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Abstract— Classic deep neural network (DNN) pruning mostly
leverages software-based methodologies to tackle the accu-
racy/speed tradeoff, which involves complicated procedures
such as critical parameter searching, fine-tuning, and sparse
training to find the best plan. In this article, we explore
the opportunities of hardware runtime pruning and propose
a regularity-aware hardware runtime pruning methodology,
termed “BitXpro” to empower versatile DNN inference. The
method targets the bit-level sparsity and the sparsity irreg-
ularity in the parameters and pinpoints and prunes the
useless bits on-the-fly in the proposed BitXpro accelerator.
The versatility of BitXpro lies in: 1) software effortless;
2) orthogonal to the software-based pruning; and 3) multipreci-
sion support (including both floating point and fixed point).
Empirical studies on various domain-specific artificial intelligence
(AI) tasks highlight the following results: 1) up to 8.27× speedup
over the original nonpruned DNN and 10.81× speedup collabo-
rated with the software-pruned DNN; 2) up to 0.3% and 0.04%
higher accuracy for the floating- and fixed-point DNNs, respec-
tively; and 3) 6.01× and 8.20× performance improvement over
the state-of-the-art accelerators, with 0.068 mm2 and 74.82 mW
(floating point 32) and 40.44 mW (16-bit fixed point) power
consumption under the TSMC 28-nm technology library.

Index Terms— Deep learning accelerator, deep neural network
(DNN), hardware runtime pruning.

I. INTRODUCTION

LARGE computation intensity is well recognized as one
of the main obstacles to deploy deep neural networks

(DNNs) into practical applications, because of the rapid evolu-
tion of the parameter size from millions (i.e., ResNet [5] fam-
ily in computer vision) to even hundreds of billions (i.e., BERT
[7] or GPT-3 [10] in natural language processing). Although
more complex models with enormous layers and complicated
neuron connections will benefit the ever-increasing accuracy
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demand, the real-time performance enhancement, which is the
more important and desirable request however, cannot catch
up with the development of DNNs, especially for handhelds
and cyber-physical devices.

Pruning is universally accepted as an effective way in
maintaining the model accuracy and optimizing the compu-
tation intensity at the same time. Almost all the conventional
pruning methodologies (see [12], [14], [16], [17], and [19])
rely on software-level efforts, which usually consists of the
following steps: evaluate the importance of neurons, remove
the least important fraction of neurons (contingent to the
preset compression ratio), parameter fine-tuning until satis-
faction, or get unsatisfactory accuracy that has to change the
importance metric and commence pruning again. Generally
speaking, software-based pruning has competitive advantages
in: 1) obtaining maintained accuracy and controllable com-
pression ratio and 2) easy deployment without considering
the underlying hardware (for structured pruning of course).
Due to the diversity of deep learning applications, however,
it is almost impossible to find a universal software-based
pruning method that is applicable to all use cases. A direct
consequence is that end users must reconsider the application-
specific pruning criteria, in terms of superparameters and DNN
structured parameters, and reimplement the above steps from
the very inception. The tediously repeated effort limits the fast
deployment of DNNs in practical use.

From the model perspective, the DNN itself or its inter-
nal sparsity level also impairs the software-based pruning.
In specific, pruning leverages the importance metric to identify
the least contributive parameters. The metric measures the
sparsity variants of the weights or activations, i.e., the average
percentage of zeros [12], the absolute value of filters [14],
or the entropy of filters [16], trying to eliminate the zero or
near-zero variants and retrain the model until the optimal accu-
racy to justify the employed importance metric. However, one
metric may suit certain DNNs very well but might not behave
perfectly for others. Besides, the headroom of the sparsity is
not always adequate either. Some pruning approaches have to
commence retraining to compensate for the information loss
or sparse training to manually create more sparsity [17], [19],
[24] in the parameter set, which is even more time-consuming
and labor-intensive.

From the efficiency perspective, the labor intensity of the
software-based pruning also exhibits in the parameter fine-
tuning phase. This is because the remaining nonpruned weights
cannot always guarantee the initial accuracy of the DNN.
Classic procedure hence relies on retraining to redeem the lost
accuracy with the same dataset and time-consuming iterations
that usually cost days or even weeks according to the equipped
GPU facility. The above procedure is usually implemented lay-
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erwise, so if we apply it to VGG-19 [25] for example, we need
to retrain the model 19 times with each time iterating tens
of epochs to recover the lost accuracy. The long and tedious
retraining prevents the instant deployment of the pruned model
into the devices and worse still, and if the accuracy is not
satiable, it must repeat the same tedious procedure again.
Considering other widely used DNNs with hundreds of layers
(i.e., ResNet [5] and DenseNet [26]) or even much larger
and more complex connections such as 3-D convolution [1],
nonlocal convolution [27], or deformable convolution [15], the
developers therefore usually face a formidable challenge to
obtain both the satisfactory result and the shorter time spent.

From the accelerator perspective, unstructured pruning relies
heavily on the underlying hardware. There are plenty of accel-
erator prototypes proposed to support the particular pruning
methodology. For example, Cambricon-S [28] addresses the
irregularity of unstructured pruning. Efficient inference engine
(EIE) [29] supports the pruning only for the fully connected
layers; efficient speech recognition engine (ESE) [30] only
focuses on the sparse LSTM model, while the convolutional
layers that dominate the CNN inference computation are
not supported. Accelerator design also depends on various
sparsification methodologies. SCNN [31] exploits the neuron
and synapse sparsity, while Cnvlutin [32] only supports neuron
sparsity. If the software engineer modifies the pruning policy
or simply changes from structured pruning to unstructured
pruning, the hardware employed is also about to change,
attached with overwhelming transplantation overhead.

Ideally, a pretrained DNN should be pruned as fast as
possible for the timely deployment in hardware, and more
desirably, the hardware could directly implement runtime
pruning without any tedious software-level work to accel-
erate the DNN inference in a handy and efficient manner.
This necessity stimulates us to reconsider the existing classic
pruning methodologies and explore a new style to free the
developers from the labor-intensive software effort.

Therefore, in this article, we propose BitXpro, a hardware
runtime pruning methodology to empower versatile DNN
inference. Apart from the widely adopted software-based
pruning that requires the complex algorithm to identify the
trivial values by repeated trial-and-error, BitXpro implements
the “hardware runtime pruning” by targeting “bits.” It pin-
points the essential bits and prunes away the useless bits
for acceleration. The useless bits are more easily exposed,
especially at the hardware level. For example, the floating-
point operand has a long bit width in its mantissa (24 bits) [33],
which is always shifted to align the binary point with another
mantissa according to the floating-point arithmetic. The shifted
binary positions are automatically zero-padded and involved
in the floating-point arithmetic. This procedure generates two
types of useless bits: the 1st type is the genetic zero bits in
the mantissa and the automatically padded zero bits [please see
Fig. 2(b)] and the 2nd type is more implicit, that is, the rear
bit 1s with extremely trivial significance. As will be shown
in Section II, the two types of useless bits both occupy large
fractions in the binary-represented weights, which provides a
decent condition for BitXpro to prune these bits directly in the
accelerator at the inference runtime.

