
Hydra: Scale-out FHE Accelerator Architecture for
Secure Deep Learning on FPGA

Yinghao Yang∗†, Xicheng Xu∗†, Haibin Zhang, Jie Song, Xin Tang, Hang Lu∗†‡, Xiaowei Li∗†‡
∗ State Key Laboratory of Processors, Institute of Computing Technology, CAS, Beijing, China.

† University of Chinese Academy of Sciences, Beijing, China.
‡ Zhongguancun Laboratory, Beijing, China.

{yangyinghao21b, luhang, lxw}@ict.ac.cn, xuxicheng20@mails.ucas.ac.cn,
zhangli14180206@163.com, songjie email@126.com, tangxin85@126.com

Abstract—Deep learning, including Convolutional Neural Net-
work (CNN) and Large Language Model (LLM), under Fully
Homomorphic Encryption (FHE) is very computationally inten-
sive because of the burdensome computations like ciphertext
convolution and matrix multiplication, non-linear layers, and
bootstrapping. Existing FHE accelerators focus on the high
throughput computational units, stacking parallelized clusters to
maximize ciphertext inference performance. Nevertheless, this
design philosophy cannot leverage the substantial parallelism at
the application level and is not scalable for further performance
enhancement by simply adding additional compute nodes to cope
with the ever-increasing model sizes in the future. In this paper,
we propose the high-performance FHE acceleration architecture
in a “scale-out” manner for secure deep learning, termed
as Hydra. It supports the multi-server scaling and arbitrary
computational nodes theoretically, each handling a portion of
the deep learning model governed by the central scheduling
mechanism on the host server. Hydra exhibits excellent scalability
and delivers outstanding performance across a range of compute
resource sizes. We highlight the following results: (1) up to
74× and 160× speedup over the SOTA single card accelerator
Poseidon and FAB; (2) outperforms 8-card FAB-2 by 12× to
21× for FHE-based CNNs and LLMs; (3) outperforms SOTA
ASIC accelerators, CraterLake and SHARP, by 8.1× and 2.5×
for LLM OPT-6.7B, and achieves comparable or superior energy
efficiency under the same chip technology.

I. INTRODUCTION

Data asset, vital for production, plays a significant role in
various aspects of social development. However, the sensitivity
and privacy of much of this data make it challenging to
circulate efficiently and fully realize its value. This has led to
an urgent need for privacy computing technologies that protect
data from leakage while enabling its utilization. Fully Homo-
morphic Encryption (FHE hereafter), as a mainstream technol-
ogy for privacy computing, supports computing on encrypted
data (i.e., data remains usable but invisible). FHE caters to
many data privacy protection needs [1]–[6]. Deep learning
(DL), including Convolutional Neural Network (CNN) and

Corresponding authors are Yinghao Yang and Hang Lu. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62172387; in part by the Youth Innovation Promotion Association of
Chinese Academy of Sciences (CAS) under Grant 2021098; in part by the
CCF-Phytium Fund 2023; in part by the Open Research Fund of the State
Key Laboratory of Blockchain and Data Security, Zhejiang University.

Large Language Model (LLM), as widely researched and used
methods of artificial intelligence, also face the problem of
data leakage. Efficient FHE-based CNN and LLM inference
methods have been proposed to protect client privacy in cloud
datacenter scenarios [7]–[13]. The industry is also focusing
on the deep learning applications using FHE. For example,
Amazon has enhanced its SageMaker endpoints using FHE
[14] for clients to perform real-time and secure inference.

However, FHE-based deep learning tasks are inefficient due
to the large expanded ciphertext size and complex calculations,
being 4 to 5 orders of magnitude slower than plaintext.
Many previous FHE-specific hardware accelerators, includ-
ing ASIC, and FPGA designs [15]–[29], pursue the high-
throughput computational units (CUs) by optimizing data flow
and scaling the hardware resources, i.e., memory capacity
and bandwidth, and number of CUs. Existing accelerator
architectures aim to improve the efficiency of low-level FHE
operators by tapping its parallelism without paying attention
to the characteristics of the FHE application itself. There
is significant application-level parallelism in FHE-based DL
inference, e.g., inter-kernel parallelism in the convolutional
layer of CNN and matrix multiplications in LLM. These
parallelisms are beyond the utilization capacity of traditional
accelerators which only focus on the basic operators, such
as Number Theoretic Transform (NTT), Modular Addition
(MA), Modular Multiplication (MM), etc. Therefore, com-
pared to the traditional FHE accelerator, scale-out accelerator
architecture has a greater affinity for DL inference. The scale-
out architecture involves multiple, scalable, and collaborated
computing nodes, that can take advantage of both the low-
level operator of FHE and the application-level parallelism of
DL models, and cope well with the computational overhead
inflation associated with increasing model scale. Although
it introduces issues of task allocation and multi-node state
synchronization, this architecture can transcend the limitations
of a single computing node, expand by adding nodes, and
freely augment resources when dealing with large-scale secure
DL models.

In this paper, we propose a high-performance scale-out ac-
celerator architecture that supports multi-server scaling, Hydra,

1

TABLE I
PARALLELISM OF FHE-BASED DL INFERENCE. WE LIST THE MAX. AND MIN. NUMBER OF PARALLELISM AND ACTIVATION CIPHERTEXTS IN DIFFERENT
LAYERS OF FOUR FHE-BASED DL MODEL INFERENCE IMPLEMENTATIONS, WHERE THE MODELS ARE IMPLEMENTED USING THE SOTA CNN AND LLM

APPROACHES PROPOSED IN [12], [13], [30] WITH THE SAME PARAMETER SETTINGS AS SHARP [21], I.E., LOG(PQ)=1692 AND LOGQ=1260.
RESNET-18 AND RESNET-50 USE IMAGENET DATASET WITH THE INPUT SIZE OF 224×224. OPT-6.7B HAS A SIMILAR ARCHITECTURE TO BERT-BASE,

WE IMPLEMENT IT FOLLOWING THE METHOD IN [13]. BERT-BASE AND OPT-6.7B USE THE INPUT SEQUENCE SIZE OF 128×768 AND 200×4096.

Layer
Model ResNet-18

(Min./Max.)
ResNet-50

(Min./Max.)
BERT-base
(Min./Max.)

OPT-6.7B
(Min./Max.) Rotation CMult PMult HAdd

ConvBN 384 / 1,024 384 / 1,024 NA NA 8 0 2 7
Pooling 6 / 64 12 / 256 NA NA 2 0 1 0

FC 1,511 / 1,511 3,047 / 3,047 NA NA 1 0 1 0
PCMM NA NA 98,304 / 393,216 153,600 / 614,400 1 0 1 0
CCMM NA NA 384 / 384 1000 / 1000 7 1 1 6

Non-linear 4 / 128 4 / 128 4 / 48 8 / 72 0 8 0 15
Ciphertext 1 / 32 1 / 32 1 / 12 2 / 18 - - - -

for FHE-based DL inference. Rather than solely focusing on
optimizing the basic computation unit of FHE, Hydra aims
to explore the optimization of computational task allocation
and communication for FHE-based DL inference in a scale-
out architecture, including the design of efficient task mapping
and communication strategy, and synchronization mechanism.
The contributions of this paper are listed as follows:

• We propose the practical high-performace scale-out ac-
celerator architecture for secure DL inference – Hydra.
It targets FHE-based CNN and LLM inference and offers
excellent scalability supporting multi-server scaling.

• We propose an efficient task mapping strategy and syn-
chronization mechanism for the scale-out architecture.
We design specialized task mapping methods for each key
procedure in DL inference including bootstrapping. By
coordinating computational and communication, Hydra
can achieve considerable performance.

• We implement three prototypes of Hydra, i.e., Hydra-S,
Hydra-M, and Hydra-L, based on the commercial FPGA
platform, Xilinx Alveo U280, to evaluate its real-world
performance. We highlight the following results: (1) up
to 88× to 160× speedup over the SOTA FPGA design
FAB in FHE-based LLM; (2) under the same number
of cards, Hydra achieves a 2.8× to 3.3× performance
improvement compared to the 8-card architecture of FAB-
2; (3) communication overhead in Hydra-M and Hydra-L
is only 0.04% and 1.4% respectively on OPT-6.7B.

