves a consecutive multiplication,
accounts for the first-order overhead. Evidently, the order of SMult
and CAdd is O(N), which is much larger than the order of CMult,
O(VN). Therefore, in our quantized inference framework Athena,
NTT is no longer the biggest bottleneck, while the computational
efficiency of MM and MA significantly affects the system perfor-
mance; (2) FBS in Athena framework has obvious opportunities for
pipelined computation, i.e., independent batch PMult and HMult
operations. Therefore, allocating a large volume of shared MA/MMs
in FRU and dividing the compute region will significantly improve
the system performance.

4.2 Microarchitecture

4.2.1 (I)NTT and Automorphism Units. Unlike previous accelera-
tor designs that cater to large parameters to cover the worst case,
Athena only requires a polynomial with a degree of 21°. We adopt
the radix-8 NTT unit design, proposed in Poseidon [41], that can
complete 3 NTT iterations in one core. A polynomial with a de-
gree of 21° requires merely (log(2'%)/3 = 5) iterations to finish,
maximizing the advantages of the radix-8 NTT. In the Athena accel-
erator, we deploy 256 NTT units to process 2048 data in parallel and
use a fully-pipelined manner to increase the throughput of the NTT
cores. Specifically, Radix-8 NTT reduces the overhead of modular
arithmetic units by fusing iterations and enhancing throughput. For
N = 215 NTT requires only 5 iterations, and with 2048 hardware
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parallelism, each iteration needs 2048 modular units, compared
to 3072 units required by the traditional Radix-2 approach (1024
* 3). The design of the Automorphism unit is relatively mature. It
essentially involves index mapping overhead and has lower com-
putational requirements. Similar to Poseidon, we use data read and
write control to implement the Automorphism. Our framework,
Athena, has a fixed polynomial degree N of 2'%, and the parallelism
I of a single core is set to 256, which can minimize the latency of
2(1+ N/I). We deploy 8 cores to unify the total parallelism of 2048.

4.2.2 FRU. FBS in Athena involves substantial SMult and HAdd,
essentially MA and MM computations, necessitating significant
hardware power support. FHE schemes like CKKS and BFV are
known for their NTT and RNS base changing bottlenecks. Therefore,
general-purpose accelerators like CraterLake and SHARP [22] focus
on designing optimized NTT units and using highly parallel units
dedicated to RNS changing, allocating less power for MA and MM.
Although the RNS changing unit comprises numerous MA and
MM cores, its data flow supports only the RNS base changing. For
instance, the CRB unit in CraterLake uses data broadcasting to
share ciphertext data among 60 sets of 2048 parallel MAC blocks,
setting another input to a constant register. The BConv unit in
SHARP, using a systolic array design, facilitates ciphertext data
flow between the PEs of the MACs to achieve data sharing. Despite
having less IO overhead compared to CraterLake, the data flow
scheduling is similarly singular.

As an accelerator dedicated to Athena, balancing the efficient
RNS base changing and FBS computations is imperative. Therefore,
we design a versatile unit, the FRU, that supports both operations by
sharing high parallelism MM and MA cores through fine data flow
scheduling. As depicted in Fig. 5, the accelerator contains a total of
17 FRU blocks, with one in Region 0 and 16 in Region 1, each with
2048 MM and MA cores. Two data paths are planned in FRU for
the FBS and RNS base changing operations. As shown on the right
side of Fig. 5, the FRU block requires two sets of input vector data
for modular addition or modular multiplication, completing the
FBS-related computation. For RNS base changing, one input data
changes to the broadcasted data g~ and the accumulation register
(the output of MA cores). The “Rconv” signal is used to the selection
of the different inputs in FRU block. Additionally, MA and MM are
cascaded together, allowing the output of the MM core to serve
as the input of the MA core and combined with its output as the
input of the MA core for the MAC computation. In addition to the
versatile FRUs, we also design efficient computational data flows
based on two regions to match the computational characteristics of
the FBS and improve its performance (detailed in Section 4.3).