Bit pruning inevitably generates more sparsity because more
unessential bit 1s are turned into bit 0s. From the accelerator
perspective, it creates a fine opportunity to manipulate the
newly generated sparsity for faster hardware acceleration.
However, the problem that must be tackled is precisely
locating the scarce essential bit 1s from the vast amount of

unessential bit 0s due to the enlarged sparsity. The difficulty
of locating this essential bit 1s stems from the “irregularity” of
the sparsity. The distribution of bit 1s is highly arbitrary after
pruning. A particular essential bit usually requires meticulous
identification in the accelerator. The overhead hence is intro-
duced in the complexity of the circuit and the critical path
latency that also makes the accelerator performance stumble.

On top of the precise runtime bit pruning, BitXpro is also
designed to tackle such sparsity irregularity. The evaluation
has shown that the inference speed could be significantly
boosted (Section V-B) compared with the regularity-agnostic
approach (the “BitX” baseline in specific). Most importantly,
the whole pruning operation could be implemented on-the-fly
in the proposed BitXpro accelerator, with lossless accuracy and
without any software-related effort.

The contributions of this article are listed as follows.
1) We propose a novel hardware runtime pruning method,

termed as BitXpro, to empower versatile DNN inference.
We highlight the following features of BitXpro.

a) Software Effortless: BitXpro directly prunes the
original DNN. No retraining, fine-tuning, or spe-
cial library/framework needed because the method
targets the useless binary bits not values.

b) Orthogonal to the Existing Software-Pruning
Methodologies: BitXpro implements straightfor-
ward bit pruning in the accelerator, so the DNNs,
either pruned or nonpruned at the software level,
are all suitable for BitXpro. In other words, BitXpro
could further prune the useless bits of the software-
pruned DNN and obtain additional speedup.

c) Multiprecision Support: BitXpro applies to not only
floating-point DNNs but also fixed-point DNNs,
which also demonstrate substantial useless bits.
BitXpro could accelerate the fixed-point DNNs
with even higher accuracy and speedup.

2) We propose a deep learning accelerator capable of
unprecedented hardware runtime pruning to mine the
maximum potential of BitXpro. We highlight the fol-
lowing results.

a) Speedup: Two representatives of BitXpro—
BitXpro-mild and BitXpro-wild—could obtain
5.95×–8.16× faster speed over the nonpruned
baselines under float-point 32 mode and up to
2.05× under 16-bit fixed-point mode (Sections
V-D and V-E). For the object detection model
YoloV3, the speedup is up to 8.27× and 10.81×
higher over the original model (Section V-F).

b) Accuracy: The accuracy maintains the same or
even higher than the baseline for the BitXpro-mild
and shows a slight loss for the BitXpro-wild
(Sections V-A and V-D). The accuracy data are
reported by the floating-point DNNs. Under 16-bit
fixed-point precision, the accuracy behavior is sim-
ilar. Reporting some of the data: 0.04% higher
for ResNext101 for BitXpro-wild; 0.15% and
0.01% higher for YoloV3 for the BitXpro-mild
and the BitXpro-wild, respectively (Section V-F).
We also present direct visual comparison for some
image generation tasks such as CartoonGAN and
LapSRN, and the demonstration is extremely iden-
tical for BitXpro and the vanilla model.

c) Accelerator Performance: We compare the BitXpro
accelerator performance with other state-of-the-art
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TABLE I

WEIGHT/BIT SPARSITY COMPARISON FOR VARIOUS DNNS PRETRAINED
WITH IMAGENET DATASET. BIT SPARSITY IS SIGNIFICANTLY MORE

ABUNDANT THAN WEIGHT SPARSITY. THE WEIGHTS ARE

REPRESENTED BY FP32

(SOTA) accelerator prototypes. Equipped with
hardware runtime pruning, the accelerator achieves
6.01× and 8.20× performance improvement. The
area is 0.068 mm2 and 74.82 mW [floating-
point 32 (fp32)] and 40.44 mW (16-bit fixed
point) under the TSMC 28-nm technology library
(Section V-G).

d) Sensitivity Study: We thoroughly evaluate the sensi-
tivity of the key design parameters to the accuracy
and speed (Section V-C).

Powered by the above features, BitXpro is designed for
flexible and versatile DNN inference at any circumstances.
In Section II, we will start by discussing three key observa-
tions that justify BitXpro.

II. OPPORTUNITIES OF HARDWARE RUNTIME PRUNING

A. Bit-Level Sparsity—The 1st Target

For most of the software-based pruning approaches in the
literature [12], [17], [19], [34], the classic procedure basically
involves identifying and pruning the trivial “near-zero” para-
meters. However, as mentioned above, the headroom of the
value-level sparsity is very limited. If the compression ratio
is mistakenly set, the accuracy loss is inevitable. Under such
circumstances, two alternatives are always considered: lower
the compression ratio and roll back to the inception [12], [34]
or commence sparse training to create more headroom for the
employed pruning metric [17], [19]. It is also the root reason
why software pruning suffers labor-intensive effort.

In order to circumvent the inconvenience, we reexamine the
parameters in-depth. Instead of sticking to the sparse “values,”
we analyze the more fine-grained bit-level sparsity. As shown
in Table I, the “weight sparsity” proportion is obtained by
counting the values below 10−5 over the total parameter size,
while the “bit sparsity” proportion is by counting total bit 0s
over the total “bit count” of the mantissas in the parameter
set.

Obviously, various benchmark DNNs uniformly demon-
strate an obvious gap between the two sides. Most of the
weight sparsity results are less than 1%. The bit sparsity,
however, is nearly 49% and no exception. It provides an
excellent opportunity of exploiting the sparsity at the bit level
without resorting to the value-based pruning because ∼49% of
bits are already 0s and removing these useless bits off from the
multiply-and-accumulation (MAC) computation is definitely

Fig. 1. Distribution analysis of bit 1s. The four benchmark DNNs demonstrate
a similar behavior: the surf plot reaches its peak at 2−21 to 2−30, which means
that this bit slice has the largest fraction of bit 1s (nearly 40%), but most of
them are trivial. BitXpro aims to prune these trivial bits to obtain the inference
acceleration.

harmless to the accuracy. BitXpro intends to fully utilize this
decent condition to accelerate the DNN inference.