II. WHY SCALE-OUT?

The intractable computational complexity and intensive
memory access make FHE-based DL inference challenging
to deploy in practice. For the ResNet-20 for CIFAR-10,
a tailored small-scale model, the most advanced practical
accelerators, i.e., Poseidon [19] and FAB [18], achieve a
performance of nearly 3 seconds. ASIC designs can achieve
better performance than FPGAs by stacking large amounts of
resources, but these efforts are still at the simulation stage and
do not support scaling for further performance improvements.
Although FAB proposes a scale-out acceleration architecture,
it is only a relatively simple point-to-point interconnection
of FPGA computing nodes to accelerate computation on
different ciphertexts in parallel, and there is no special task

allocation and efficient communication and synchronization
mechanism for DL, making it difficult to efficiently support
DL applications under FHE. Furthermore, Liberate-FHE [31]
is an excellent open-source library supporting multi-GPU FHE
acceleration. Its unique engine class allows users to specify the
GPU card allocation and flexible data object transfer between
cards when creating ciphertext or key objects, providing great
programming flexibility. However, Liberate-FHE does not pro-
vide a multi-GPU task allocation strategy for FHE-based DL
inference, which would help users better utilize it for build-
ing multi-GPU-accelerated DL applications. GPU-based [32]
supports multi-card scaling, but only performs simple multi-
card task partitioning for very small CNN models without
bootstrapping, making it unsuitable for real DL models.

A. The Affinity to DL Parallelism
FHE-based DL inference is commonly implemented based

on the CKKS scheme with a large polynomial degree
[12], [13], [30], and the FHE operations have large over-
heads, such as Homomorphic Addition (HAdd), Ciphertext-
Ciphertext Multiplication (CMult), Plaintext-Ciphertext mul-
tiplication (PMult), Rescale, Keyswitch, Rotation, and Boot-
strapping, are frequently utilized. Every operation is performed
under the large polynomial and comprises several basic oper-
ators, such as NTT, MA, MM, etc. Limited by resources and
physical limits, accelerators both based on FPGA and ASIC
only support maximum parallelism of 512 and 2048 [15], [16],
[18], [19], [33], far from that in FHE operators.

Fortunately, in addition to the basic operators, parallelism
also exists at the application level in secure DL inference.
Table I lists the application-level parallelism in four CNN and
LLM implementations under FHE proposed in [12], [13], [30],
i.e., ResNet-18, ResNet-50, BERT-base, and OPT-6.7B. The
key computations in CNNs include ConvBN (Convolution and
Batch Normalization), Non-linear, Pooling, FC (Fully Con-
nection), and Bootstrapping. In LLMs, the key computations
include PCMM (Plaintext-Ciphertext Matrix Multiplication),
CCMM (Ciphertext-Ciphertext Matrix Multiplication), and the
same, Non-linear, and Bootstrapping as in CNNs. ResNet-
18 and ResNet-50 exhibit a ConvBN parallelism ranging
from 384 to a staggering 16384. Each parallel computing
unit encapsulates multiple FHE operations, i.e., 8 Rotations,
2 PMults, and 7 HAdds. Both pooling and FC exhibit a

2

considerable degree of parallelism. Pooling, essentially a con-
volution calculation with a single input channel, shares its
parallelism source with ConvBN, FC, fundamentally a matrix-
vector multiplication, derives its parallelism from the weight
matrix size. ResNet-18 and ResNet-50, with their substantial
FC parameters, introduce significant parallel computations.
The unique PCMM and CCMM operations in LLM are richer
in parallelism, up to tens of thousands, due to the matrix
size is generally large and the data operations between rows
and columns are independent. Based on the implementation
in [13], the PCMM parallel unit contains 1 rotation and 1
PMult operation, while the CCMM’s contains 7 rotations, 1
CMult, 1 PMult, and 6 HAdd. The parallelism of Non-linear
emanates from its multiple parallel polynomial evaluations,
with all ciphertexts storing activation values in the layer ne-
cessitating identical computations, thereby offering substantial
parallelism with a maximum of 128 in CNNs and 72 in LLMs.
Lastly, we employ the required number of bootstraps as the
parallelism metric for bootstrapping, contingent on the number
of ciphertexts in the current layer. CNNs and LLMs exhibit a
maximum bootstrapping parallelism of 32 and 18, indicating
the need to compute multiple bootstraps simultaneously in DL
models. As the most intricate FHE operation, bootstrapping
also harbors internal parallelism that can be exploited, a focal
point of our research that will be elaborated in Section III-B.
It is clear that procedures in DL possess abundant parallelism,
with larger models exhibiting higher parallelism. Hence, rather
than incrementally enhancing accelerator performance, a scale-
out approach, by easily expanding computational nodes, can
efficiently harness application-level parallelism and rapidly
augment accelerator performance for large-scale DL models.
In experimental evaluations, our FPGA-based Hydra’s 8-card
and 64-card prototypes achieve 6.3×-7.5× and 27.7×-55.9×
performance improvement in CNNs and LLMs, respectively,
compared to a single card. This demonstrates the necessity
and effectiveness of exploring application-level parallelism
in secure DL reasoning. Specific experimental details are
presented in Section V-B.

B. Challenges

1) Architectural Design Weaknesses: Effective utilization
of application-level parallelism requires optimized scale-out
architecture and communication strategy. However, existing
accelerator architectures like FAB [18] struggle with effective
scalability and support. FAB connects each FPGA board
to a Host CPU, with two FPGAs paired for point-to-point
communication via network. Data transfers across multiple
boards must pass through the Host, i.e., FPGA to Host (PCIe),
Host to Host (LAN), and Host to FPGA (PCIe). In FAB, the
diverse communication overhead and reliance on the host for
data transfers and synchronization lead to increasing commu-
nication costs as the number of cards grows, making it difficult
to conceal these overheads. Therefore, a novel and efficient
scale-out architecture design is essential for accelerating FHE-
based DL inference.

2) Computational Tasks Mapping: In the scale-out archi-
tecture, multiple nodes collaborate to perform model infer-
ence tasks. This requires task decomposition and mapping,
along with data distribution and aggregation. Consequently,
the performance of the system is determined by the combined
efficiency of computation and communication. Inefficient task
mapping will lead to frequent data transfer overheads, severely
impacting system performance. In FHE-based DL inference,
communication overhead is especially significant due to huge
ciphertext size (more than 20MB). Therefore, efficient com-
munication architectures and strategies are needed to reduce
overheads. Moreover, DL models, with their diverse network
layers and unique computational patterns, require specific task
mapping and communication strategies. Additionally, given
the significant multiplication depth required for DL inference,
bootstrapping operations are essential to refresh the ciphertext
from a lower to a higher multiplicative depth, catering to sub-
sequent computational needs. The efficiency of bootstrapping
operations affects the performance of the acceleration system.
The complexity of bootstrapping makes task decomposition
and mapping challenging, necessitating a careful design con-
sidering both computational and communication aspects in a
scale-out architecture.

To mitigate communication overhead, we establish an inde-
pendent data transmission unit that can operate concurrently
with computation and meticulously devise task decomposition
and mapping strategies for all processes within secure DL
inference based on the communication paradigm. By optimally
distributing the load across multiple nodes and maximizing
the overlap between computation and transmission, we can
achieve peak system performance within the scale-out archi-
tecture. We will elaborate on our design in Section III.

3) Coordination and Synchronization: Synchronization
complexities in multi-node collaborative acceleration are mul-
tifaceted, encompassing both inter-node computational task
synchronization and intra-node communication and compu-
tation synchronization. Given the varied tasks across nodes
and potential dependencies requiring inter-node communica-
tion, the efficiency of the synchronization strategy is crucial,
directly affecting system performance. Additionally, intra-
node computation and communication also necessitate a syn-
chronization mechanism for effective management due to
numerous computation and communication correlations, such
as Send After Compute (SAC) and Compute After Receive
(CAR). There also exist scenarios where sending is inde-
pendent of computation and computation is independent of
receiving data, thus necessitating the design of appropriate
control logic within the node to manage various synchro-
nization situations. Furthermore, these two synchronization
mechanisms need to be organically integrated to collabora-
tively manage the synchronization process of the entire scale-
out system. The simplest method is to uniformly manage by
the Host CPU, but frequent master-slave communication will
inevitably introduce expensive additional overhead, severely
impacting performance. Therefore, we need to minimize the
involvement of the Host end as much as possible, allowing

3

Node1 Node2 Node7 Node8...