4.2.3 Sample Extraction Unit. The unique SE unit in the Athena
accelerator can convert RLWE ciphertexts into LWE ciphertexts.
This process requires less computation but involves extensive trans-
formation of data location. To extract ct;(Iwe), as shown in Alg. 1,
we need to cyclically shift all coefficients of the ciphertext term a
of BFV by i + 1 positions and negate the (i + 1)-th to N-th element.
Although the process can be implemented with logo N complexity
using the barrel shifter, it is inefficient for a large number of con-
tinuous shifting. In Athena, we fill the slots of a single ciphertext
to the maximum with the results of the linear layer using a batch
strategy. This requires close to N extraction operations for that
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Figure 6: The sample extraction micro-architecture.
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Figure 7: The computational dataflow design for FBS.

ciphertext. Therefore, in the SE unit, as shown in Fig. 6, we use a
simple register shifter. Each cycle is shifted by one position, and
the elements are selected positively or negatively according to the
identification signals. In addition, since the input data must be in
the corresponding modulus , only the subtractor is required for a
negative value. In this way, the average cycle of a sample extract is
close to 1.

4.3 Dataflow Design for FBS

The computational model of FBS as the bottleneck of the Athena
framework is rich in opportunities for pipelined computation. There-
fore, we combine the hardware design (two computational regions)
to design an efficient computational flow to improve the perfor-
mance of FBS. As shown in Alg. 2 in Section 3.3, FBS is performed
by batch ciphertext-plaintext multiplication and addition (SMult
and HAdd, i.e., bs) and single ciphertext multiplication (CMult, i.e.,
gs) with alternating computations between them, and bs and gs cre-
ate excellent pipelining opportunities. The bs computations (Poly),
primarily SMult and HAdd operations, are independent from gs
computations which involve CMult. As shown in Fig. 7, We assign
SMult and HAdd in bs to Region 1, and CMult in gs to Region 0. Ac-
cumulation (HAdd) is handled by a accumulating circuit in Region
0, enabling a fully pipelined FBS implementation. It is noteworthy
that the key to efficient pipelining is to ensure that the compu-
tational latency of the two regions is similar. This is achieved by
balancing the computational latency by allocating the CUs of the
two regions according to the computational complexity of the Poly
segmentation and CMult in the FBS. In Athena accelerator the par-
allelism of 2048 in Region 0 and the 16-block FRU array in Region
1 are capable of achieving this latency balance.
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5 Evaluation
5.1 Experimental Setup

Platform. The major logic units of Athena are implemented in
RTL using the ASAP7 7.5-track 7nm predictive process design kit
(PDK) [10], and the SRAM components are evaluated by a cache
modeling tool FinCACTI [39]. The area and power of two HBM
modules are estimated based on prior works [20, 32]. Table ?? sum-
marizes the resource utilization of Athena. We measure the bench-
mark runtime with a cycle-level simulator, and use the activity-level
energy consumption from the synthesized components for energy
evaluation.

Baseline. In our experiments, we compare Athena with the
state-of-the-art ASIC-based FHE accelerators e.g., BTS [24], Crater-
lake [38], ARK [23] and SHARP [22]. These accelerators only report
on ResNet-20. We normalize the computational complexity of other
benchmarks to that of ResNet-20 as the performance estimation on
these accelerators. For fairness, we also evaluate the performance
of Athena framework on these accelerators, but the results prove
that only the Athena accelerator achieves the best performance and
efficiency (see Section 5.2.2).

Benchmark. We use the following four CNN benchmarks: (1)
MNIST. It depicts the inference of a simple CNN [4] with one con-
volution layer and two fully connected layers. (2) LeNet. It depicts
the classic CNN for the digit recognition task proposed in [26].
It includes two convolutional, two fully-connected and two max-
pooling layers. We replace the original square activation function
with ReLU to verify the efficacy of Athena in supporting more
complex non-linear functions. (3) ResNet-20. It is implemented in
[27, 28] trained with the CIFAR-10 dataset [25], which is employed
by Craterlake and SHARP as well. It has 19 convolution layers and
one fully-connected layer. The activation functions are uniformly
ReLU. (4) ResNet-56. Compared with ResNet-20, ResNet-56 has
similar backbone but deeper depth. In evaluating Athena, all the
benchmarks are quantized into 7-bit weight and 7-bit activation
termed as (Athena-w7a7), and 6-bit weight and 7-bit activation
termed as (Athena-w6a7). In evaluating other FHE accelerators,
we still use the floating-point CNN encrypted by CKKS, termed as
the CKKS-based.