B. Trivial Bit 1s—The 2nd Target

Obviously, we can design a particular zero-skipping mech-
anism to avoid the ineffectual computations caused by the
zero bits, which is also the main objective of many previous
sparsity-aware acceleration schemes’ targets [4], [35], [36],
[37]. However, the trivial “bit 1s,” as another factor that
influences the inference efficiency, are barely considered, but
they are exactly the major optimization objective in BitXpro.
Therefore, having explored the bit-level “sparsity” (or the
fraction of bit 0s), we further migrate our focus to the useless
“bit 1s.” The 49% fraction of 0s also means that the percentage
of bit 1s is around 51%, which is also a very large fraction.
More importantly, not all the bit 1s are influential to the final
accuracy. If we could identify the “essential” bit 1s and prune
away the trivial ones, the inference efficiency could be further
boosted.

As evidence, we explore the distribution of bit 1s in each bit
slice. As shown in Fig. 1, the X-axis denotes the bit slice of
the binary represented weight (in fp32). Each bit slice reflects
the significance of the bits. For example, if a dummy weight
is 1.1101 × 2−4, its binary representation is 0.00011101 and
we record the significance of the 4-bit 1s are the 2−4, 2−5,
2−6, and 2−8 after the binary point.

According to Fig. 1, the bit slice could range from bit
significance “9–0” before the binary point to “−61 to −70”
after the binary point. All the evaluated DNNs exhibit an
“arched” shape across each layer on the Y -axis. The central
bit slices own most of the bit 1s (∼40%), i.e., ResNet152
and DenseNet201. Taking bit significance 2−21 to 2−30 as
the representative, the equivalent decimals are in the range:
0.000000477 (∼10−8) to 0.000000000931 (∼10−11). These
tiny values are very likely to be less contributive to the final
accuracy. Therefore, BitXpro aims to precisely identify the
essential bits and prune the large fraction of the trivial bits on
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the fly in the accelerator, to reduce the computation intensity
under the constraint of tiny accuracy loss.

C. Sparsity Irregularity—The 3rd Target

Even if we could prune the trivial bit 1s to spawn more
sparsity, the accelerator design, however, faces a formidable
challenge. Intuitively, a bit has a 50% possibility to be 0 or 1,
so there is no fixed pattern to determine which bit is essential
in the operand. It makes the location of the essential bit very
difficult to predict. We term this problem as the “irregularity”
of the bit sparsity. The largest concern is its impact on the
hardware accelerator. The difficulty of predicting the essential
bits complicates the zero-bit skipping mechanism and further
the power, performance, and area design tradeoffs.

Aiming at this sparsity irregularity problem, a possible solu-
tion might be transforming the previous arbitrary-distributed
bit 1s into a series of “regular-distributed” bit 1s. Therefore,
the accelerator enjoys the predictable pattern of the essential
bits neighboring with each other. However, achieving this
purpose is not that easy. Simply changing the distribution of
the essential bits will inevitably change the original weight
value, which will lead to an unpredictable impact on the
accuracy of the DNN. Actually, for an fp32 operand, each bit
1 in its binary is associated with an exponent indicating the
significance of this bit. For example, a binary weight 1.101 has
2-bit 1s on the right-hand side of the binary point, and the
second bit 1 has an exponent of −3 indicating 2−3 significance.
If we could shift the bit 1 on the 2−3 significance to the 2−2

significance taking the place of the bit 0, the result is also equal
by multiplying an additional 2−1 to the associate activation:
1.101∗A = A∗(20 +2−1 +2−3) = A∗(20+2−1)+(A∗2−1) ∗2−2,
in which A is the associate activation. This simple deduction
forms a 2−2 item by multiplying a 2−1 significance to A.

The most important fact of such “essential-bit regulariza-
tion” is that the previous inconsecutive bit 1s are neighboring
this time. The accelerator is more amenable to this scenario
because it does not need to employ the complicated mecha-
nisms to spontaneously locate the bit 1s or skip the intermittent
zero bits anymore. This operation could be implemented on
the fly in the accelerator.

In Section III, we will elaborate on how BitXpro is designed
to achieve these objectives.

III. BITXPRO

A. General Concept

Without loss of generality, a floating-point operand is com-
posed of three portions: the signed bit, mantissa, and exponent,
following IEEE 754 [33] which is also the most commonly
used floating-point standard in industry. If we employ the
fp32 format, the mantissa comprises 23 bits and the exponent
occupies 8 bits with the last bit for the sign. A single-precision
weight fp could be expressed as fp = (−1)s1.m × 2e−127,
in which e is the actual position of the “binary point” plus 127.

If we take six nonaligned fp32 weights as an example and
interpret their mantissas as shown in Fig. 2(a), we get a bit
matrix with each column showing the binary mantissa actually
stored in memory. Different colors in the legend indicate the
bit significance from 20 to 2−14 after the binary point (position
0 denotes the hidden 1 of the mantissa [33]). In terms of
exponent, we use different background colors in the bit matrix
to indicate the actual significance of this bit guided by the

exponent. For example, the topmost bit 1 marked as light blue
in W4 is actually the 2−3 significance in the fraction.

If we align the mantissas according to the exponents, zeros
are padded in the front vacancies just, as shown in Fig. 2(b).
The first observation is that the aforementioned bit-level
sparsity is more abundant after zero padding, which provides
an excellent condition for the bit-level pruning. The second
observation is that a large fraction of bit 1s is shifted to the
rear direction beyond 2−6 significance. A direct consequence
is that the practical contribution of these bits is pretty trivial
to the final MAC. If we could prune away these insignificant
1s, it could save plenty of bit-level arithmetic and speed up
the inference.

As shown in Fig. 2(c), the red box denotes the pruned
bit 1s, only leaving several essential bit 1s to form the pruned
weights: W

′
1–W

′
6, and we term these 1s as the “essential

bits.” Pruning out the nonessential bits creates more bit-level
sparsity, i.e., for the 2−4, 2−6, and 2−8–2−14 rows in Fig. 2(c).
The original bit 1s turn into bit 0s after pruning. Omitting
these pruned all-zero-bit rows, the bit matrix is then shown in
Fig. 2(d). As the unessential bit rows are pruned, the MAC
computation could be completed in four cycles, compared with
the original eight cycles in Fig. 2(a).