K1

...

...

Kn/8 Kn/8+1 K2n/8 K6n/8+1 K7n/8 K7n/8+1 Kn

O1 On/8 On/8+1 O2n/8 O6n/8+1 O7n/8 O7n/8+1 On

Computational Nodes

Node1

Node2

Node3

Node4

Node5

Node6

Node7

Node8

O1 O2 ... On/8-1 On/8

O1 O7n/8+1
... ... On/8-2 On-2

...

On/8+1 On/8+2 ... O2n/8-1 O2n/8

O1 On/8+1 On/8-2 O2n/8-2 ...

O2n/8+1 O2n/8+2 ... O3n/8-1 O3n/8

O1 O2n/8+1 On/8-2 O3n/8-2 ...

O3n/8+1 O3n/8+2 ... O4n/8-1 O4n/8

O1 O3n/8+1 On/8-2 O4n/8-2 ...

O4n/8+1 O4n/8+2 ... O5n/8-1 O5n/8

O1 O4n/8+1 On/8-2 O5n/8-2 ...

O5n/8+1 O5n/8+2 ... O6n/8-1 O6n/8

O1 O5n/8+1 On/8-2 O6n/8-2 ...

O6n/8+1 O6n/8+2 ... O7n/8-1 O7n/8

O1 O6n/8+1 On/8-2 O7n/8-2
...

O7n/8+1 O7n/8+2 ... On-1 On

O1 O7n/8+1 ... On/8-2 On-2...

: computation : data transmission
Computation
completeInput

（a） （b）

Fig. 1. Computational task mapping of convolution layer.

accelerator nodes to autonomously implement synchronization
at the hardware level, efficiently coordinating multiple nodes
to complete the overall task. We will elaborate on the design
in Section IV.

III. METHODOLOGY

A. Key Procedures of CNN and LLM
ConvBN. The BN layer only needs a single HAdd operation

post-convolution, not affecting the convolution’s computa-
tional logic. Thus, ConvBN’s task mapping and design are sim-
ilar to convolution [12]. In FHE-based CNNs, computations
across different kernels and input channels are independent,
allowing task decomposition at the granularity of computations
between distinct kernels on a single ciphertext input. This
is shown in Fig. 1 with a single input, n kernels, and 8
nodes. Each node handles n/8 kernels, generating n/8 outputs,
theoretically enhancing computational performance by 8×.
However, due to the need for comprehensive feature map data
in convolutional computation and only partial results available
across nodes, data aggregation is needed before moving to
the next layer. The hardware architecture separates communi-
cation from computation, enabling optimized communication
methodologies design. As shown in Fig. 2, upon a subtask
completion, the result Oi is sequentially broadcasted to other
nodes while each node executes the next subtask. After 8 data
transmissions, each node has all other nodes’ results. If each
computational subtask’s delay surpasses that of transmission,
the communication delay can be fully overlapped, with only
the final subtasks introducing computational overhead. This
is easily achieved as each convolution includes several FHE
basic operations with a larger computational delay.

FC. The fully connected layer essentially performs the
multiplication of the ciphertext vector and the plaintext weight
matrix, with frequent rotation operations contributing signif-
icantly to the overhead. In the scale-out design architecture,
the acceleration of the FC layer hinges on the distribution
of rotate operations across multiple nodes and the reduction
of communication impact on performance. The vector-matrix
multiplication is also a part of the bootstrapping, and we will
detail its design in the section III-B.

AvgPool. The average pooling is computed in a similar
way to the convolutional layer, where the n-channel input
computation also results in n channels, and only the average is
computed over a sliding window of size k × k for each input

Node1 Node2 Node7 Node8...

K1

...

...

Kn/8 Kn/8+1 K2n/8 K6n/8+1 K7n/8 K7n/8+1 Kn

O1 On/8 On/8+1 O2n/8 O6n/8+1 O7n/8 O7n/8+1 On

Computational Nodes

Node1

Node2

Node3

Node4

Node5

Node6

Node7

Node8

O1 O2 ... On/8-1 On/8

O1 O7n/8+1
... ... On/8-2 On-2

... On/8 On
...

On/8+1 On/8+2 ... O2n/8-1 O2n/8

O1 On/8+1
... ... On/8-2 O2n/8-2

... ... On/8 O2n/8
...

O2n/8+1 O2n/8+2 ... O3n/8-1 O3n/8

O1 O2n/8+1
... ... On/8-2 O3n/8-2

... ... On/8 O3n/8
...

O3n/8+1 O3n/8+2 ... O4n/8-1 O4n/8

O1 O3n/8+1
... ... On/8-2 O4n/8-2

... ... On/8 O4n/8
...

O4n/8+1 O4n/8+2 ... O5n/8-1 O5n/8

O1 O4n/8+1
... ... On/8-2 O5n/8-2

... ... On/8 O5n/8
...

O5n/8+1 O5n/8+2 ... O6n/8-1 O6n/8

O1 O5n/8+1
... ... On/8-2 O6n/8-2

... ... On/8 O6n/8
...

O6n/8+1 O6n/8+2 ... O7n/8-1 O7n/8

O1 O6n/8+1
... ... On/8-2 O7n/8-2

... ... On/8 O7n/8
...

O7n/8+1 O7n/8+2 ... On-1 On

O1 O7n/8+1
... On/8-2 On-2

... On/8 On
...

: computation : data transmission
Computation

completed

Transmission

completed
Input

（a） （b）Fig. 2. Inter-node communication of convolution layer.

channel, without the multiple convolution kernels. Therefore,
we can regard the averaging operation as a two-dimensional
convolution of the input with a convolution kernel with 1/k2

values for all elements, and then follow the design of convo-
lution layer, mapping the multiple channels to different nodes
and communicating in the same way.

Non-linear. Non-linear functions exist in both CNNs and
LLMs, such as ReLU in CNNs, GeLU and Softmax func-
tions in LLMs, and they are usually achieved by evaluating
polynomials, which are approximated using the Taylor expan-
sion or the Chebyshev algorithm. Therefore, we can design
generic polynomial evaluation algorithms based on multiple
accelerated nodes to support both CNNs and LLMs. The
algorithm is formalized as Alg. 1, where an instruction like
Card[i].op(NUM=k) represents placing k tasks of op in
the task queue of Card[i]. The tree-based structure is an
optimization method for computing polynomials (shown in
Fig. 3(a)). Therefore, the core of acceleration is mapping
parts of the linear function that can be parallel computed to
multiple nodes and balancing their computational load. First,
we determine the depth of the computation tree tree_depth
based on the current number of cards and the degree of the
polynomial. To prevent the computational load on the nodes
from being too small and causing the communication overhead
to severely impact performance, we do not decompose parts
where the degree of the sub-polynomial does not exceed 4,
therefore, all nodes will calculate x2. Next, we assign the
tasks of calculating x2j+1

to nodes with smaller numbers to
balance the computation tree. Subsequently, we distribute the
shared computation tasks to each node and assign the commu-
nication tasks receiving from the previous step to nodes with
larger numbers. Since the computation and communication of
each computation node can be parallel, the communication
overhead of this process will be masked by the computation.
Finally, we aggregate all results to node 0 in a tree-like
manner. Based on this strategy, we can determine the optimal
computation path for any linear function. Additionally, this
type of computation is also included in the bootstrapping
process, which will be detailed with examples in Section III-B.

