
Dep-TEE: Decoupled Memory Protection for Secure and Scalable
Inter-enclave Communication on RISC-V

Shangjie Pan1,2,3, Xuanyao Peng1,2, Zeyuan Man4,5, Xiquan Zhao3, Dongrong Zhang3, Bicheng
Yang6, Dong Du6, Hang Lu1,2,3,5, Yubin Xia6, Xiaowei Li1,2,3

1SKLP, Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences, 3Zhongguancun Laboratory

4ShanghaiTech University, 5Beijing Institute of Open Source Chip, 6Shanghai Jiao Tong University

ABSTRACT
Trusted Execution Environment (TEE) has beenwidely implemented
bymodern hardware vendors to protect security and privacy-sensitive
applications and data, such as Intel SGX/TDX, ARM TrustZone,
AMD SEV, and RISC-V Penglai. However, existing TEE systems
face challenges in balancing memory isolation among security, per-
formance, and scalability requirements. This paper introduces a
novel TEE system, Dep-TEE, which decouples memory protection
(to segments) from address translation (to page tables). This design
improves communication performance by dynamically adjusting
memory protection capabilities, without sacrificing application
compatibility, and enhances security by safeguarding against at-
tacks on page tables. We have built a prototype of Dep-TEE based
on FPGA, incorporating hardware extensions and software support.
The evaluation demonstrates that Dep-TEE significantly surpasses
existing TEE solutions, achieving three orders of magnitude lower
communication latency and 10x greater scalability while maintain-
ing robust security guarantees.

ACM Reference Format:
Shangjie Pan, Xuanyao Peng, Zeyuan Man, Xiquan Zhao, Dongrong Zhang,
Bicheng Yang, Dong Du, Hang Lu, Yubin Xia and Xiaowei Li. 2025. Dep-
TEE: Decoupled Memory Protection for Secure and Scalable Inter-enclave
Communication on RISC-V. In 30th Asia and South Pacific Design Automation
Conference (ASPDAC ’25), January 20–23, 2025, Tokyo, Japan. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3658617.3697763

1 INTRODUCTION
Trusted Execution Environments (TEEs) serve as secure computing
environments, offering a hardware/software co-design protection
solution to safeguard sensitive data and applications in cloud envi-
ronments [3, 12, 13]. Enclaves, as crucial security containers within
TEEs, protect critical parts of applications from malicious attacks
and software vulnerabilities.

Xiquan Zhao, Hang Lu and Xiaowei Li are corresponding authors. This work was
supported in part by the National Natural Science Foundation of China under Grant
62172387; in part by the Youth Innovation Promotion Association of Chinese Academy
of Sciences (CAS) under Grant 2021098.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697763

In the cloud environment, enclaves often collaborate to manage
distributed computing tasks or share sensitive data. Consequently,
secure and efficient inter-enclave communication is essential for
completing various complex operations. For instance, multiple hos-
pitals might share patient data to train a machine-learning model
for disease diagnosis, enhancing the model’s performance [25]. Con-
sider a scenario where a service provider rents cloud computing ma-
chines with Intel SGX [16] to provide dedicated enclave processes
for each client [1]. However, the limited secure memory (PRM)
in SGX leads to significant overhead due to multiple copying and
encryption/decryption operations during inter-enclave communica-
tion. While Elasticlave [26], based on the Keystone framework [15],
supports inter-enclave communication, its scalability is hindered
by hardware limitations, making it unsuitable for cloud environ-
ments. Therefore, improving the scalability and performance of
inter-enclave communication while ensuring data security is of
significance.

We analyzed existing TEE communication mechanisms, catego-
rizing them into copy+encryption, remapping, and shared mem-
ory. Theoretical and experimental analyses show that the shared
memory mechanism offers the best performance but introduces
scalability and security issues. Existing TEE systems fail to meet
the demands of scalability, security, and high performance for inter-
enclave communication. To address these challenges, we propose a
novel TEE communication system called Dep-TEE, which utilizes
a hardware-level Supervisor Physical Memory Protection (SPMP)
mechanism [19] and shared memory. Our main contributions are
summarized as follows:

• We design a novel TEE communication system named Dep-
TEE. Dep-TEE utilizes the shared memory mechanism to
achieve inter-enclave communication. It exploits the SPMP
mechanism to decouple permission protection from enclaves’
page tables, achieving high security and scalability while not
compromising shared memory’s high performance.

• We implement a prototype of Dep-TEE on the Penglai-based
platform and integrate it into the high-performant open-
source RISC-V processor core, Xiangshan Nanhu Core. After
introducing the SPMP mechanism, Dep-TEE shows negli-
gible overhead in CPU-intensive RV8 benchmarks, demon-
strating high-performance efficiency. The implementation
on the Xilinx VU19P FPGA shows that Dep-TEE requires
minimal extra hardware resources, utilizing only 0.2% of
LUTs and 0.04% of FFs.

• System evaluation shows that Dep-TEE can securely and
efficiently support communication among at least 100 pairs
of enclaves. Compared to the Penglai-PMP system, Dep-TEE

https://doi.org/10.1145/3658617.3697763
https://doi.org/10.1145/3658617.3697763

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Pan, et al.