Although tremendous MACs are eliminated, there still
leaves a problem regarding efficient accelerator design. Taking
W ′

2 in Fig. 2(d) as an example, there are three essential bit 1s
in the column. The location (or the significance) of each bit 1,
however, is hardly predicted in advance, which means the
accelerator must traverse the bits one after another to locate the
3-bit 1s from the other five bit 0s. Worse still, other weights,
such as W

′
1 or W

′
6 in the figure, encounter the similar situation,

whose essential bits are arbitrarily distributed as well.
This aforementioned “irregularity” problem naturally exists

because either the remained bits or the pruned bits cannot
be precisely predicted under any circumstances. Therefore,
a straightforward solution might be making the sparsity from
irregular to “regular.” Still taking W ′

2 as an example, the
“irregular” MAC is A2

∗ (2−1 + 2−2+ 2−7). Obviously, the
essential bits become continuous if the 2−7 bit is shifted to
the 2−3 significance. The MAC result remains equivalent by
multiplying an additional 2−4 to A2. We term such operation
as “bit regularization,” as shown in Fig. 2(e). In the figure,
the matrix after bit regularization only retains the essential
bits, and they are organized more regular than Fig. 2(d).
Such regularity contributes to the efficient inference in the
accelerator because the zero-bit skipping mechanism is no
longer needed and the MAC computation is able to accomplish
in controllable and predictable cycles.

B. Methodology

Leveraging the essential bits in Fig. 2 is an effective way
to simplify a series of MACs into bit-level arithmetic [35],
[38]. However, for the millions of parameters in DNN, if we
use fp32 to represent these values, the impact of a single
bit on the whole network is not that easy to be determined.
Therefore, the leftover problem is how to create an effective
yet hardware-friendly mechanism to pinpoint the useless bits
while maintaining the initial accuracy, without labor-intensive
software tricks. In this section, we first formalize the problem
and then elaborate on the BitXpro procedure.

1) Problem Formulation: Given an n × l matrix A (acti-
vations) and an l × n matrix W (weights), the result of
A × W can be represented by the summation of n rank-one
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Fig. 2. Core concept of BitXpro. (a) Bit matrix before pruning (original weight matrix). (b) Exponent alignment according to IEEE 754. (c) Six nonessential-bit
rows are pruned. (d) Only leaving a more compact essential-bit matrix (bit matrix after pruning). (e) Our special treatment regarding the “irregularity” of the
remaining essential bit 1s, termed “bit regularization.”

matrices: A(i) represents the i th row of A and W(i) for the i th
column of W , as shown in (1). The criticality of these rank-
one matrices could be easily decided by the fast Monte Carlo
algorithm [39], in which some rank-one matrices are randomly
sampled to approximate A × W . The most common sampling
method [39] to select these rank-one matrices is by referring
to their respective probability as shown in (2). It is obtained
by computing the Euclidean distance of A(i) and W(i), which
reflects the importance of the rank-one matrix multiplication

pi =
∣∣A(i)||W(i)

∣∣∑l
i ′ =1

∣∣∣A(i ′)||W(i ′)

∣∣∣ . (1)

Inspired by the fast Monte Carlo algorithm, we enroll the
same probability concept in BitXpro to measure the impor-
tance of the weight bits instead of values. Bits with smaller
probability tend to play a trivial role when multiplied with
the activations compared with other more important bits in the
same weight. Therefore, we abstract the bit matrix in Fig. 2(a)
as W and our objective is seeking out the (in)significant bit
rows in Fig. 2(b) and simplifying MAC computations. The
problem remains how we can utilize the probability in (1) to
sample each bit row in W and determine the to-be-pruned bit
rows.

2) Bit-Slice Extraction: In W [Fig. 2(a)], we target the
mantissa of n normal fp32 weights. Each mantissa is instan-
tiated as a column vector comprised of its bits. Obviously, n
weights are associated with the same number of activations
for MAC. N activations consist of another column vector
[A1,A2, . . . , A j , . . . , An]T . We put the two column vectors
into (1), so it could be rewritten as follows:

pi =
∣∣A(i)

∣∣ ×
√∑n

j=1

(
2E j

i × v j

)2

∑l
i ′=1

(∣∣A(i ′)
∣∣ ×

√∑n
j=1

(
2E j

i′ × v j

)2
) . (2)

A j is the element of the activation vector, and v j is the
j th bit of the i th row vector in the bit matrix W . Each bit in
the same row i has its own exponent, so we use E j

i in (2) to
represent the exponent at position j . The Euclidean distance
of the row vector is calculated as (

∑n
j=1 (2E j

i × v j )
2)1/2.

In BitXpro, the exponent alignment procedure is almost
identical to the normal floating-point addition [33], except
for one special difference, that is, BitXpro does not imple-
ment weight/activation MAC one by one. Instead, it aligns a
group of weights simultaneously to the maximum exponent.
Therefore, after exponent matching, the bits in the same row
i share the same exponent just as Fig. 2(b) has shown, and
we use a uniform Ei to denote the actual exponent of the
row i .

v is a row vector in W composed of bits. For the case that
a bit element v j equals 0, there is obviously no impact on
calculating the Euclidean distance and thus no impact on pi .
Therefore, acquiring the Euclidean distance is equivalent to
counting the number of bit 1s in row i . We use BitCnt(i) to
indicate such operation, so the probability pi of the i th row
can be represented as follows:

pi =
∣∣A(i)

∣∣ ×
(√(

2Ei
)2 × BitCnt(i)

)
∣∣∣A(i ′)

∣∣∣ × ∑l
i ′ =1

(√(
2E

i
′ )2 × BitCnt

(
i ′))

=
√(

2Ei
)2 × BitCnt(i)∑l

i ′ =1

√(
2E

i
′ )2×BitCnt

(
i ′) . (3)

In (3), Ei stands for the aforementioned exponent of the
i th row. Each column vector in matrix A is the same,
so |A(i

′
)| equals |A(i)|. For the given W with l column vectors,∑l

i ′=1 |W(i ′ )| is a constant, so we let C = ∑l
i ′ =1((2

E
i
′ )2 ×

BitCnt(i
′
))1/2, and the final pi is deduced by the following
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Algorithm 1 Pruning

equation:

pi =
√(

2Ei
)2 × BitCnt(i)

C
. (4)

Discussion: The probability pi reveals the magnitude of
“significance.” This is reasonable because Ei reflects the bit
significance of row i and BitCnt(i) reflects the number of
essential bit 1s in row i . Larger Ei or BitCnt(i) definitely
leads to more contribution on the final MAC. BitXpro takes
advantage of (4) to pinpoint the essential bit rows and, in the
meantime, prunes away the trivial bit rows directly in the
accelerator.