Attention. The attention layer is the core module of LLMs,
including PCMM, CCMM and non-linear function evaluation.
Non-linear functions can be uniformly implemented using the
algorithms described above. In [13], PCMM is implemented by
first copying individual input values from a ciphertext matrix

4

Algorithm 1 Polynomial evaluation of task mapping on mul-
tiple acceleration nodes
Given: Card 0,1,...Cn−1 Polynomial with degree of deg

For simplicity, assume n is a power of 2;
poly depth := ⌈log 2(deg + 1)⌉;
card depth := log 2n;
tree depth := min(poly depth-2,card depth);
card num := 2tree depth;
for i = 0 to card num− 1 do

Card[i].multiply(NUM=1); ▷ Calculate x2

for j = 1 to poly depth− 2 do
if i < 2tree depth−j then

Card[i].multiply and send(NUM=1);
end if ▷ Calculate x2j+1

end for
k := poly depth - tree depth - 2;
Card[i].add and multiply const(NUM=2k+1);
for j = 0 to k do

if 2tree depth−j−1 < i < 2tree depth−j then
Card[i].receive(NUM=1);

end if
Card[i].multiply and add(NUM=2k−j);

end for ▷ Common part
end for
for l = 0 to tree depth− 1 do

card num = card num / 2;
for i = 0 to card num− 1 do

Card[i+card num].receive(NUM=1);
Card[i+card num].multiply and send(NUM=1);
Card[i].receive and add(NUM=1);

end for
end for ▷ Add up

into the entire ciphertext by rotation, then multiplying these
ciphertexts by the entire rows of the plaintext matrix, and
finally accumulating these intermediate results to complete the
process. The implementation of CCMM is much simpler, by
packing one of the ciphertext matrices by rows and multiple
columns of the other matrix, and then multiplying them once
as well as by multiple rotations. Since PCMM and CCMM
contain a large number of independent computational tasks
as described above, we only need to distribute these tasks
evenly across multiple computing nodes, which is a simple
and efficient strategy.

FFN. The feed forward network, situated within the LLM
network following the attention layer, comprises two fully
connected layers and a non-linear function evaluation. These
components are calculated in a manner similar to that used
in CNNs, thereby enabling their implementation in a similar
fashion.

B. Bootstrapping
As shown in Fig. 3 (b), Bootstrapping has three computation

procedures, i.e., CoeffToSlot (C2S), Modulus Reduction (MR),
and SlotToCoeff (S2C). C2S and S2C perform transition
between coefficient and point-value presentation by homo-
morphically evaluating the DFT on the encrypted data. MR

subdivides into EvaExp and Double-Angle Formula (DAF),
where EvaExp approximates the cos and sin function, and
DAF completes the final modulus reduction based on EvaExp
results. While DFT and EvaExp are computationally complex
and offer considerable parallel computing opportunities, thus
becoming our primary focus.

DFT. As shown in Fig. 3 (c), DFT involves multiple butter-
fly operations, each being a multiplication between a ciphertext
vector and a plaintext sparse matrix. Essentially, DFT is the
multiplication of the input ciphertext with several matrices.
For a ciphertext of length N, DFT requires log2N iterations,
i.e., log2N matrix-vector multiplications, each consuming one
multiplication depth. This is the basic computational pattern
of DFT, i.e., Radix = 2, meaning that the input to the
basic computational unit is 2. Different Radix correspond to
different variants of DFT. As shown in the lower part of Fig.
3 (c), when Radix = 4, the computational unit is 4, fusing
two iterations of Radix = 2 into one, reducing the number
of iterations from log2N to log4N . Notably, each iteration
can have different Radix. In ciphertext-based DFT, a larger
Radix implies higher computational overhead (mainly due to
more rotate operations) and less consumption of multiplication
depth (due to matrix merging and iterations fusion). This is a
trade-off at the algorithmic level. For the vector-matrix multi-
plication (same as the FC), the Baby-Step Gaint-Step (BSGS)
algorithm [34] can reduce the computational complexity of
Rotate from O(N) to O(

√
N) by reusing some of the rotation

results. The naive implementation shown in the upper part
of Fig. 3 (d) is to multiply the ciphertext with the diagonal
elements of the matrix and then accumulate them. However,
because of the requirement for data order in each vector
multiplication, we need to rotate the ciphertext in sequence
1, 2, 3 times. BSGS divides the calculation into Giant-Step
(gs) and Baby-Step (bs), where bs completes a small amount
of ciphertext rotation (rotation 1 in the figure), and gs reuses
the initial ciphertext (rotation 0) and the ciphertext rotated
1 step in bs, respectively replacing the ciphertext originally
needed to be rotated 2 and 4 steps for calculation. Since the
difference between 0 and 2, 1 and 3 is 2, the result of the gs
only needs to rotate 2 steps at the end. Compared with the
original method, all calculations of gs has only one rotation
operation, reducing the total rotation number to bs+gs, where
bs · gs = 2Radix.

There are two points to note about task allocation in DFT
on multiple acceleration nodes: (1) DFT includes one bs and
multiple gs, and the rotation results in bs are used in all
gs. When bs is distributed across multiple compute nodes,
all results need to be aggregated to each node before gs is
executed, which is inefficient in poor communication environ-
ments, and it is better for all nodes to perform the rotation in
bs uniformly; (2) simply aggregating data from multiple nodes
into a single node will cause significant communication delay
when summing the gs results. To fully utilize communication
bandwidth, the data aggregation should be in a tree-like
pattren. As shown in Fig. 3 (d), taking 4 nodes as an example,
the calculation delay of bs is marked in brown, all the nodes

5

...
log2N

I I
WW 0

0

...

0 ...

0

I I
WW

I I
WW

...

...

0

...

0

0

...
log4N

...

0

0

...

...

0

...

00 ...

...

...

Radix = 2
Radix = 4

1 2

3x3 4x4

4x4 1x1

1x1 2x2

2x2 3x3

bs gs

ct=Enc(m(X)) (mod q)

ct=Enc(t(X)) (mod Q0)

Enc(t0,…,tN/2-1)
Enc(tN/2,…,tN-1)

Enc(f(t0),…,f(tN/2-1))
Enc(f(tN/2),…,f(tN-1))

Enc(m0,…,mN/2-1)
Enc(mN/2,…,mN-1)

ct=Enc(m(X)) (mod Q1)

ModUp

C2S (DFT)

EvaExp

S2C (DFT)

(b) Bootstrapping

x 1/2ℼ x 3/2ℼ x 5/2ℼx 7/2ℼ

2ℼ 4ℼ3/3 4ℼ5/38ℼ7/315

x2 x2

x4

PAdd

PMult PMult PMult

PAdd PAdd PAdd

PMult

CMult CMult

CAdd CAdd

CMult

CAdd

t i

x

CMult

x x x x

x2 x2

x4
CMult

MR

ct0

ct1

PMult

ImgExt
ct0 & ct1

ct0 ct1

x2

x2

x4

other

other
x4

CMult

res
CAdd

Rotate

bs gs0

bs gs2(2r/4)

res

CAdd

1 2 3

bs gs2r/4

bs gs3(2r/4)

ct

ct

gs1

gs2(2r/4)+1

gs2r/4+1

gs3(2r/4)+1

...

...

...

...

gs2r/4-1

gs3(2r/4)-1

gs2(2r/4)-1

gs2r-1

res

res

CAdd

CAdd

N
o

d
es

N
o

d
es

(d) DFT computational mapping(a) EvaExp computational mapping

Mapping

Mapping

(c) DFT

...
log2N

I I
WW 0

0

...

0 ...

0

I I
WW

I I
WW

...

...

0

...

0

0

...
log4N

...

0

0

...

...

0

...

00 ...

...

...

Radix = 2
Radix = 4

1 2

3x3 4x4

4x4 1x1

1x1 2x2

2x2 3x3

bs gs

ct=Enc(m(X)) (mod q)

ct=Enc(t(X)) (mod Q0)

Enc(t0,…,tN/2-1)

Enc(f(t0),…,f(tN/2-1))

Enc(m0,…,mN/2-1)

ct=Enc(m(X)) (mod Q1)

ModUp

C2S (DFT)

EvaExp

S2C (DFT)

(b) Bootstrapping

x x xx

x2 x2

x4

PAdd

PMult PMult PMult

PAdd PAdd PAdd

PMult

CMult CMult

CAdd CAdd

CMult

CAdd

CMult

xxxx

x2x2

x4

CMult

MR
DA

Formula

x2

x2

x4

other

other
x4

CMult

res
CAdd

Rotate

bs gs0

bs gs2(2r/4)

res

CAdd

1 2 3

bs gs2r/4

bs gs3(2r/4)

ct

ct

gs1

gs2(2r/4)+1

gs2r/4+1

gs3(2r/4)+1

...

...

...