Table 1: A comparison of TEE communication mechanisms. Isolation means the isolation mechanism among enclaves. Unre-
stricted means the number of enclaves is unrestricted, though system performance may decline if secure memory is insuffi-
cient.Performance is indicated by arrows: ↑ (high), ↓ (low), and→ (medium).R. and T. denote the security risks fromRowhammer
and TOCTTOU attacks. Dep-TEE uniquely offers scalable, high-performance, and secure inter-enclave communication.

System Inter-Enclave Communication
Name Arch Isolation Mechanism Scalability Performance Security Versatility
SGX[16] Intel Table-based Copy+encryption Unrestricted ↓ ! %

TDX[13] Intel Table-based Shared memory Unrestricted → R. & T. %

SEV[3] AMD Table-based Shared memory Unrestricted → R. & T. %

CCA[4] ARM Table-based Shared memory Unrestricted → R. & T. %

Komodo[10] ARM Table-based Remapping Unrestricted → R. %

Sanctuary[5] ARM Table-based Shared memory Unrestricted ↑ R. & T. %

Sanctum[7] RISC-V Segment-based Copy+encryption DRAM Regions ↓ R. %

Elasticlave[26] RISC-V Segment-based Shared memory (PMPs-2)/2 ↑ ! %

Penglai-TVM[9] RISC-V Table-based Remapping Unrestricted → R. %

Penglai-PMP[18] RISC-V Segment-based Copy+encryption PMPs ↓ ! %

Dep-TEE RISC-V Decoupled Shared memory Unrestricted ↑ ! !

shows performance improvements of one to three orders of
magnitude across various data transfer sizes.

We organize this paper as follows. First, Section 2 introduces
the communication mechanisms in existing TEE systems and their
limitations. Section 3 overviews the Dep-TEE framework and details
the design. Section 4 details the Dep-TEE implementation. Section 5
presents the system evaluation and secure analysis. Finally, Section
6 concludes this work.

2 BACKGROUND AND MOTIVATION
2.1 Inter-Enclave Communication Mechanisms
Inter-process communication (IPC) is crucial in modern OSes for
better modularity and is increasingly important for TEE systems.
It facilitates functions decomposition and collaborative work, sup-
ports complex application scenarios, and enables multitasking [1,
12, 25]. A secure, efficient, and scalable communication mechanism
is crucial in cloud computing, but current inter-enclave communi-
cation schemes fall short.

Existing inter-enclave communicationmechanisms include copy+
encryption, remapping, and shared memory, as summarized in Ta-
ble 1. TEE systems like Intel SGX [16], RISC-V Sanctum [7], and
Penglai-PMP [18] use the copy+encryption mechanism, where data
is encrypted, transmitted to untrusted memory by sender enclave,
and then decrypted by the receiver enclave. This mechanism en-
sures data confidentiality and integrity but incurs high overhead.
ARM Komodo [10] and RISC-V Penglai-TVM [9] adopt the remap-
ping mechanism, where enclaves unmap and remap physical mem-
ory for communication. This mechanism is inefficient due to its
coarse granularity (4KB pages) and TLB shootdown issues. Intel
TDX [13], AMD SEV [3], and ARM CCA [4] map shared memory
via page tables in a virtual machine, avoiding performance loss
from copying and remapping but leaving page tables vulnerable to
attacks like Rowhammer [2] and TOCTTOU [8]. High-concurrency
demands in cloud environments amplify these security risks. Elas-
ticlave [26], based on Keystone [15] and RISC-V PMP [22], im-
proves security by isolating shared memory but struggles with
high-concurrency communication due to resource constraints.
2.2 Inter-Enclave Communication Patterns
2.2.1 Bilateral Communication Patterns. We apply the commu-
nication mechanisms summarized in §2.1 to three representative

bilateral data sharing patterns in real-world scenarios as proposed
in [26], shown in Figure 1.
Pattern 1: Producer-Consumer. In this pattern, the producer en-
clave transfers communication data to the consumer enclave (Figure
1(a)). Common application’s sub-steps often use this pattern, such
as batch processing in web frameworks [11, 21].

Latency tests (Figure 2) using varying record sizes show that the
copy+encryption mechanism has the highest overhead due to ex-
tensive copying and encryption/decryption. The remapping mech-
anism has moderate overhead from re-mapping and un-mapping
operations, triggering TLB shootdown issues. The shared memory
mechanism has the lowest overhead, with consistent instruction
level and read/write operations regardless of data size.
Pattern 2: Client-Server. The client and the server enclaves may si-
multaneously read from and write to shared data (Figure 1(b)). The
copy+encryptionmechanism involves four copying and two encryp-
tion/decryption processes, whereas the shared memory mechanism
requires only two mapping operations.
Pattern 3: Proxy. A proxy enclave processes data from a source
enclave and forwards it to a destination enclave (Figure 1(c)) like a
caching proxy in web services (e.g., Nginx [17]).
2.2.2 Multilateral Communication Patterns. We propose two mul-
tilateral communication patterns: multi-bilateral communication
and single-producer multi-consumer.
Pattern 4: Multi-Bilateral Communication. In cloud environ-
ments, numerous enclaves must operate concurrently, using bilat-
eral communication patterns for multitasking. TEE systems must
support this concurrency while ensuring high performance and
security.
Pattern 5: Single-Producer Multi-Consumer.A producer enclave
processes data and transmits it to multiple consumer enclaves. For
instance, a healthcare firm can provide personalized recommen-
dations based on customer-provided information, such as medical
histories [1]. This pattern enables multiple clients to query a shared
database without revealing personal health details.