C. BitXpro Procedure

BitXpro includes two-level procedures.
1) Pruning: Algorithm 1 serves as the 1st level of the pro-

cedure, termed pruning. It first interprets the exponent E and
mantissa M of n fp32 weights as input (lines 1–3), aligns each
exponent according to emax (line 4), and then calculates and
sorts the row probabilities in descending order (lines 5–12).
For the other input parameter N , it denotes the remaining bit
rows in W after pruning. In other words, BitXpro selects the
top n bit rows with relatively larger pis. The indices of the
n rows are reflected in I ′ (lines 14). The pruning is finalized
by the vector mask with the selected n bit rows marked as
“1” (lines 7 and 16). Right after pruning, BitXpro extracts the
essential bits and stores them into W ′ (lines 17–25).

2) Regularization: Algorithm 2 serves as the 2nd level
of the procedure, termed regularization. The essential bit
matrix W ′, the output of Algorithm 1, is now the input of
Algorithm 2. Lines 1 and 2 first move the essential bits in W ′
to former positions following the concept of Fig. 2(e).

In Fig. 2(e), the 2−3 row in W ∗ only contains two essen-
tial bits obtained from Algorithm 1. Intuitively, if this row
is pruned, the whole matrix becomes regularized. However,

Algorithm 2 Regularization

we cannot simply eliminate the two bits without verifying their
significance to the accuracy. As the second step of the regu-
larization procedure, line 4 instantiates two design parameters,
ε and θ , to decide whether each row in W ∗ could be further
pruned or not for the regularization purpose. The tail rows of
the matrix usually have smaller exponent [i.e., the 2−3 row in
Fig. 2(e)], which means that the significance to the accuracy
might also be trivial. ε thereby serves as a threshold to decide
the relationship with the exponent of each row. θ , on the
other hand, denotes the threshold of the essential bits. They
collaboratively determine the regularized W ∗ (lines 4–8).

Discussion: If the regularity is not considered, the accuracy
of pruning is also guaranteed by only performing Algorithm 1,
even if the accelerator performance is suboptimal. We call this
simplified version of BitXpro as BitX, which is published in our
previous literature [40], and this article is an extended work of
[40]. Clearly, the difference is that BitX has no regularization
procedure. Section V-D will demonstrate their performance
comparison and prove the efficacy of the regularization on
improving the acceleration speedup.

Besides, we have three design parameters in BitXpro, includ-
ing the reserved bit rows N in Algorithm 1 and ε and θ in
Algorithm 2. They all control the granularity of the pruning.
For example, the smaller N and θ and larger ε combination
will lead to a higher speedup in the accelerator because more
bit rows are pruned. However, the accuracy may also degrade.
In Section V, we will thoroughly study the sensitivity and
tradeoff of these design parameters and their impact on the
performance of BitXpro.

IV. BITXPRO ACCELERATOR ARCHITECTURE

BitXpro is a hardware runtime pruning approach. Special-
ized modules for pruning are integrated in the accelerator
hardware design. The overall accelerator architecture is shown
in Fig. 3. Two modules “E-alignment” and “bit-extraction”
are designed to perform Algorithm 1. “Bit-shifting” module
is designed for Algorithm 2, and the BitX implementation
does not involve this module. We instantiate 16 computing
units to form one BitXpro or BitX processing elements (PE).
Each “compute unit” (CU) takes M weights/activation pairs
[indexed as 0–(M− 1)] as input.

The “E-alignment” module performs the steps in
Fig. 2(a) and (b) by aligning the exponents of all the
weights to their maximum. The aligned weights are then
preprocessed by the “bit-extraction” module with the trivial
bits pruned to 0 [performing Fig. 2(c) and (d)]. The pruned
essential-bit matrix is finally regularized by the “bit-shifting”
module [performing Fig. 2(e)]. Each CU executes the bit-level
MAC according to the regularized W ∗ in Fig. 2(e) to finalize
the convolution arithmetic.
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Fig. 3. Overall architecture of the BitXpro accelerator.

On our field-programmable gate array (FPGA) platform, the
memory access is through DMA with two state machines to
coordinate the data fetch and store, associated with the weight
and activation buffer. The detailed hardware configurations are
elaborated in Section V.

For the fixed-point DNN, the E-alignment module is
bypassed and safely clock gated. The original weights are
directly connected to the input of the bit-extraction module
because the fixed-point arithmetic does not involve exponent
matching. Clock gating is favorable to significant energy
savings in the fixed-point mode, as shown in Section V-G.

A. E-Alignment

E-alignment module is designed to align the exponent of
each weight uniformly to the maximum. It is mainly comprised
of the data shifter and zero padding. First, the weight is
split into the corresponding exponent and mantissa (for the
floating-point data). Then, the maximum exponent Emax is
obtained and stored. The exponents of all weights are aligned
to this maximum value following Algorithm 1. The data shifter
performs this operation through right shifting the i th mantissa
by Emax − Ei . The shifted vacancies are zero-padded in the
front part of the mantissa, marked as orange in Fig. 3. For
different weights, Ei is possibly not identical, so we will
obtain arbitrary bit widths after zero padding. To deal with
this scenario, this module also pads a series of zero bits
to the maximum bit width, marked as green in the figure.
Although zero padding is frequent in this module, our register
transfer level (RTL) implementation could easily hardcode this
operation without violating the timing constraint. The only
overhead introduced is the complicated wire organization that
might potentially increase the circuit area.

B. Essential-Bit Extraction

The padded mantissa from the E-alignment module is then
delivered to the bit-extraction module for the actual pruning.
The 1st functionality in this module is the BITCNT, which
is designed to implement the BitCnt function in (4). In our
FPGA implementation, the (2Ei )

2 ×BitCnt(i) operation inside
square root calculations (SQRT) could be equalized as shifting
BitCnt(i) by 2Ei . SQRT is not necessary because it will

Fig. 4. Microarchitecture of the “CU.”

not influence the final significance ranking. Therefore, only
combinatorial circuits could fulfill this purpose. The 2nd
functionality of the bit-extraction module is sorting the shifted
BitCnt(i) and selecting the top n largest rows, while the
disqualified rows are completely pruned.

C. Bit Shifter

This module performs the regularization procedure in
Algorithm 2. The shifter in Fig. 3 neighbors the essential
bits as the first step of the regularization. Each shifter targets
one pruned weight from the previous bit-extraction module
(M weights in total), and ki denotes each bit i in the pruned
weight. As the second step, the significance of each ki is also
recorded (si in the figure) for multiplying into each associate
activation during MAC, marked by different colors on the box
rim in Fig. 2(e). Finally, the tail bit rows with BitCnts and E
below the threshold are directly pruned (line 4 in Algorithm
2), leaving the whole bit matrix finally regularized.