5.2 Performance

5.2.1 Accuracy. Athena focuses on the quantized model inference.
Although a small amount of noise is introduced in the process, as
elaborated in section 3.2.2, its impact on the model’s accuracy is
minimal. This is because the noise affects the LSBs of the data and is
further reduced during remapping. Additionally, the model’s noise
immunity can be improved by introducing noise during the network
training process. We first perform generic full-precision training
(palin-G), followed by quantization-aware training to obtain quan-
tized models (plain-Q). LeNet and MNIST are trained on MNIST
dataset, and ResNet-20/56 on CIFAR-10. The quantized weights are
then used in our Athena framework, where encrypted test images
are processed via homomorphic inference. Accuracy is measured
over all 10,000 test images from each dataset to evaluate ciphertext
inference performance. The accuracy of CKKS-only implementa-
tions is the data reported in the source paper. As shown in Table 5,
the CKKS-only implementation has a precision reduction of about
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Table 5: The accuracy of CNNs under plaintext and ciphertext
inference. plain-G and plain-Q denote plaintext accuracy
before and after quantization, respectively.

Method CKKS- Athena (%)
based (%) lain-G w7a7 wéa7

Model plain | cipher P plain-Q | cipher | plain-Q | cipher
99.5 98.28 98.30

MNIST A 3 . .
S 99.7 -0.2) 98.34 98.27 (+0.01) 98.37 (-0.07)
99.00 99.00

L . . .
eNet / / 99.09 99.04 (-0.04) 99.03 (-0.03)
91.31 93.63 93.45
ResNet-20 91.52 0.21) 93.85 93.84 (0.21) 93.51 (-0.06)
93.07 94.65 94.66
ResNet-56 93.27 -0.2) 94.96 94.89 (-0.24) 94.79 -0.13)

Table 6: Full-system performance comparison with SOTA
accelerator prototypes. We use the actual benchmark execu-
tion time in “ms” as the metric.

LeNet MNIST ResNet-20 ResNet-56
CraterLake [38] 182 35 321 946
ARK [23] 71 14 125 368
BTS [24] 1084 206 1910 5627
SHARP [22] 56 11 99 292
Athena-w7a7 | 26.6 9.2 65.5 198.7
Athena-wé6a7 24.1 7.3 54.9 157.8

0.2% compared with plaintext. While the two quantized modes of
Athena, i.e., w7a7 and wéa7, produce an error of less than 0.07% on
LeNet and MNIST, and even achieve higher accuracy than quantized
plain-Q on MNIST. For ResNet-20 and ResNet-56, Athena-w7a7 has
a similar error rate. In addition, the accuracy of the quantized model
(plain-Q) is very close to that of the high-precision generic model
(plain-G), with only a 0.01%—0.07% difference. This also objectively
indicates that Athena’s ciphertext-domain inference incurs mini-
mal accuracy loss, owing to the quantized framework’s ability to
precisely support nonlinear functions and bootstrapping.

5.2.2 Speedup. We compare Athena’s performance with state-of-
the-art ASIC accelerators. Athena refers to the performance of the
model running on our quantized framework on the accompany-
ing accelerator, while other accelerators run the corresponding
CKKS-based model. As shown in Table 6, Athena-w7a7 outper-
forms BTS [24] by 40x for LeNet and 29x for ResNet-20. Compared
to CraterLake [38], Athena achieves a 3.8% to 6.8X speedup for all
the selected models. Compared to SOTA ARK [23] and SHARP [22],
the Athena also has a better performance, i.e. up to 2.66X and 2.1x
speedup respectively. Athena-w6a7 has an overall advantage over
SHARP because the cumulative results under the wé6a7 quantize
mode are smaller, and the LUT size of FBS can be flexibly adjusted to
reduce the overhead of non-linear layers, which highlights Athena’s
flexibility and efficiency.

Athena requires dedicated accelerator support, and existing
CKKS accelerators are not applicable to Athena. We evaluate the
performance of the models under the Athena framework on SHARP
and CraterLake to illustrate this point. They lack SE units for the
sample extract operation of Athena, so we assume that they deploy
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Figure 8: We deploy the Athena framework on the existing
FHE accelerators and the Athena accelerator. Since Athena
differs from CKKS-based implementations, existing accel-
erators are not suitable for Athena. For the Athena-specific
modules like FRU and SE, we use MA/MM and RNSConv to
substitute in SHARP and CraterLake.

the same SE hardware units for ease of comparison. As shown in
Fig. 8, the performance of CraterLake and SHARP is at least 3.8%
and 9.9% lower than that of Athena accelerator. The main reason
is that these accelerators only focus on NTT and RNSConv, which
are known bottlenecks in CKKS applications, and cannot efficiently
accelerate Athena’s unique FBS operations. FBS contains a large
number of MAs and MMs, so their MM and MA overheads are sub-
stantial and account for more than 77% and 84% of the total. Please
note that the result reflects the challenge of matching Athena’s
workload rather than the merits of the CraterLake and SHARP
architectures themselves. CraterLake’s higher Athena performance
results from having many multiplication and addition units, which
partially ease Athena’s bottleneck. SHARP’s algorithmic and archi-
tectural co-design is highly innovative and performant in CKKS-
based CNN inference. The Athena accelerator deploys versatile
units, FRU, which supports RNSConv and FBS, with an optimized
data flow design, thereby greatly improving performance. This
also demonstrates the advantages of co-design between Quantized
Athena framework and its accelerators.