2.3 Challenges
Existing TEE systems still fall short of satisfying the inter-enclave
communication versatility, i.e., scalability, high performance, and
high security. We use the shared memory mechanism to achieve the
versatility goal. Specifically, we should overcome three challenges.

Dep-TEE: Decoupled Memory Protection for Secure and Scalable Inter-enclave Communication on RISC-V ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

shared

data

Producer

Enclave

encrypted

data

encrypt Untrusted

Memory

encrypted

data

shared

data

Consumer

Enclave

encrypted

data

unmap

Shared

Memory

(a) Producer-Consumer Pattern

shared

data

decrypt

copy copy

map

map map

shared

data

Client Enclave
Req

encrypted

data

encrypt

Untrusted

Memory

Server Enclave

encrypted

data

encrypted

data

copy

copy

Req
decrypt process

Resp
encrypt encrypted

data

copy

copy

encrypted

data
Resp

decrypt

Req

Untrusted

Memory

encrypted

data

Shared Memory

Req

unmap

map

Resp

unmap

map

map

map

Resp

process

(b) Client-Server Pattern

r/w r
r/w

r/w

Source

Enclave
shared

data

encrypted

data

Destination

Enclave

encrypted

data

shared

data

Untrusted Memory

Proxy Enclave

encrypted

data

shared

data
decrypt process shared

data
encrypt encrypted

data

shared

data

shared

data

Untrusted Memory

encrypted

data

encrypt

copy

copy

encrypted

data

copy

copy

decrypt

unmap

Shared Memory

map

map unmap

map
r/w

map
r

map r/w

(c) Proxy Pattern

shared

data

shared

data

process

r

r/w

r/w

r/w

r

operateCopy + Encryption

mechanism process:
Entity

operateRemapping

mechanism process: permission
Entity Entity Entity

operateShared memory

mechanism process: permission
Entity Entity

processapplication-specific

data processing:
Entity EntityLegend:

Figure 1: In-depth analysis of implementation processes for three distinct inter-enclave communication mechanisms across
various bilateral communication patterns.

Challenge-1: Scalable communication over shared memory.
Despite using shared memory for inter-enclave communication,
Elasticlave’s scalability is limited by its use of the Keystone frame-
work and RISC-V PMP for memory isolation. The number of PMP
registers limits Elasticlave’s concurrency capability for enclaves.
Challenge-2: Performance over sharedmemory. Intel TDX, AMD
SEV and ARMCCA employ page tables for memory isolation within
virtual machines, enabling high-concurrency inter-enclave commu-
nication through the shared memory mechanism. However, this
mechanism is vulnerable to TOCTTOU attacks, which are hard to
mitigate. Additionally, these TEE systems require multiple memory
accesses to check the permission table, reducing the performance.
Challenge-3: Security over shared memory. Many TEE systems
including RISC-V Penglai-TVM, use page tables for isolation to
support concurrent enclaves. While page tables serve for address
translation and permission protection, they are vulnerable to tar-
geted attacks like Rowhammer. Existing security mechanisms for
page tables often incur substantial performance costs.

Our key insight to resolve the above challenges is decoupling
protection (based on segment) from sharing (based on page
tables). First, the decoupling can achieve high security without
compromising performance as Dep-TEE only relies on register-
based segments for security protection, which can defend against
attackers targeting page tables (e.g., Rowhammer). Second, we fur-
ther introduce a layered segment design that can achieve scalable
segments compared with existing single-layer designs.

3 DEP-TEE DESIGN
3.1 Architecture
We highlight two key aspects of the Dep-TEE abstraction: (1) mem-
ory isolation with decoupled protection and (2) versatile inter-
enclave communication. We integrate these abstractions into a
secure monitor operating in the highest privilege mode (e.g., ma-
chine mode in RISC-V), as shown in Figure 3. The secure monitor
manages all enclaves and provides APIs for users to deploy enclaves.
It is loaded and verified by the boot ROM during system startup.

We introduce the RISC-V SPMP (Supervisor Physical Memory
Protection) mechanism [19] to assist the secure monitor in imple-
menting the Dep-TEE’s abstractions. We use the SPMP mechanism
to decouple the permission protection from the page tables, defend-
ing against specific attacks targeting the page table. Additionally,
we leverage SPMP registers to isolate shared memory for versatile
inter-enclave communication.

40 33 40 37 40 30 40 31

34 29 38 30
42

35

48 40

76
59

78
62

67
65

78 69

125
125 135

135

262 262

822 822

92 161 482 1763

7683 29690 118,657 475681

0%

20%

40%

60%

80%

100%

c+e remap shm c+e remap shm c+e remap shm c+e remap shm

1K 4K 16K 64K

attach transfer map create copy en/decrypt

Record Size (Bytes)

C
yc

le
 P

er
ce

nt
ag

e
(%

)

Figure 2: Breakdowns of three communication mechanisms
in the producer-consumer pattern. Data labels in the diagram
are scaled proportionally to actual data, measured in cycles.