D. Compute Unit

The microarchitecture of CU is shown in Fig. 4. Equipped
with the regularization performed by the previous “bit shift-
ing,” CU no longer deals with the sparsity. The MAC operation
is implemented bit serially, with one cycle accomplishing one
essential-bit MAC.
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The activation Ai could be either floating-point or fixed-
point datum. The fixed-point Ai could be directly shifted and
accumulated for MAC as shown in the figure. However, for the
floating point Ai , the significant loss due to regularization must
be multiplied by each Ai , which is the fixed-point arithmetic
of the exponent. Therefore, the operation will not introduce
severe overhead. The adder tree performs the final partial-sum
accumulation. It distinguishes the precisions, so the overall
power consumption of CU is also distinct under different
precision configurations. Section V-G decomposes the power
consumption of the BitXpro accelerator in the hardware imple-
mentation to present a comprehensive study.

V. EVALUATION

Benchmark: We use plenty of domain-specific DNNs as the
benchmark. The parameters pretrained by various datasets are
directly obtained from PyTorch [41]. The image recognition
benchmark models involve “big” models with the parame-
ter size ranging from 76.35M (DenseNet201) to 356.71M
(ResNext101_32 × 8d), as well as “little” models with the
parameter size of 4.71M (SqueezeNet1_1). YoloV3 [42], PRN
[6], and FCOS [9] trained on the CoCo [8] dataset are
employed to evaluate the performance on the object detection
task. Besides, we also employ 3-D convolution, deformable
convolution, transformer, and GAN model to evaluate our
approach.

Hardware Implementation: At the RTL level, we employ
Vivado HLS (v2018.2) to conduct postsynthesis simulation on
Xilinx Virtex-7 FPGA. The actual inference time is recorded
at each run. We instantiate 16 CUs in PE, clocked at 200 MHz.
Runtime memory access data of our FPGA platform are
recorded and then fed to the DRAMsys tool [43] to estimate
the energy consumption of the memory accesses. For the
RTL synthesis, Synopsys Design Compiler (v2016) is used to
measure power and area. The frequency is set to 1 GHz. The
whole design is synthesized with the TSMC 28-nm technology
library.

BitXpro Specifics: The configurations of M and N in
Algorithm 1 and θ and ε in Algorithm 2 directly affect the
performance of BitXPro. We choose several discrete values
for the design space exploration, to explore the sensitivity
of these design parameters to the accuracy and speed. Also,
based on these parameters, we define two representatives—
BitX/BitXpro-mild and BitX/BitXpro-wild to tackle various
performance tradeoffs.

A. Accuracy and Sparsity

Table II shows the accuracy/sparsity results for Cifar-10
dataset, grouped by the parameter N . Smaller N means that
more bit rows are pruned, so the bit-level sparsity also turns
larger. For example at N = 4, the sparsity increases to
1.80× compared with the original model. More sparsity is
undoubtedly beneficial to the inference speedup (as proved in
Section V-B). On the other hand, larger N means that less bit
rows are pruned so the sparsity only shows 1.41× and 1.53×
for N = 10 and N = 8, respectively.

The results for ImageNet dataset shown in Table III exhibit
a similar trend as in Table II: less than 0.5% average accuracy
loss at N = 10, 8, and 6, and 1.40×, 1.52×, and 1.66×
sparsity increment apiece.

Discussion: First, it proves that the proposed BitXpro prun-
ing methodology will not affect the accuracy of DNNs. The

TABLE II

Cifar-10 PERFORMANCE. THE LAST “AVG.” ROW DENOTES THE “ACCU-
RACY LOSS/SPARSITY INCREMENT.” THE ACCURACY LOSS IS

OBTAINED BY ITEMIZING THE ACCURACY LOSS OF EACH BENCH-
MARK MODEL VERSUS THE ORIGINAL AND CALCULATE THEIR

AVERAGE (IN %). THE SPARSITY INCREMENT IS OBTAINED
BY COUNTING THE BIT 0S AFTER PRUNING AND NOR-

MALIZING THE DATA TO THE ORIGINAL (IN ×)

TABLE III

ImageNet PERFORMANCE. THE COMPUTING METHOD

IS IDENTICAL TO TABLE I

Fig. 5. Inference speedup comparison under different N settings.

average accuracy loss is less than 0.5% at N = 10, 8, and 6,
for both Cifar-10 and ImageNet datasets. Second, this experi-
ment demonstrates the tradeoff between accuracy and sparsity.
A borderline configuration also exists with the maintained
accuracy and satisfied sparsity. As shown in Tables II and III,
there is a significant accuracy drop at N = 4 and N = 6.
Therefore, we can safely choose N values in the range
from 10 to 6 in BitXpro. This experiment also verifies that
there are tremendously redundant bits in the parameters that
can be safely pruned without hurting the accuracy.

B. Speedup

We first evaluate the inference speed at different sparsity
levels indicated by the N configuration. As a hardware runtime
pruning approach, the speedup contains the time of both
“runtime pruning” of the vanilla model and the “inference”
using the pruned model. The data are recorded according to
the actual runtime on our Xilinx V7 FPGA platform and
normalized to the original nonpruned DNN. As shown in
Fig. 5, BitXpro exhibits ∼2.6× speedup at N = 10 and
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Fig. 6. Layerwise speedup for ImageNet dataset. The speedup of the original
model is regarded as 1 on the Y -axis.

∼4.8× speedup at N = 6. The above datum is obtained under
channel granularity. Fig. 6 and 7 complement the layer-wise
speedup of BitXpro, which also show the well accelerating
result. The promising speedup stems from the enriched bit
sparsity enforced by BitXpro. More abundant sparsity means
less essential-bit computations in the accelerator and thus leads
to much faster inference speed.

Discussion: The BitXpro accelerator directly integrates the
pruning module in hardware and executes the hardware run-
time pruning during inference. This is totally different from
software-based pruning that targets value sparsity to acquire
the reduced parameter size and FLOPs. BitXpro leverages the
abundant useless bits and bit sparsity irregularity to directly
accelerate the original DNN after deployment and does not
involve any software work. The higher speedup and lossless
accuracy can provide attractive convenience for the end users
to deploy their models into products much faster.