...

gs2r/4-1

gs3(2r/4)-1

gs2(2r/4)-1

gs2r-1

res

res

CAdd

CAdd

N
o

d
es

(d) DFT computational mapping(a) EvaExp computational mapping

Mapping

Mapping

(c) DFT

taking polynomial degree of 8
and nodes of 2 as the example

N
o

d
es

Fig. 3. Bootstrapping process and tasks mapping strategy. DFT and EvaExp are the parts of bootstraping that need to be analysed and designed with focus.

are same. After completing gs marked in blue, the data is
aggregated in a tree structure, followed by log24 = 2 CAdd
completing the DFT.

There are three parameters in DFT: Radix, bs and gs.
Changing the Radix will affect the overall computational
overhead. The performance of bs on multiple nodes is limited
and will affect gs that the key to accelerate DFT. Therefore,
the optimal algorithmic parameter may not be applicable to
the accelerator system. We model the performance of DFT
under multiple acceleration nodes, formalized in Eq. 1. gss
signifies the allocation of gs steps to each computational node
following an average manner in a matrix-vector multiplication
computation. Here, r is the Radix, Cn is the count of
accelerated nodes, and b is the rotate operations in the bs step.
T represents the time overhead for each operation type. Tbs

and Tgs denote the computation times for the bs and gs steps
in each accelerated node, respectively, where Tgs encompasses
multiply, accumulate and rotate calculation corresponding to
PMult, HAdd and Rotation. The process of data accumulation
across nodes involves inter-node data transmission, thereby
comprises both computation and communication overhead,
represented by Tacc. Given the use of a cumulative tree
structure for optimizing communication efficiency, log2Cn

rounds of communication and HAdd computation are required.
Finally, the total execution time of DFT , denotes TDFT , is
the total overhead of level matrix-vector multiplications with
Radix is ri. Based on the model, we can obtain the optimal
performance with different parameter settings. We will detail
the parameter selection in Section V-G.

gss = 2r/(Cn ∗ b),
Tbs = b ∗ Trot,

Tgs = (b ∗ Tpmult + (b− 1) ∗ Thadd + Trot) ∗ gss,
Tacc = (gss − 1) ∗ Thadd + (log2Cn + 1) ∗ Tcom,

TDFT =
∑level

i=1 ∗(Tbs + Tgs + Tacc)ri .
(1)

EvaExp. After the C2S operation, the exp function is
implemented by evaluating a polynomial with a degree of 59,
and is essentially the same as ReLU. For ease of explanation,
we illustrate the process with a small polynomial with a degree
of 8, as shown in Fig. 3 (a). The computational graph contains

three main types of FHE operations: HAdd, PMult, and CMult.
CMult has a much higher overhead, hence the key is to balance
the number of CMults among the computing nodes. If splitting
the tree into four subtrees, two of which contain only one
PAdd and one PMult with a small computation but require
additional communication of its results. Therefore, we should
only split the computation tree into two subtrees (as marked in
brown and blue in Fig. 3 (a). At this point, the computational
cost of the two parts is unbalanced, requiring 2 and 4 CMult
respectively. We thus can assign the calculation of x4 to the
subtree with less CMult, and then send it to the other node,
thereby balancing the computational load. Fig. 3 (a) shows the
computation mapping strategy of this process. Two nodes are
employed, and each node completes 3 CMults, cooperating
with two times data transfers to speed up the function. In
this manner, we can adeptly maximize the obfuscation of
communication’s impact on performance.

IV. HYDRA ARCHITECTURE

A. Overall Architecture
The overall architecture of Hydra is shown in Fig. 4. Hydra

supports multi-server scaling, with each server containing mul-
tiple homogeneous FPGA accelerator cards, interconnected via
the high-speed network switch. Each FPGA card primarily
includes the computational units (i.e. NTT, MA, MM, and
Automorphism), the memory system (high bandwidth memory
(HBM) and scratchpad), and the data transfer unit (DTU). All
the computational units (CUs) have their own buffer to store
the FHE polynomial data of FHE from the off-chip memory
HBM. In each cycle, 512 operands are loaded in the CU
and written to the output buffer after computation. We use
multiple BRAMs and register files as scratchpads to cache
the intermediate results and support the parallel read/write
of the required data for each CU. The DTU contains the
NIC hardcore and control logic, connecting the HBM and
the network port transceiver of the FPGA. DTU transmits
data independently of the CU via the DMA controller and
works with the control and forwarding of the network switch
to implement data communication between multiple FPGA
accelerator cards. Since all FHE operations can be decomposed
into four basic operators corresponding to four CUs, each
accelerator card can fully support the FHE acceleration by

6

FHE-based
CNN

Scheduling
Software

XDMA Driver

F
ib

re
 S

w
itc

h

QSFP

QSFP

QSFP

QSFP

HBM

MA

MM

(I)NTT

Automophism

Control
& Inter-
connect

BRAM
&

Register
File

DTUQSPF
DMA

U280
Storage

HBM
DRAM

 8 GB
 32 GB

FPGA
Device
LUT
FF
DSP
BRAM
QSFP

xcvu37p
1304 k
2607 k
9024
70.9 Mb
100 Gb/sFPGAs

S
e
rv
er
s

Switch

100Gb/s

FPGAs FPGAs FPGAs..
. FPGAs ..
. FPGAs ..
. FPGAs ..
. FPGAs

PHY PHY PHY PHY

PHY PHY PHY PHY
100Gb/s

460GB/s

Fig. 4. Hydra overall architecture. Hydra supports multi-server scaling, with servers interconnected by switches and each server containing multiple
homogeneous FPGA cards, also connected by switches based on QSFP port. Communication and identification between multiple cards are facilitated through
MAC addresses.
combining basic operators. This allows tasks to be decom-
posed and allocated at any granularity in FHE applications.
B. Computation and Communication Module

Computation. Many works are devoted to the microarchi-
tecture of basic FHE operators, and the key operator, such as
NTT, is also maturely designed. To improve the throughput of
the CUs with limited FPGA resources, we adopt the Radix-
based NTT design with efficient hardware utilization and
automorphism, which only requires logical control of data
read and write proposed in Poseidon [19]. As the polynomial
length used in FHE-based DL is typically 216, we use Radix-4
instead of the Radix-8 NTT in Poseidon, as it is a better match
to the application parameters. For the simpler MM unit, we
implement it based on the widely used Barrett algorithm [35].
Moreover, constrained by limited on-chip memory resources
and large ciphertexts, Poseidon has no efficient caching strat-
egy, requiring frequent access to HBM, which significantly
impacts performance. We adopt the optimization strategy of
on-chip memory in MAD [22], using a smaller scratchpad to
provide efficient memory access for the CUs.

Communication. The DTU is a critical module that facil-
itates communication between accelerator cards. It primarily
consists of the NIC and control circuitry. The control circuitry
interprets data transfer instructions and configures the DMA
controller and NIC to conduct the data transfer process. DTU,
in conjunction with network switches, supports two inter-
card communication modes, point-to-point communication,
and broadcast communication, accommodating the demand of
FHE-based DL inference under scale-out accelerator system.
Point-to-point communication enables an accelerator card to
send data to any of the others and vice versa; broadcast
communication supports the FPGA card to send data to all
of the other cards simultaneously, and after broadcasting,
the data is uniformly held by all FPGA cards. Initiating a
communication process involves three steps: ❶ DTU parses

r1s2s3

c1c3c4c6c7c8

c1c2c3c5c6

s1r2r3

c1

s1

r1

c1 c3

c2 c2 c3 c5

r2

s2

c4 c6

c6c2 c2

r3

s3

c7 c8c2 c2

N
o

d
e
1

NIC

Buffer

DMA
Controller

HBM

Scratchpad

Control
Logic

Mem Controller

CUstask queue

Control
Logic

Computation

finish

finish

Communication

computation task send or recieve task with data dependency

task queue

(a) Independence and collaboration of computing and communication

(b) Synchronization of multiple nodes

...

N
o

d
e
2

Fig. 5. The synchronization of computing and communication among multiple
nodes.

the instructions and configures the DMA controller. ❷ The
sender reads data from HBM to NIC via DMA, and sent to the
network switch, and forwarded to the destination accelerator
card. ❸ The receiver receives the data via NIC and writes to
the specified location of HBM through DMA. Moreover, each
server runs a runtime program that monitors the operation of
the accelerator card and communicates through the switch to
synchronize the information.