Threat Model. The trusted computing base (TCB) of Dep-TEE
includes the hardware CPU and the secure monitor. We assume
attackers can access detailed information about OS, hardware com-
ponents, and network configuration, and can create and execute
malicious enclaves. Attackers may exploit OS vulnerabilities or use
malicious enclaves to gain unauthorized access and manipulate
messages between the CPU and hardware. Moreover, attackers
could leverage TOCTTOU attacks and targeting page tables at-
tacks (e.g. Rowhammer) to extract sensitive data. Side-channel and
denial-of-service (DoS) attacks are not considered in this work.

3.2 Isolation with Decoupled Protection
Scalability Challenges. RISC-V-based TEEs like Keystone and
Penglai-PMP use Physical Memory Protection (PMP) to isolate
enclaves. PMP has 16 sets of address and configuration registers
in Machine Mode (M-mode) that define physical memory’s size,
location, and access permissions. Memory access is granted only
if PMP checks pass; otherwise, access is denied. Each enclave’s
isolation requires a dedicated set of PMP registers, but the limited
number of PMP registers restricts the concurrent enclaves. This lim-
itation poses a scalability challenge for RISC-V-based TEEs in cloud
environments that require handling many tasks simultaneously.
Table-based Memory Isolation.Within a TEE region isolated by
PMP registers, we use a page table mechanism to isolate among
enclaves, as shown in Figure 4. Each enclave’s page tables, stored
in its dedicated memory, are configured by the secure monitor to
map to its memory space. This approach supports the simultaneous
creation of multiple enclaves within the same TEE region. In the
SV39 page table structure, hardware memory access requires four
references: three for the page table pages and one for the data page.
Each access involves a PMP check to verify permission. However,
this approach is vulnerable to attacks targeting page tables like

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Pan, et al.

Host Region Enclave

SDK

Host OS

Enclave

Driver

User

Mode

OS

Mode

Most

Privileged

Mode
Secure Monitor

Enclave

Management

Hardware
Mountable

Merkle Tree

Cache-line

Locking

Host APP-1

TEE Region

Enclavee-1

Versatile Inter-Enclave

Communication

PMP + SPMP

+ Page Table

Existing components in Penglai New components

Memory Isolation with

Decoupled Protection

Root of Trust

Host APP-2

Host APP-n

Shm-1
map

map

Enclaver-1

IPC 1

2

3

4

EnclaveeEnclaver
create(key,size)

- - -- - -

map(vaddr,shmid)

r w -r w -

transfer(shmid,eid,P)

- - -- - -

attatch(shmid)

- - -- - -

- - -- - -

map(vaddr,shmid)

transfer(shmid,eid,P)

- - -- - -

destory(shmid)

…

…

- - -- - -

r w -r w -

r w -r w -

…

- - -- - -

Req

Req

Resp

Resp

5

Shared memory
IPC SPMP registers

SPMP0 SPMP1 …… SPMP15

Secure Monitor

create_shm / map_shm / transfer / attach_shm /destroy_shm

csr.read/write

T
E

E
 R

e
g

io
n

…

Enclavee-n

Shm-n
map

map

Enclaver-n

IPC
…

(a) Architecture of Dep-TEE. Dep-TEE provides versatile inter-enclave communication

and decoupled protection over SOTA TEE systems like Penglai.

(b) Inter-enclave communication process based on the client-server pattern. er.SPMP

and ee.SPMP mean the SPMP registers context of enclaver and enclavee, respectively.

er.

SPMP0

er.

SPMP1

er.

SPMP0

er.

SPMP1

er.

SPMP0

er.

SPMP1

er.

SPMP0

er.

SPMP1

ee.

SPMP0

ee.

SPMP1

ee.

SPMP0

ee.

SPMP1

er.

SPMP0

er.

SPMP1

er.

SPMP0

er.

SPMP1

Figure 3: Overview of the Dep-TEE architecture with a detailed depiction of the inter-enclave communication process.

TEE Region

… …

Secure Monitor

Page Table

mapping

Enclave-1

Page Table

mapping

Enclave-1

SPMPSPMPPage Table

mapping

Enclave-1

SPMP Page Table

mapping

Enclave-n

Page Table

mapping

Enclave-n

SPMPSPMPPage Table

mapping

Enclave-n

SPMP

isolation

config csr.w/r config csr.w/r

satp

VA[38:30]
PMP checking

L2

L1

L0

data

VA[29:21]

VA[20:12]

VA[11:0] PA

SPMP checking

PMP checking

SPMP checking

PMP checking

SPMP checking

PMP checking

SPMP checking

satp

VA[38:30]
PMP checking

L2

L1

L0

data

VA[29:21]

VA[20:12]

VA[11:0] PA

SPMP checking

PMP checking

SPMP checking

PMP checking

SPMP checking

PMP checking

SPMP checking

VA
satp

VA[38:30]
PMP checking

L2

L1

L0

data

VA[29:21]

VA[20:12]