C. Design Space Exploration

1) Pruning Granularity (N) and Throughput (M):
Sections V-A and V-B have evaluated the sensitivity of N and
its impact on the BitXpro performance. We further explore the
impact of another key parameter M in this experiment. We use
four DNNs trained with the ImageNet dataset, as shown
in Table IV. M indicates the number of input weights that
the accelerator could simultaneously prune (Fig. 3); gen-
erally speaking, M barely influences the overall accuracy
scaling from 8 to 512 for all the four DNNs. For example,
in ResNet50, the accuracy at M = 8 is lower than the accuracy
at M = 16 but is higher than the accuracy at M = 32 or 64.
For SqueezeNet1_1, the accuracy at M = 8 (54.86%) is even
higher than the original model accuracy (54.84%). The average
accuracy loss at other M configurations is less than 0.3%.
We conclude that the number of simultaneous input weights
has a negligible impact on the performance of BitXpro.

Discussion: The major factor that steers the accuracy and
speedup is the N configuration. Table IV shows that at
different scales of M , the accuracy consistently degrades from
N = 10 to N = 4, which is in line with the observation in
Table III. It is N that decides the granularity of pruning, while
M only controls the input throughput.

Two BitXpro Instances: As discussed above, M barely
influences the accuracy, so we choose M = 8 for the efficient
accelerator implementation. Upon M = 8, we select two N
settings: N = 10 and N = 6 to form two BitXpro instances,
termed BitXpro-mild (N = 10 and M = 8) and BitXpro-wild
(N = 6 and M = 8). BitXpro-mild has the better accuracy but
limited speedup, while BitXpro-wild has little-degraded accu-

TABLE IV

DESIGN SPACE EXPLORATION OF TWO KEY DESIGN
PARAMETERS M AND N ON ImageNet

Fig. 7. Layerwise speedup for ImageNet dataset. The speedup of the original
model is regarded as 1 on the Y -axis. Higher is better.

racy but relatively abundant speedup. A similar configuration
is also set for the simplified BitX version, termed BitX-mild
and BitX-wild. In the next set of evaluations, we show the
results of both BitX and BitXpro.

2) Regularization (ε and θ ): For the BitXpro, there are two
extra design parameters used for the regularization—ε and θ .
We employ two DNNs, FCOS and LapSRN, to explore the
design space. As shown in Fig. 8, the horizontal and vertical
axes, respectively, represent the parameter scaling and the
corresponding performance. The datum on each mark denotes
the corresponding speedup.

ε represents the significance of the exponent. With ε tuned
from −7 to −5, both PSNR and mAP decrease with θ
scaled larger. We also observed similar behavior when ε was
configured with other values. BitXpro-mild is more robust and
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TABLE V

ACCURACY AND SPEEDUP EVALUATION OF BitX/BitXpro. NOTE THAT WE PRESENT THE DIRECT VISUAL COMPARISON FOR THE IMAGE GENERATION
TASK—CARTOONGAN AND LAPSRN, SO ITS METRIC VALUE IS NOT LISTED IN THIS TABLE

Fig. 8. Design space exploration of parameters ε and θ on (a) LapSRN and
(b) FCOS.

the value remains nearly stable with θ scaled from 2 to 4. This
experiment concludes that both θ and ε affect the performance
and speedup of BitXpro. Considering that the accuracy is the
first-order design constraint, we select ε = −6 and θ = 2 for
BitXpro-mild and ε = −7 and θ = 4 for BitXpro-wild in other
evaluations.

D. Performance in Other Artificial Intelligence Domains

In addition to the image classification models, Table V
shows the results of other famous DNNs in various domains.

The metric of the model distinguishes from each other.
It is obvious that BitX/BitXpro exhibits a very tiny accuracy
decrease (less than 0.1%) compared with the vanilla baseline.
A more surprising result is that BitX/BitXpro performs on par
or even better on some of the DNNs: it demonstrates 0.3%
improvement on BitXpro; PRN and D3DNet demonstrate the
identical mAP and SSIM value to the baseline. BitXpro-wild
owns the highest sparsity improvement. This is reasonable
because it prunes more bit rows than BitX-wild governed by
the two regularization parameters—ε and θ .

We also present two visual comparisons for the image
generation tasks—CartoonGAN and LapSRN. Fig. 9 compares
the cartoon style transfer effect using BitX/BitXpro. The pruned
results are visually quite similar to the nonpruned Cartoon-
GAN, which again proves that BitXpro is supposed to be
a better option for balancing the tradeoff between accuracy
and speed. A similar result is also presented in Fig. 10 for
the single-image super-resolution task—LapSRN (zoom in for
better visual comparison).

E. Performance of the Fixed-Point DNN

1) Accuracy: BitXpro is also feasible to 16-b fixed-point
DNNs, as part of their versatility. Fixed-point weight also
exhibits substantial useless bits for pruning, but the difference
with floating-point weight is that it does not need exponent
matching. Therefore, the “E-alignment” module in BitXpro
accelerator is not needed and could be clock gated (Fig. 3).
The weights directly pass through to the “bit-extraction”
module for sorting the probabilities of each bit row. As shown
in Table VI, BitX-mild, BitX-wild, and BitXpro-mild all
exhibit the higher accuracy than the nonpruned ResNet50 and
ResNext101. BitXpro-wild shows a slight accuracy decrease
except for SqueezeNet—about 1.3%. As proved in Table VI,
we can conclude that BitXpro could precisely pinpoint the
useless bits in both floating- and fixed-point DNNs.

2) Speedup: As shown in Fig. 11, BitXpro-wild exhibits
up to 2× speedup over the original SqueezeNet1_1. For
ResNet50, the speedup is 1.74×; for DenseNet121, the datum
is 1.84×. As for BitXpro-mild, the largest speedup emerges
at SqueezeNet1_1—1.23×. Compared with BitXpro, BitX
exhibits a relatively slower acceleration because the regular-
ization is not involved. Within the BitX context, BitX-mild
demonstrates tiny acceleration because each weight only has
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Fig. 9. Visual comparison for CartoonGAN. We apply the style transfer for the original image on BitX and BitXpro. The results are extremely identical,
which proves that BitX and BitXpro could attain faster inference with the maintained quality of result. Zoom in for better view.

Fig. 10. Visual comparison for LapSRN. We apply 4× super-resolution on the original image. The results are nearly indistinguishable for BitX and BitXpro.
Zoom in for better view.

TABLE VI

IMAGENET PERFORMANCE OF BitX AND BitXpro REPRESENTATIVES
UNDER 16-BIT FIXED-POINT DNNS

Fig. 11. Inference speedup comparison of BitX and BitXpro representatives
on 16-bit fixed-point DNNs.

16-bit width and setting N = 10 means that only 6-bit width
is pruned. The trivial bit 1s pruned are very limited. By sharp
contrast, BitX-wild will prune 10 bits for each weight. Hence,
the speedup is abundant.