C. Synchronization Mechanism
The scale-out accelerator system requires inter-server and

inter-node synchronization. Server synchronization is rarely
required and can be efficiently achieved via the internal net-
work, while card synchronization efficiency has a direct impact
on accelerator system performance and must be carefully
designed. As shown in Fig. 5 (a), each node incorporates
independent communication and computation parts, each with
task queue registers and control logic for managing tasks. We

7

Procedure 1 The synchronization of computation and com-
munication among multiple nodes
Communication:
(1) GetTask⟨t⟩; fetch a task from the queue, and if the queue
is empty, transmission tasks are fully completed
t ∈ s:
(2) Check; check the finish signal from computation unit and
ready signal from nodes receiving data
(3) Exe(t); send the data to receiving nodes
(4) Return(1); perform the next communication task
t ∈ r:
(5) Cfg; config the DMA controller ready for receiving data
(6) Signal; send ready signal to the nodes sending data
(7) Wait; wait for the data from computing module
(8) Exe(t); receive the data from sending nodes
(9) Signal; send the finish signal to the computing module
(10) Return(1); perform the next communication task
Computation:
(1) GetTask⟨c⟩; fetch a task from the queue, and if the queue
is empty, computation tasks are fully completed
c ∈ CTI :
Exe(c); execute the computation task immediately
(2) Signal; send the finish signal to the communication
module
(3) Return(1); perform the next computation task
c ∈ CTd:
(4) Wait; waiting for the data from communication module
(5) Exe(c); execute the computation task
(6) Signal; send the finish signal to the communication
module
(7) Return(1); perform the next computation task

categorize computation tasks into data-dependent (CTd) and
data-independent (CTi). CTd tasks need to wait for the data
reception completion signal from the communication control
logic to drive execution. Similarly, communication tasks that
depend on computation results need a completion signal to
trigger. This achieves intra-node synchronization, and based
on this design, inter-node synchronization can be simplified to
communication synchronization. Since receive and send tasks
always appear in pairs and their order is predetermined, we
can adopt a simple handshake mechanism to implement the
synchronization function. The specific process is that when
a receive task is taken from the queue, the DMA controller
and NIC are configured without waiting, and a ready signal
is sent to the data sender after configuration. Upon receiving
the ready signal, the data sender records it for a handshake
check before executing the send task. As communication tasks
in different nodes strictly correspond and only the next task
is loaded after the current one is completed, this ensures
correct communication order. Details of the synchronization of
computation and communication between multiple nodes are
shown in Procedure 1. Task completion is indicated when both
the communication and computation task queues are empty,
and then the accelerator node signals the Host CPU, which

Procedure 2 Scheduling strategies between multiple cards in
multiple servers
Given: Task 1,2,...Tn; Server 1,2,...Sn; Card 1,2,...Cn;

while i < Tn do
for j < Sn do ▷ fully parallel

Server[j].get(Task[i].subtask[j]);
for k < Cn do ▷ fully parallel

Card[k].exe(Task[i].subtask[j][k]);
Card[k] finished;

end for
Check Card[1-Cn] finished;
Server[j] finished; ▷ all the Cards finished

indicates the server finished
end for
Check Server[1-Sn] finished;
Task[i] finished; ▷ all the Servers finished

indicates this task finished
end while

runs a monitoring program.
Fig. 5 (b) illustrates an example of two-node synchroniza-

tion. For simplicity, we assume that the delays of computation
tasks and communication tasks (marked in brown and blue
respectively) are the same. Communication tasks are divided
into sending (s) and receiving (r), and tasks that depend on
the other nodes’ results (CTi) are marked in red. As shown
in the figure, tasks c1 and c2 in the task queue of node1 have
no data dependencies and can be executed directly, while the
first task in node2 depends on task c1 in node1, so it needs
to wait. When node1 completes c1, it triggers task s1 in the
communication queue to send the result of c1 to node2. Task
r1 in the task queue of node2 is responsible for receiving the
data sent by node1 and triggers the task in the computation
task queue after the reception is completed. At this point, the
computation tasks in node2 have no data dependencies and can
be executed continuously. The third and fifth tasks in node1
depend on tasks c3 and c6 in node2, respectively, so before
the execution they need to wait for node1 to complete the
corresponding tasks and drive s2, r2, and s3, r3. Finally, when
the task and communication queues are both cleared, the node
will signal the host CPU, representing the completion of tasks.

D. Scheduling Strategy and Dependence Management
Hydra supports multi-server expansion, with each server

housing multiple FPGA accelerators. We necessitate the col-
laboration of all computational nodes to accomplish the com-
putational task. Procedure 2 illustrates the scheduling strategy
under multiple servers, with a total of Tn computational tasks
and Sn servers, each server containing Cn FPGA accelerators.
The data dependencies for specific model are pre-determined
based on the methods in Section III and managed by host-side
scheduling software, which organize tasks at the CNN/LLM
step level (e.g., Conv, Boot, Attention), and each server is
responsible for subtasks within it. Before accelerator startup,
the scheduling software running in each server preloads data
and task instructions onto each FPGA, and data parallelism
and dependencies within the task are embedded in various data

8

transfer and computation task instructions (shown in Figure 5).
With Hydra’s task synchronization mechanism, computational
and communication dependencies across multiple cards are
automatically managed on the FPGA side. The execution is
parallel between the servers as well as the respective FPGAs.
Once an FPGA completes its own allocated subtask, it sends
a completion signal to the host’s runtime monitoring program.
When all FPGAs on a server finish, the subtask is complete.
Once all servers finish, the overall task is complete and servers
signal the start of the next task. Note that synchronization
between servers only requires sending a completion signal,
with negligible overhead. Additionally, tasks are managed as
instructions, allowing multiple tasks to be loaded into each
FPGA’s task queue at once. Subsequent tasks can be added
before the FPGA completes the current one, preventing idle
time from host task allocation.

V. EVALUATION
A. Experimental Setup

Platform. Hydra is a practical scale-out FHE accelerator,
so we build a real-world experimental environment based on
the x86 CPU system. The Hydra accelerator is implemented in
a high-performance computing server, equipping eight Xilinx
Alveo U280 FPGAs [36] and multi-card networking through
high-speed switches. We employ our customized FHE library
tailored to the accelerator hardware to organize and control
the execution of applications on Hydra.

Baseline. In our experiments, we compare Hydra with the
state-of-the-art FPGA solution Poseidon [19] and FAB (FAB-
S: single card, FAB-M: 8 cards) [18], and 4 FHE accelerator
ASICs, e.g., Craterlake [33], ARK [15], BTS [16], and SHARP
[21]. To evaluate the performance of the scale-out architecture,
we establish the three prototypes of Hydra, namely Hydra-S (1
server with 1 FPGA card), Hydra-M (1 server with 8 FPGA
cards), and Hydra-L (8 servers with 64 FPGA cards). The
hardware architecture of Hydra-S is identical to the compute
node of Hydra-M and Hydra-L but without the DTU. We
also evaluate the performance of FAB’s proposed multi-card
architecture with 8 cards (FAB-M) and 64 cards (FAB-L) for
a scalability comparison with Hydra. In FAB, we assume a
PCIe bandwidth of 16GB/s (supported by the Xilinx Alveo
U280 FPGA) and a 10Gb/s high-speed LAN connection.

Benchmark. (1) ResNet-18. ResNet-18 trained with the
ImageNet dataset (224×224) [37], it has 18 convolution layers
and one fully-connected layer. The activation functions are
uniformly ReLU. We implement it based on the method
proposed by [12], and use it to evaluate the performance of
Hydra. Following the implementation, encrypting the input
data requires 2 ciphertexts.

(2) ResNet-50. ResNet-50 has larger convolution parameters
as well as deeper model depth compared to ResNet-18. Its
implementation approach is identical to [12], [30], and also
uses the ImageNet dataset [37]. We chose it as a benchmark
to evaluate the performance of Hydra with a larger-scale CNN
model.