VA[11:0] PA

SPMP checking

PMP checking

SPMP checking

PMP checking

SPMP checking

PMP checking

SPMP checking

VA

Figure 4: Isolation and access checks after decoupling per-
mission protection from page tables in the TEE region.
Rowhammer, which can leak sensitive data. To counter this, we
introduce the RISC-V SPMP mechanism to decouple permission
protection from page tables, enhancing the isolation and protection
of enclaves within the TEE region.
RISC-V SPMP Mechanism. SPMP is a segment-based design sim-
ilar to RISC-V PMP. It supports 16 entries, each consisting of an
address register and a configuration register. The SPMP entries
can define the range of physical memory regions managed, with
the range limited by the A field in the configuration register and
the address register. The access permissions for these regions are
determined by the X (execute), W (write), and R (read) fields in the
configuration register. The S field of the configuration marks a rule
as S-mode-only when set and U-mode-only when unset.
TEE Region Memory Management. When creating an enclave
within a TEE region, the securemonitor allocates a contiguous block
of physical memory, establishes the page tables, and assigns meta-
data containing the enclave’s information. This metadata, stored
in an isolated memory area managed by the secure monitor, in-
cludes the enclave’s unique identifier (eid), starting physical address,
memory size, SPMP register context, and more. During the enclave
creation, the secure monitor writes the configuration information
into the SPMP context based on the allocated physical address, size,
and access permissions. When the enclave is executed, the secure
monitor uses the SPMP context to write into the SPMP address and
configuration registers via the CSR.write instruction, ensuring the
correct memory access permissions. When switching to another
enclave, the secure monitor retrieves the target enclave’s SPMP
context based on its eid and loads it into the SPMP registers. This
dynamic adjustment of SPMP register configurations ensures strict
isolation among different enclaves. Thus, within the TEE region, the
management and switching of the SPMP register context effectively
facilitate the physical memory isolation of multiple enclaves.

By using segment-based SPMP registers, we decouple permis-
sion protection from page tables, establishing a secure and scalable

isolation mechanism for enclaves. As shown in Figure 4, the sys-
tem performs an SPMP check alongside each PMP check, allowing
memory access only if both checks pass. This approach enhances
security and efficiency by storing permission settings directly in
registers and conducting checks internally within the CPU.

3.3 Versatile Inter-Enclave Communication
Communication Interface. In our system, the enclave initiating
communication is the enclaver, and the enclave receiving commu-
nication is the enclavee. Table 2 outlines the seven instructions
for versatile inter-enclave communication within Dep-TEE. In this
scheme, the key is predefined by the user-defined communication
schemes and includes two parts: shm_key and enclave_key. The
shm_key is used to connect enclavee to shared memory, while the
enclave_key ensures the enclavee is correctly identified when the
enclaver transfers shared memory permissions. This paper details
the design and implementation of this inter-enclave communication
mechanism through a client-server communication flow.
Communication Flow.A predefined key is bound to the eid during
the creation of each enclave requiring communication. For enclaves
communicating via the same shared memory, their shm_keys are
identical, while enclave_keys are unique. Figure 3(b) shows the
communication flow between two enclaves in the TEE region using
a client-server pattern and SPMP registers’ changes at each stage.

Stage 1: The enclaver issuing the create instruction to request
the shared memory. The secure monitor allocates the memory and
binds its shmid with the shm_key and the enclaver’s eid, and updates
the SPMP registers and the enclaver’s SPMP context. Upon success-
fully creating shared memory, the enclavee obtains the shmid via
shm_key and associates the memory using the attach instruction.

Stage 2: Both enclaves execute the map instruction, mapping the
shared memory into their virtual address spaces. The enclaver has
read and write access, but the enclavee cannot access the memory
because the SPMP registers store the information of the enclaver.

Stage 3:After writing data, enclaver transfers access permissions
of the shared memory to the enclavee using the transfer instruc-
tion. The secure monitor updates the SPMP registers, allowing the
enclavee to read the request (req) and provide a response (resp).

Stage 4: After sending its resp, the enclavee transfers access
permissions back to the enclaver using the transfer instruction.

Stage 5: When communication concludes, the enclavee uses the
detach instruction to disassociate from the shared memory, and

Dep-TEE: Decoupled Memory Protection for Secure and Scalable Inter-enclave Communication on RISC-V ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Table 2: Inter-enclave communication instructions in Dep-
TEE. P means access permission to another enclave.
Instructions Semantics
shmid = create(key, size) create a shared memory
err = map(vaddr, shmid) map vaddr range to a shared memory
err = transfer(shmid, eid, P) transfer P to another enclave
err = attach(shmid) associate with a shared memory
err = detach(shmid) disassociate with a shared memory
err = share(shmid) share a shared memory with read-only
err = destroy(shmid) destroy a shared memory

Nanhu-V2 OoO RISC-V core (RV64GCBK)

Frontend

IFU

…
ITLB

Backend

Mem Block

L2TLB

PTW LLPTW

DTLB

PMP Checker & SPMP Checker

BPU FTQ …

128KB L1I$

Int Block Float Block

128KB L1D$

…

…

R
e
n
a
m

e
/D

is
p
a
tc

h

Check Permission

Tilelink crossbar (or bus)

GPIO TSI UART 1MB L2$ BootROM

LLC

DRAM channels

Figure 5: Dep-TEE implementation based on Xiangshan
Nanhu Core. The red box highlights the areas most closely
associated with the PMP and SPMP checker.

the enclaver may destroy the shared memory using the destroy
instruction. The secure monitor clears the SPMP configurations
and memory mappings, releasing resources.