The execution time breakdown of selected models is shown in
Fig. 9. The non-linear part, i.e., FBS, accounts for the largest pro-
portion, up to 72%, on all benchmarks. Activation, pooling, and
softmax operators consume most of the execution time. Two points
to note are: (1) ResNet-20 and ResNet-56 have a lower proportion
of non-linear compared to the smaller models LeNet and MNIST.
This is because the softmax operation has a higher number of acti-
vation operators, resulting in a correspondingly higher proportion
of activation than the other two benchmarks. (2) LeNet uses the
max-pooling layer instead of the average pooling layer used in
ResNet-20 and ResNet-56. This requires more FBS operations and
results in higher pooling consumption.
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Figure 9: Execution time breakdown for two Athena repre-
sentatives.
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Figure 10: Full-system energy consumption and breakdown.

5.3 Energy

5.3.1 Consumption and Breakdown. In addition to performance,
we also evaluate the full-system energy consumption of the Athena
accelerator when running the four selected CNN models under two
quantized modes, i.e., Athena-w7a7 and Athena-w6a7. As shown in
Fig. 10, memory access accounts for about 50% of the energy con-
sumption. Among the computation units, FRU consumes the largest
proportion of energy due to its larger power requirement and the fre-
quent use of FRU by the Athena bottleneck - FBS. This is consistent
with the analysis in Fig. 9. Compared to Athena-w7a7, Athena-wéa7
has a similar memory access share, but the energy proportion of
the FRU is slightly reduced. This is because the Athena-w6a7 linear
layer has a smaller cumulative result, thus requiring a smaller LUT
table, which results in reduced FBS computation.

5.3.2  Efficiency. We use the energy-delay product (EDP) and energy-
delay-area product (EDAP) as efficiency metrics. Table 7 lists the
EDP of the two modes of Athena and the previous accelerator
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Table 7: Efficiency analysis. We use Energy Delay Product
(EDP) as the metric (energy X time). Lower is better.

LeNet MNIST ResNet-20 ResNet-56
CraterLake [38] 3.73 0.42 11.61 100.86
ARK [23] 0.64 0.138 1.99 17.25
BTS [24] 193.46 6.987 600.6 5213
SHARP [22] 0.31 0.012 0.96 8.36
Athena-w7a7 0.056 0.008 0.35 3.32
Athena-wé6a7 0.050 0.005 0.24 1.96

mBTS #nCraterlake = ARK ~ SHARP m®Athena-w7a7 mAthena-w6a7

= 8719 8353 4620 12950
E
g 65.5 158
g 100.6 96.3 102.2
E
o 323 31.0 480
g 67471 6415 1 3.81.7 1 99111
UJ ResNet-56 ResNet-20 MNIST LeNet
Figure 11: Energy-Delay-Area product (EDAP).
Table 8: Memory-related comparison.
Mem HBM Scratchpad
Accelerator Cap. BW Cap. BW
CraterLake [38] 16 GB | 1 TB/s | 256+26 MB | 84 TB/s
ARK [23] 16GB | 1TB/s | 512+76 MB | 92 TB/s
BTS [24] 16GB | 1TB/s | 512+22 MB | 330 TB/s
SHARP [22] 16 GB | 1 TB/s | 180+18 MB | 72 TB/s
Athena 16 GB | 1 TB/s | 45+15MB | 180 TB/s

ASICs. Athena has the highest efficiency among all the baselines
for LeNet, ResNet-20, and ResNet-56. Compared to BTS, we achieve
an efficiency improvement of over 8000X, attributable to the high-
performance CNN inference framework and the coupled accelerator.
Although SHARP focuses on optimizing the FHE parameter and
hardware utilization, Athena still outperforms it by over 3.8x. The
EDAP is depicted in Fig. 11. Compared to the EDP, the EDAP per-
formance of Athena is better, benefiting from the significant area
advantage of the Athena accelerator over other FHE accelerators.