(3) BERT-base. BERT-base is a classical large language
model of enhancing the efficacy of natural language process-

TABLE II
FULL-SYSTEM PERFORMANCE COMPARISON WITH SOTA ACCELERATOR

PROTOTYPES. WE USE THE ACTUAL BENCHMARK EXECUTION TIME IN
‘‘S’’ AS THE METRIC.

ResNet-18 ResNet-50 BERT-base OPT-6.7B

ASIC
CraterLake [33] 5.51 89.76 76.34 2615.11

BTS [16] 32.81 534.06 454.23 15560.30
ARK [15] 2.15 34.95 29.73 1018.34

SHARP [21] 1.70 27.68 23.54 806.53
FPGA

FAB-S [18] 131.94 2255.46 1302.68 51813.24
Poseidon [19] 55.05 915.51 616.59 24006.44
FAB-M [18] 18.89 287.27 208.54 6841.11

Hydra-S 41.29 686.63 462.44 18004.83
Hydra-M 5.60 86.79 72.31 2382.18
Hydra-L 1.49 12.94 13.81 321.58

ing tasks. Its FHE-based implementation [13] is specifically
designed to optimize for the PCMM, CCMM, Nonlinear func-
tions and bootstrap insertion. The size of the input sequence is
128×768. We selected it as the benchmark to evaluate Hydra’s
performance on LLM.

(4) OPT-6.7B. There is no existing implementation of OPT-
6.7B that has a similar model structure to BERT-base and a
larger network size compared to it, i.e., both the number of
layers and attention heads is 32, where the embedding size
is 4096. The size of the input sequence is 200×4096. We
implement the model based on the methodology of [13] to
evaluate the performance of Hydra on larger LLMs.

In this section, we evaluate the performance of the key
procedure of DL and full-system in Fig. 6 and Table II. Note
that Hydra uses parameters log(PQ)=1692 and logQ=1260
(same as SHARP [21]), while other accelerators use their own
respective parameters (e.g., FAB: log(PQ)=1728, logQ=1242).
These variations affect the internal computations of FHE op-
erations but not their functionality. The model’s computational
process follows the optimized implementation in [12], as
shown in Table I.
B. Performance

1) Full-system performance: The experiment compares the
full-system performance of Hydra with SOTA accelerator
prototypes including FPGA and ASIC. The data is sourced
from precise simulations based on the specific architectures of
these accelerators. As shown in Table II, compared to ASIC
accelerators, Hydra-M’s performance significantly surpasses
BTS, and it achieves performance close to that of CraterLake.
As for Hydra-L, the multi-server expanded prototype, its per-
formance exceeds all existing SOTA ASIC accelerators (1.14×
to 2.5×) on both CNNs and LLMs. Compared with the SOTA
single FPGA solution Poseidon and FAB-S, Hydra-S exhibits
superior performance across four DL models. Compared to
FAB-S, Hydra-S has a greater performance improvement
(2.8× to 3.1×), and there are about 1.3× improvements
over Poseidon. This is due to the adoption of cache-friendly
data flow planning methods in MAD. FAB-M is an 8-card
architecture proposed by [18], and since FAB-M does not
have a mapping strategy for designing tasks for DL inference
and does not support multi-card acceleration of bootstrapping,
we apply Hydra’s task mapping strategy to FAB-M to make

9

7.99x 7.48x 7.32x 7.93x 6.69x
62.81x 22.42x 22.41x 56.55x 14.00x

0.0
0.2
0.4
0.6
0.8
1.0

ConvBN ReLU Pooling FC Boot

Im
p

ro
ve

m
e

n
t

ResNet-50

Hydra-S Hydra-M Hydra-L

7.86x 7.19x
4.92x

7.85x 5.59x
51.55x 17.50x

7.13x
50.57x

8.41x
0.0
0.2
0.4
0.6
0.8
1.0

ConvBN ReLU Pooling FC Boot

Im
p

ro
ve

m
e

n
t

ResNet-18

Hydra-S Hydra-M Hydra-L

7.69x 6.80x 5.99x
3.89x

52.06x 13.13x 41.67x
5.71x

0.0
0.2
0.4
0.6
0.8
1.0

Attention Norm FFN Boot

Im
p

ro
ve

m
e

n
t

BERT-base

Hydra-S Hydra-M Hydra-L

7.97x 7.17x 6.93x 7.06x
62.90x 40.63x 49.63x 32.44x

0.0
0.2
0.4
0.6
0.8
1.0

Attention Norm FFN Boot

Im
p

ro
ve

m
e

n
t

OPT-6.7B

Hydra-S Hydra-M Hydra-L

Fig. 6. The performance improvement of key procedures of four DL benchmarks on Hydra-S, Hydra-M and Hydra-L, normalized to Hydra-S.

22.09

22.77

34.07

28.85

15.95

15.42

11.58

13.37

3.92

3.86

1.85

2.78

0.60

0.66

0.23

0.42

57.45

57.29

52.27

54.59

0% 20% 40% 60% 80% 100%

ResNet-18
(2,117J)

ResNet-50
(35,376J)

BERT-base
(15,549J)

OPT-6.7B
(549,811J)

(a) Hydra-S

NTT MM MA Auto Memory Access

21.76

22.72

33.54

28.82

15.73

15.39

11.56

13.35

3.86

3.85

1.87

2.78

0.59

0.66

0.23

0.42

58.02

57.37

52.73

54.57

0.05

0.01

0.07

0.06

0% 20% 40% 60% 80% 100%

ResNet-18
(2,192J)

ResNet-50
(35,543J)

BERT-base
(15,952J)

OPT-6.7B
(550,541J)

(b) Hydra-M

NTT MM MA Auto Memory Access DTU

20.19

22.28

30.46

28.49

14.69

15.14

11.61

13.29

3.63

3.79

2.08

2.77

0.54

0.64

0.27

0.42

60.74

58.10

55.41

54.93

0.23

0.06

0.18

0.11

0% 20% 40% 60% 80% 100%

ResNet-18
(2,937J)

ResNet-50
(37,440J)

BERT-base
(19,130J)

OPT-6.7B
(561,790J)

(b) Hydra-L

NTT MM MA Auto Memory Access DTU

Fig. 7. Full-system energy consumption and breakdown of selected DL models on three prototypes of Hydra.

a fair comparison of the architectures. As shown in table
II, Hydra-M improves performance by 2.8× to 3.3× com-
pared to FAB-M. This is mainly due to the inefficiency of
FAB-M’s architecture in inter-card communication. In FAB-
M, each of the eight FPGA boards is connected to a host
CPU, and the boards are connected in pairs, this setup only
supports efficient point-to-point communication between fixed
pairs of FPGAs. Communication between multiple FPGAs
requires data transfer through the host CPUs, which introduces
significant communication overhead (PCIe and network data
transfers). In contrast, Hydra’s multi-card interconnect struc-
ture and synchronization mechanism efficiently reduce the data
transfer overhead, resulting in better performance than FAB-
M. Furthermore, compared to Hydra-S, both Hydra-M and
Hydra-L achieved significant performance improvements, with
Hydra-M showing an increase of 6.3× to 7.5× and Hydra-
L demonstrating an enhancement of 27.7× to 55.9×. This
underscores Hydra’s excellent scalability.

2) Key Procedure Performance: We also observe the per-
formance improvement of different key procedures of DL
inference on three prototypes of Hydra. As shown in Fig. 6,
for CNN models, Hydra-M demonstrates substantial speedup
across all key procedures, achieving over 7× speedup in
ConvBN, ReLU, and FC, and surpassing 5× in Pooling and
Boot. This significant performance gain is attributed to the
high, yet underutilized, parallelism in ResNet-18 and ResNet-
50 with 8 cards. Conversely, Hydra-L exhibits exceptionally
high speedup in ConvBN and FC (over 50×), though the
acceleration in ReLU, Pooling, and Boot is more modest.
This suggests that the parallelism in these latter operations is
relatively limited. For LLMs, the attention and FFN, analogous
to ConvBN in CNNs, exhibit high performance improve-
ments under both Hydra-M and Hydra-L, with further node

TABLE III
EFFICIENCY ANALYSIS. WE USE ENERGY DELAY AREA PRODUCT

(EDAP) AS THE METRIC. LOWER IS BETTER.