The bilateral and multi-bilateral communication patterns in §2.2
all follow this fundamental flow. By using the share instruction,
the enclaver can set the shared memory to read-only, allowing the
enclavees executing the attach instruction to read data, enabling a
single-producer multiple-consumer communication pattern.
Ownership Transfer. In this scheme, the transfer instruction
triggers a trap into the M-mode secure monitor, which reconfigures
the SPMP registers to facilitate shared memory ownership transfer
among enclaves. This approach avoids the overhead of multiple
un-mappings and re-mappings needed in a remapping mechanism
and enhances security against TOCTTOU attacks and targeting
page table attacks.

4 IMPLEMENTATION
Hardware. We extend the SOTA RISC-V high-performance proces-
sor Xiangshan Nanhu-V2 processor (an 11-level superscalar out-of-
order core) [24] by adding 16 SPMP CSR registers and introducing
an SPMP Checker module, as shown in the Figure 5. During mem-
ory access, the MMU translates virtual addresses into physical
addresses, performing parallel PMP and SPMP checks. Only if both
checks pass memory access is allowed; otherwise, it is prohibited.
These modifications do not alter the core’s pipelines.
Software.We implement Dep-TEE on the Penglai Enclave (PMP ver-
sion, v0.2 release [18]), an advanced RISC-V platform open-source
TEE. Penglai Enclave provides Linux drivers, an SDK, and authenti-
cation mechanisms for creating, running, relaying, and destroying
enclaves. We extend the secure monitor to support scalable and

Table 3: Simulation configurations.
Parameter Value / Description

Xiangshan
Core
Nanhu V2
Architecture

Processor OoO RISC-V CPU@2GHz
Front-end 6-way decoder,

64-entry fetch target queue,
48-entry instruction buffer,
256-entry micro branch target buffer,
2048-entry fetch target buffer,
16K-entry TAGE-SC, RAS, ITTAGE

Execute 6-way rename/dispatch,
256-entry ROB,
192 int/fp physical registers,
ALU, MUL/DIV, JUMP/CSR/I2F,
LD, STA, STD, FMAC, FMISC

LSU 80-entry load queue,
64-entry store queue

L1 Cache 128KB 8-way I-cache/D-cache
L2 Cache 1MB 8-way non-inclusive
LLC 6MB 8-way non-inclusive
L1 I/D TLB 40-entry ITLB (32-entry normalpage,

8-entry superpage)
full-associative, 136-entry DTLB

L2 TLB 2048 entries
Memory 8GB DDR4 KVR26S19S8/8
OS Buildroot, Linux 5.10, OpenSBI 0.9

efficient inter-enclave communication and TEE region memory
management, without using a guarded page table proposed by
Penglai-TVM or other new hardware features.
Methodology. We evaluate Dep-TEE on the Xilinx Virtex Ultra-
Scale+ VU19P (XCVU19P) FPGA which emulates a Nanhu Core
SoC operating at 2GHz. Detailed hardware configurations are in Ta-
ble 3. Microbenchmark tests compare Dep-TEE with Penglai-Copy
(based on the original PMP) and Penglai-Remapping (PMP version
with a remapping communication mechanism). Application-level
benchmarks compare Dep-TEE with Penglai-PMP.

5 EVALUATION
5.1 Microbenchmarks
To evaluate Dep-TEE and the Penglai baseline (PL-Copy and PL-
Remapping), we develop a benchmark encompassing five commu-
nication patterns based on three sharing mechanisms. Our research
focuses on data transmission performance, excluding data process-
ing procedures. Specifically, we analyze data transfer in Dep-TEE
and Penglai-Remapping and data copying in Penglai-Copy, omitting
encryption or decryption operations.
Performance of Bilateral Communication Patterns. Figure 6
shows the latency results for producer-consumer, client-server, and
proxy patterns. Dep-TEE achieves a 7x increase in performance
over Penglai-Copy for 8KB of data, and a 2000x increase for 2MB of
data. Compared to Penglai-Remapping, Dep-TEE shows significant
performance advantages for data sizes over 128KB, achieving a 10x
increase for 2MB of data. This is because the overhead of unmapping
and mapping operations in the remapping mechanism becomes
extremely large as data size increases.
Performance of Multilateral Communication Patterns. Fig-
ure 7(a) shows the performance of various systems under multi-
bilateral communication patterns using the producer-consumer
pattern. Dep-TEE significantly outperforms Penglai-Copy for trans-
ferring 1MB of data, achieving up to 3000x acceleration. Penglai-
Copy and Penglai-Remapping fail with more than ten pairs due
to PMP register limitations. Elasticlave faces the same constraints.
In contrast, Dep-TEE supports over 100 pairs, demonstrating its
potential for large-scale multitasking in cloud environments.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Pan, et al.

0.5K 2K 8K 32K 128K 512K 2M

Dep-TEE

PL-Remapping

PL-Copy

104

0.5K 2K 8K 32K 128K 512K 2M

Dep-TEE

PL-Remapping

PL-Copy

0.5K 2K 8K 32K 128K 512K 2M

Dep-TEE

PL-Remapping

PL-Copy

105

106

107

108
C
y
cl

es

104

105

106

107

108

C
yc

le
s

104

105

106

107

108

C
y
cl

es

Record Size (Bytes) Record Size (Bytes) Record Size (Bytes)

(a) Producer-Consumer pattern (b) Client-Server pattern (c) Proxy pattern

Figure 6: Performance of three bilateral patterns.