54 On/Off-chip Memory

We compare the scratchpad and bandwidth profile of the Athena
accelerator with other accelerators, as shown in Table 8. We use
HBMs with capacities and bandwidths of 16 GB and 1 TB/s, re-
spectively, to satisfy the accelerator’s demand for off-chip memory.
Existing accelerators like CraterLake and ARK deploy up to 256MB
or even 512MB of scratchpad to support the hardware acceleration
units, leading to a large area and power consumption overhead.
Benefiting from the small encryption parameters of the Athena
framework, its ciphertext size is less than that of the CKKS applica-
tion by 4x. Therefore, we only need about 45MB of scratchpad to
provide sufficient bandwidth for the acceleration unit. In terms of
on-chip bandwidth, since our FRU array needs to process a large
number of MAs and MMs in parallel, it requires a maximum band-
width of 180TB/s, which is higher than other accelerators except
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Table 9: Area and power breakdown (@1 GHz, 7nm).

Component Area [mm?] Peak Power [W]
Automorphism 3.8 3.0
PRNG 1.2 1.9
NTT 4.51 3.9
SE 0.32 0.94
FRU 42.6 89.1
NoC 5.9 7.8
Register Files (15MB) 8.4 4.9
Scratchpad SRAM (45MB) 20.1 4.8
HBM (2 x HBMZE )
29.6 31.8
(Cap. 16 GB / BW 1 TB/s)
Sum 116.4 148.1
CraterLake [38] 222.7 (7nm) ~207
ARK [23] 4183 2813
BTS [24] 373.6 133.8
SHARP [22] 178.8 /
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Figure 12: Sensitivity analysis of quantitative precision.

CraterLake, which requires a bandwidth support of 330TB/s due to
its up to CRB unit with a parallelism of 2048*60.

5.5 Area and Power

We implement the Athena accelerator in RTL and synthesize it in a
commercial 7nm technology node using SOTA tools, including the
SRAM compiler. As shown in Table ??, the Athena accelerator has
a size of 116.4mm? and a power consumption of 148.1W, with the
computation units accounting for a larger proportion. FRU is the
compute unit with the highest overhead because it is designed for
the high-overhead FBS operations in Athena. Meanwhile, on-chip
storage has a lower overhead, benefiting the quantized framework
due to the smaller size of ciphertext. This differs from existing accel-
erators, which need to allocate a large amount of storage resources
to boost performance to match the large parameter requirements of
Cryptosystem for CKKS-based applications. Therefore, the Athena
accelerator surpasses ARK with improvements of 3.59X in area
and 1.89x in power. Compared to the optimized SHARP, the area
overhead of Athena is still 1.53x smaller.
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Figure 13: Sensitivity analysis of lanes.

5.6 Sensitivity

Fig. 12 illustrates Athena’s inference accuracy and performance
across various quantization precisions (w4a4 to w8a8). Regarding
accuracy, while it improves with higher precision, significant gains
plateau at w6a7, with minimal improvement beyond this point. In
terms of performance, degradation accelerates after w6a6, with the
most substantial drop occurring between w7a7 and w8a8, nearly
doubling. This is due to increased overhead in the FBS as higher
precision increases the cumulative results of linear layers. Despite
this, Athena maintains strong performance even at the highest
precision. To better balance accuracy and performance, we choose
wo6a7 and w7a7 as quantitative parameters for evaluation.

We also explore the performance scaling of the key computation
units, i.e., NTT, FRU, Automorphism, and SE, on lanes from 256
to 2048, normalized to 2048. The metrics we use include delay, en-
ergy, EDP, and EDAP. As depicted in Fig. 13, the FRU significantly
impacts on system performance, indicating Athena’s need for effi-
cient acceleration support for the bottleneck, i.e., FBS. Besides FRU,
system performance is also more sensitive to the NTT unit, which
is consistent with the general understanding that NTT operation
has a high overhead in FHE. The SE unit has less impact on the
system because it mainly involves data shifting and reading, rather
than intensive computation. Compared to the SE unit, the Auto-
morphism unit has a slightly greater influence on the efficiency of
the accelerator due to more frequent rotation operations.

6 Conclusion

In this paper, we present Athena, a quantized deep learning in-
ference framework under FHE, and design a coupled hardware
accelerator for it. The framework supports high-accuracy CNN
inference and arbitrary non-linear functions. The Athena process
is simple and fixed, eliminating the complex parameter configura-
tion to ensure accuracy. We implement the Athena prototype and
evaluate its performance. The results demonstrate the effectiveness
of this FHE-based quantized CNN inference system, with higher
accuracy, faster speed, and smaller chip area. We hope this work can
inspire new ideas for future FHE-based deep learning acceleration.
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