F. Working With Software-Based Pruning

As a hardware runtime pruning approach, BitXpro is
orthogonal to any software-based pruning scheme. In this
experiment, we use YoloV3 [42] and wide_ResNet16 × 8
[44] as the benchmark DNNs, to implement the structured
channel pruning (network slimming [17]) and the unstruc-
tured pruning (sparse loss [45]) separately. The results are
shown in Table VII. It takes both the vanilla DNN and the

TABLE VII

PERFORMANCE OF BitX AND BitXpro COLLABORATING WITH
SOFTWARE-BASED PRUNING (INDICATED BY “∗”)

software-pruned DNN as the baseline, but all the results are
normalized to the vanilla DNN.

BitXpro-mild and BitXpro-wild exhibit 6.13× and 8.27×
higher speedup than the baseline YoloV3, respectively. The
speedup of BitXpro is even more considerable with structured
pruning: 10.81× for BitXpro-wild and 7.90× for BitXpro-mild.
Compared with the baseline WRN16 × 8, the speedups of
BitXpro-mild and BitXpro-wild are 5.37× and 8.03×, respec-
tively. Collaborated with the unstructured pruning, the speedup
is 8.91× and 13.92×. The pure hardware-pruning speedup
can be calculated as the BitXpro datum over the software-
pruning baseline. Taking YoloV3∗

prowild as the example, the
pure speedup brought by BitXpro-wild is 10.81/1.32 ≈ 8.20×.
The promising acceleration result only costs with a negligible
accuracy loss. This experiment clearly proves that our method
is completely compatible with the software-pruning scheme,
either structured or unstructured. The users could obtain
additional speedup and even higher accuracy by collaborating
BitXpro with software pruning in an effortless way.
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Fig. 12. Speedup comparison with other SOTA accelerators.

An interesting observation is that BitXpro-mild achieves
better performance than BitX-mild for both YOLOV3 and
WRN16 × 8. The similar observation also exhibits in Table V
on other models. The reason is that after regularization in
Algorithm 2, BitXpro could pinpoint the essential bits accord-
ing to ε and θ . However, BitX only sorts the importance of bit
rows, making it suboptimal in essential-bit identification.

G. Comparison With SOTA Accelerators

In this section, we compare the BitXpro representatives with
the SOTA fixed-point accelerators. Stripes [2] and Pragmatic
[4] are two bit-serial accelerators. Stripes implement the MAC
computation using bit-level arithmetic but do not consider the
sparsity. Pragmatic, on top of stripes, exploits the bit sparsity
by dynamically skipping the zero bits. However, it is not
designed for bit pruning. BitXpro targets two types of useless
bits and solves the irregularity problem to shorten the critical
path latency of locating the essential bits.

1) Speedup: As shown in Fig. 12, the speedup over prag-
matic (the normalized baseline) and stripes is 2.05× and 8.2×
for BitXpro-wild and 1.23× and 6.01× for BitXpro-mild. A
more interesting observation is that the floating-point results
are even better than the fixed-point BitXpro, still because the
sparsity in the floating-point weight is much larger, especially
after the exponent alignment operation in Fig. 2(b). The func-
tional flexibility provided by BitXpro releases more artificial
intelligence (AI) tasks that could run on these two pruning
modes. The users could freely customize their DNNs for the
practical use.

2) Energy Efficiency: Similar to the speedup result, the
energy efficiency of BitXpro also outperforms other base-
lines as shown in Fig. 13. For the 16-b mode, BitX
and BitXpro behave on par with the representatives and
demonstrate much better result than the BitX representa-
tives (3.97× SqueezeNet1_1, 3.99× ResNet50 in wild, 2.91×
SqueezeNet1_1, and 2.93× ResNet50 in mild). This is because
BitXpro has a higher speed after the regularization, and the
power consumption introduced by the bit shifter is not that
large (see next). Again, the efficiency of fp32 mode is better
than that of the 16-b mode, except for BitX-mild (0.34× lower
than BitXpro-wild 16 b and 0.3× lower than BitX-wild 16 b
for ResNet50).

3) Energy Breakdown: Our Xilinx V7 FPGA platform
involves the DDR3 memory. We use DRAMsys to estimate
the runtime memory access energy. Fig. 14 shows the energy
breakdown from two aspects: 1) Fig. 14(a) shows the full-

Fig. 13. Energy efficiency comparison. Higher is better.

Fig. 14. (a) Full-system and (b) BitXpro PE-only energy breakdown for
SqueezeNet.

system energy breakdown and clearly the memory accesses
dominate the energy consumption, for example, the memory
access energy of the 16-b BitXpro-wild could attain 98% and
the PE energy only occupies less than 2% and 2) in Fig. 14(b),
we further decompose the PE-only energy for each BitXpro
instance. CU energy dominates this time (58%, 81%, 74%,
and 72%) because we have 16 CUs with a large number of
buffers to store the bit-pruned weights. For other modules,
the bit shifter and control circuits consume around 8% and
5%–35% energy, respectively.

4) Area and Power Breakdown: Under the TSMC 28-nm
technology node, BitXpro-fp32 exhibits a 0.068-mm2 area,
while the area of stripes and pragmatic are 0.191 and
0.359 mm2, respectively, under TSMC 65 nm. The area
and power breakdown of BitXpro is provided in Table VIII.
It illustrates that the largest area is occupied by the bit shifter
module (42.6%) because it involves frequent shifting operation
and some of the wires are inevitably prolonged to avoid the
intersection. However, it is not the largest power consumer
(only 8.3%) because no computation circuits are involved in
this module. Comparatively, the 16 CUs occupy the smallest
area (4.4%) but consume most of the power (71.8%) due to
the internal arithmetic logic. BitXpro in 16-b fixed-point mode
powers down the E-alignment module and the CU arithmetic
is based on the fixed-point activations, so its overall power
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TABLE VIII

PE AREA AND POWER BREAKDOWN COMPARISON

consumption reduces to 40.44 mW, compared with 74.82 mW
in the fp32 mode.

VI. CONCLUSION

In this article, we propose a novel hardware runtime pruning
method—BitXpro to empower the versatile DNN inference.
By targeting the abundant bit-level sparsity, it implements the
pruning on-the-fly in hardware without any software work.
The method precisely locates the essential bits, prunes away
the trivial bits, and finally regularizes the pruned weights
at different precisions, including both floating point and
fixed point. The empirical studies have proved the efficacy
of BitXpro, by providing abundant sparsity, faster inference
speed, and lossless (or even higher) accuracy on various
domain-specific AI tasks. We also hope that the BitXpro
methodology and the associate accelerator design would stim-
ulate more insightful perspectives on the hardware runtime
pruning, to provide both promising DNN acceleration and
excellent user experience at the same time.
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