1
1 5 10 50 100

Dep-TEE
PL-Remapping
PL-Copy

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

102102

104

106

108

C
yc

le
s

Pairs

(a) multi-pair producer-consumer.

1

102

5 10 20 50 100

Dep-TEE
PL-Remapping
PL-Copy

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

N
o

 a
v

a
il
a
b

le
 P

M
P

104

610

108

C
yc

le
s

Numbers of consumer enclave

(b) single-producer multi-consumer.

Figure 7: Performance of multilateral communication.

0

5

10

15

20

25

30

35

40

aes dhrystone norx prime sha512 qsort

Dep-TEE

PL-PMP

Host-with-SPMP

E
xe

cu
tio

n
tim

e
(1

09 c
yc

le
s)

(a) RV8 benchmark suite.

0

50

100

150

200

250

300

350

PING
INLINE

PING
BULK

SET GET INCR LPUSH RPUSH

Nanhu Core Nanhu-with-SPMP

R
e

qu
es

ts
/S

ec
on

d

(b) Redis benchmark suite.

Figure 8: Performance of benchmarks.

Figure 7(b) shows the performance in a single-producer multi-
consumer pattern, including data read/write latency. For 1MB data
transfers, Dep-TEE outperforms Penglai-Copy and is slightly better
than Penglai-Remapping. This is because the remapping mecha-
nism doesn’t perform multiple re-mappings and un-mappings in
this pattern, avoiding overhead issues such as TLB shootdown.
Dep-TEE manages large volumes of data by updating the value of
SPMP registers. Penglai-Copy, Penglai-Remapping and Elasticlave
do not support more than 20 consumer enclaves due to PMP register
limitations. In contrast, Dep-TEE supports at least 100 consumer
enclaves, making it suitable for cloud computing applications.
5.2 Benchmark suites
RV8 Benchmark Suite.We used the RV8 benchmark suite to eval-
uate compute-intensive workloads in environments with physical
memory isolation. As shown in Figure 8(a), the introduction of the
SPMP mechanism in Dep-TEE results in negligible performance
overhead for CPU-intensive applications compared to Penglai-PMP.

Redis Benchmark Suite. Redis, a widely used in-memory data
store, evaluates the SPMPmechanism’s impact onmemory-intensive
applications. Redis-benchmark simulates multiple client connec-
tions to a Redis server, measuring the average number of requests
per second. Figure 8(b) shows that the SPMP mechanism does not
introduce significant overhead for the Nanhu V2 Core.
5.3 Hardware Costs
The Vivado [23] resource utilization report (Table 4) shows the
impact of the SPMP mechanism on the FPGA. After implementing
SPMP on the Xiangshan Nanhu V2 Core, we observed minimal

Table 4: Hardware resource costs of the top module in FPGA.
Recourse NanhuV2 Core NanhuV2 Core-with-SPMP Cost
LUT 1259204 1267350 0.20%
LUTRAM 68336 68332 0.00%
FF 447069 450546 0.04%
BRAM 336 336 0.00%
URAM 90 90 0.00%
DSP 3 3 0.00%

extra hardware cost: 0.2% Look-Up Tables (LUTs), 0.04% Flip-Flops
(FFs), and negligible other resources.
5.4 Security Analysis
Dep-TEE’s communication system is implemented on Penglai TEE.
The Mounted Merkle Tree (MMT) ensures data and code integrity,
while cache line locking prevents cache side-channel attacks. Ad-
ditionally, segment-based registers for physical memory isolation
can protect the enclave privacy from untrusted OS applications.
Mitigating Rowhammer Attacks. Rowhammer attacks exploit
hardware flaws to induce bit flips in memory cells, potentially com-
promising page tables and altering memory mappings. Dep-TEE
mitigates this threat by using the SPMPmechanism to decouple per-
mission protection from page tables in a TEE region. This isolation
ensures that even if a Rowhammer attackmodifies the page tables, it
prevents attackers from bypassing SPMP checks and unauthorized
access to enclave data. Attackers might still corrupt data within the
enclave but cannot extract sensitive information. Other defences
against Rowhammer, like guard rows [14], counter-based methods
[20], and ECC [6], complement our approach and are orthogonal
to our research.
Defending against TOCTTOU Attacks. TOCTTOU attacks ex-
ploit the window between the time of checking a resource and the
time of using it, potentially allowing malicious enclaves to manipu-
late shared memory. Dep-TEE uses the SPMPmechanism to transfer
shared memory ownership with transfer instruction, ensuring
only one enclave can write to the shared memory at a time. This
prevents TOCTTOU attacks, maintaining secure and consistent
access to shared memory.

6 CONCLUSION
This paper presents Dep-TEE, a new TEE design that achieves scal-
able, high-performant, and secure inter-enclave communication
with decoupled protection. Our evaluation shows that Dep-TEE
significantly optimizes inter-enclave communication numbers, en-
hances communication performance and requires minimal extra
hardware resources. In the future, we plan to extend Dep-TEE to
support communication between enclaves in different TEE regions.
Additionally, we aim to enable secure communication between the
TEE and the Rich Execution Environment (REE).

Dep-TEE: Decoupled Memory Protection for Secure and Scalable Inter-enclave Communication on RISC-V ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

REFERENCES
[1] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungy-

oung Lee. 2021. Chancel: efficient multi-client isolation under adversarial
programs. In NDSS.

[2] Barbara Aichinger. 2015. Ddr memory errors caused by row hammer. In 2015
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–5.

[3] 2019. Amd secure encrypted virtualization. https://developer.amd.com/sev/.
Referenced 2024. (2019).

[4] 2024. Arm cca. https://www.arm.com/architecture/security-features/arm-conf
idential-compute-architecture. Referenced 2024. (2024).

[5] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. Sanctuary: arming trustzone with user-space enclaves.
In NDSS.

[6] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. 2019. Ex-
ploiting correcting codes: on the effectiveness of ecc memory against rowham-
mer attacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 55–
71.

[7] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: minimal
hardware extensions for strong software isolation. In 25th USENIX Security
Symposium (USENIX Security 16), 857–874.

[8] Drew Dean and Alan J Hu. 2004. Fixing races for fun and profit: how to use
access (2). In USENIX security symposium, 195–206.

[9] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable memory protection in the {penglai}
enclave. In 15th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 21), 275–294.

[10] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno.
2017. Komodo: using verification to disentangle secure-enclave hardware from
software. In Proceedings of the 26th Symposium on Operating Systems Principles,
287–305.

[11] Paul Heinlein. 1998. Fastcgi. Linux journal, 1998, 55es, 1–es.
[12] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.

2018. Ryoan: a distributed sandbox for untrusted computation on secret data.
ACM Transactions on Computer Systems (TOCS), 35, 4, 1–32.

[13] 2020. Intel tdx. https://software.intel.com/content/www/us/en/develop/article
s/intel-trust-domain-extensions.html. Referenced 2024. (2020).

[14] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis Andriesse,
Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. 2018. {Zebram}: com-
prehensive and compatible software protection against rowhammer attacks.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 697–710.

[15] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems, 1–16.

[16] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instruc-
tions and software model for isolated execution. Hasp@ isca, 10, 1.

[17] 2021. Nginx docs | nginx content caching. https://docs.nginx.com/nginx/admin
-guide/content-cache/content-caching/. (2021).

[18] 2024. Penglai-enclave-pmp. https://github.com/Penglai-Enclave/PenglaiEnclav
e-sPMP. Referenced 2024. (2024).

[19] 2024. Risc-v spmp. https://github.com/riscv/riscv-spmp/blob/main/rv-spmp-s
pec.pdf. Referenced 2024. (2024).

[20] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem. 2016. Counter-
based tree structure for row hammering mitigation in dram. IEEE Computer
Architecture Letters, 16, 1, 18–21.

[21] 2004. The common gateway interface (cgi) version 1.1. https://www.rfc-editor
.org/rfc/rfc3875.html. (2004).

[22] 2016. The risc-v instruction set manual volume ii: privileged architecture
version 1.9. technical report ucb/eecs-2016-129. eecs department, university
of california, berkeley. https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016
/EECS-2016-129.html. (2016).

[23] 2024. Vivado design suite. https://www.xilinx.com/products/design-tools/viva
do.html. Referenced 2024. (2024).

[24] 2024. Xiangshan-2 (nanhu) core. https://xiangshan-doc.readthedocs.io/zh-cn/l
atest/integration/overview/. Referenced 2024. (2024).

[25] Yuanchao Xu, James Pangia, Chencheng Ye, Yan Solihin, and Xipeng Shen.
2024. Data enclave: a data-centric trusted execution environment. In 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 218–232.

[26] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carlson, and Prateek Saxena.
2022. Elasticlave: an efficient memory model for enclaves. In 31st USENIX
Security Symposium (USENIX Security 22), 4111–4128.

https://developer. amd.com/sev/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://docs.nginx.com/nginx/admin-guide/ content-cache/content-caching/
https://docs.nginx.com/nginx/admin-guide/ content-cache/content-caching/
https://github.com/Penglai-Enclave/PenglaiEnclave-sPMP
https://github.com/Penglai-Enclave/PenglaiEnclave-sPMP
https://github.com/riscv/riscv-spmp/blob/main/rv-spmp-spec.pdf
https://github.com/riscv/riscv-spmp/blob/main/rv-spmp-spec.pdf
https://www.rfc-editor.org/rfc/rfc3875.html
https://www.rfc-editor.org/rfc/rfc3875.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://xiangshan-doc.readthedocs.io/zh-cn/latest/integration/overview/
https://xiangshan-doc.readthedocs.io/zh-cn/latest/integration/overview/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Inter-Enclave Communication Mechanisms
	2.2 Inter-Enclave Communication Patterns
	2.3 Challenges

	3 Dep-TEE Design
	3.1 Architecture
	3.2 Isolation with Decoupled Protection
	3.3 Versatile Inter-Enclave Communication

	4 Implementation
	5 Evaluation
	5.1 Microbenchmarks
	5.2 Benchmark suites
	5.3 Hardware Costs
	5.4 Security Analysis

	6 Conclusion