ResNet-18 ResNet-50 BERT-base OPT-6.7B

CraterLake [33] 1.40 371.4 268.7 315,260
BTS [16] 53.81 14,257.4 10,313.9 12,103,166
ARK [15] 0.54 143.7 104.0 122,024

SHARP [21] 0.09 22.8 16.5 19,330
Hydra-S 0.12 32.8 8.8 12,703
Hydra-M 0.15 33.8 12.5 13,541
Hydra-L 0.59 48.1 38.1 16,208

expansion to yield even greater performance enhancements.
However, the performance of Norm and Boot in BERT-base
is constrained by the smaller scale of BERT-base, which
limits the extent of parallelizable computations. In contrast, the
slightly larger OPT-6.7B showcases impressive performance.
Although the parameter size of 6.7B is still relatively small for
LLMs, it is able to effectively harness the architectural benefits
of Hydra, with both Hydra-M and Hydra-L achieving up to 7×
and 40× speedup in Norm and Boot, respectively, compared
to Hydra-S, demonstrating the scalability and efficiency of the
Hydra architecture.

C. Energy
Energy Consumption and Breakdown. In addition to

performance, we also evaluate the full-system energy con-
sumption of three Hydra prototypes when running the selected
benchmarks. As shown in Fig. 7, memory access accounts for
the largest share of the energy consumption for all benchmarks
under Hydra-S, Hydra-M, and Hydra-L, which reflects the
access-intensive characteristic of FHE applications. Among the
CUs, NTT and MM are most frequently utilized, thereby tak-
ing a large energy consumption, while the energy consumption
of MA is minimal due to its simple computing logic. Hydra-
M and Hydra-L require communication between accelerator

10

24.5
(0.4s)

56.6
(3.6s)

5.4
(0.03s)

12.3
(0.3s)

11.3
(0.01s)

40.2
(0.2s)

78.8
(3ms)

90.2
(24ms)

19.4
(2ms)

36.8
(16ms)

42.2
(0.3s)

84.6
(3.2s)

7.9
(1.0s)

21.3
(10.0s)

0.7
(0.08s)

1.8
(0.61s)

10.8
(0.03s)

37.0
(0.34s)

57.5
(3ms)

77.2
(21ms)

10.7
(2ms)

22.6
(16ms)

38.5
(0.9s)

79.2
(9.0s)

12.8
(1.8s)

37.5
(18.0s)

3.8
(0.1s)

15.2
(1.5s)

4.9
(0.06s)

33.9
(1.29s)

1.3
(0.08s)

4.2
(0.75s)

49.5
(1.5s)

88.1
(14.4s)

1.4
(4.6s)

4.8
(45.4s)

0.3
(0.6s)

1.4
(7.4s)

4.9
(0.3s)

33.9
(5.2s)

0.03
(0.04s)

0.09
(0.29s)

21.1
(3.8s)

46.8
(32.5s)

0

20

40

60

80

100

 ResNet-18 ResNet-50 BERT-base OPT-6.7B

P
e

rc
e

n
ta

g
e

 (%
)

Computation Communication

3.9
(0.2s)

10.3
(2.0s)

0.4
(0.02s)

0.9
(0.13s)

3.4
(0.01s)

9.0
(0.06s)

36.3
(2.0ms)

58.7
(16ms)

1.7
(1.1ms)

17.1
(9.1ms)

17.1
(0.2s)

41.7
(1.7s)

0.6
(0.5s)

1.6
(4.5s)

0.03
(0.02s)

0.06
(0.17s)

2.1
(0.02s)

6.1
(0.14s)

9.4
(1.3ms)

20.6
(11ms)

0.9
(1.1ms)

2.1
(9.1ms)

9.3
(0.5s)

25.4
(4.2s)

1.6
(1.1s)

5.0
(10.5s)

0.1
(0.02s)

1.5
(0.9s)

2.8
(0.02s)

12.2
(0.9s)

0.1
(0.05s)

0.5
(0.6s)

21.1
(0.9s)

46.8
(8.1s)

0.04
(1.0s)

0.26
(17.8s)

0.02
(0.3s)

0.09
(3.8s)

0.9
(0.3s)

4.3
(3.4s)

0.01
(0.1s)

0.05
(1.2s)

0.4
(0.3s)

4.1
(9.3s)

0

20

40

60

80

100

 ResNet-18 ResNet-50 BERT-base OPT-6.7B

P
e

rc
e

n
ta

g
e

 (%
)

Computation Communication

(a) 8 cards

C
om

m
un

ic
at

io
n

T
im

e
 (

s)

(b) 64 cards

1.66x
1.70x

8.93x

8.95x

0

1

2

3

4

5

 ResNet-18 ResNet-50

FPGA-FPGA Host-FPGA (PCIe)

1.86x 2.16x

9.36x

18.50x

0

4

8

12

16

20

 BERT-base OPT-6.7B

Host-Host (LAN)

1.78x
1.75x

9.88x

9.81x

0

2

4

6

8

10

 ResNet-18 ResNet-50

FPGA-FPGA Host-FPGA (PCIe)

2.09x

2.36x
10.13x

9.82x

0

10

20

30

40

50

 BERT-base OPT-6.7B

Host-Host (LAN)

(a) Comparison between Hydra-M and FAB-M (8 cards)

(b) Comparison between Hydra-L and FAB-L (64 cards)

Fig. 8. Scalability comparison. We compare with the multi-card architecture proposed in FAB. We use the same task decomposition and mapping strategy as
Hydra for performance evaluation. The upper row denotes the communication and computation overhead of four benchmarks on Hydra-M and FAB-M, and
the bottom row denotes that on Hydra-L and FAB-L. The performance is normalized to FAB.

cards, and frequent data distribution and aggregation by DTU
introduces additional energy consumption, but only accounting
for less than 1% due to the NIC hardcore with low power
consumption.

Energy Efficiency. Existing ASIC accelerators do not sup-
port multi-card expansion, so to demonstrate the efficiency
comparison of the scale-out Hydra with these accelerators,
we use EDAP (Energy-Delay-Area Product) as the evalua-
tion metric. We evaluate Hydra’s ASIC power consumption
and area based on RTL implementation, standardized using
7nm technology. As shown in Table III, Hydra-S exhibits
the highest energy efficiency, while Hydra-M and Hydra-L
show progressively lower efficiency due to the communication
overhead introduced by multi-card setups. Hydra-M’s energy
efficiency is comparable to that of SHARP and surpasses
CraterLake, BTS, and ARK. Similarly, Hydra-L’s energy effi-
ciency outperforms all other ASIC accelerators except SHARP,
particularly in the LLM OPT-6.7B, where it exceeds all ASIC
solutions, i.e., CraterLake (by 19.4×), ARK (by 75×), and
SHARP (by 12.2×). This indicates that even though Hydra
improves performance through multi-node expansion, it still
achieves higher energy efficiency compared to existing ASIC
accelerators under the same chip technology.

D. Scalability Comparison
Scalability is at the core of Hydra. As computing nodes

are scaled up, optimizing communication overhead becomes
crucial for system efficiency. We evaluated Hydra’s communi-
cation and computation overhead during node expansion with
two prototypes, Hydra-M and Hydra-L, and compared them
with the multi-card architecture proposed in FAB. We used the
same task decomposition and mapping strategy as Hydra for
performance evaluation. Unlike Hydra, FAB lacks hardware-

based inter-card communication and synchronization, neces-
sitating full utilization of the host CPU for management. As
depicted in Fig. 8, Hydra-L demonstrates a lower communi-
cation overhead percentage across four benchmarks and key
procedures compared to Hydra-M. The significant increase in
Hydra-L’s communication overhead percentage is primarily
due to the substantial reduction in computation overhead as
more nodes are added, which lowers the overall overhead.
Consequently, even a small increase in communication over-
head appears significant in percentage terms. In reality, the
substantial reduction in computation overhead with minimal
growth in communication overhead during node expansion
signifies good scalability. In contrast, FAB’s inefficient com-
munication and synchronization result in much higher commu-
nication overhead than Hydra. For FAB-L, the communication
overhead and its percentage increase dramatically compared
to FAB-M, with operations like Boot and Pooling reaching as
high as 90%. Additionally, FAB’s computational performance
is weaker than Hydra’s, which means the communication over-
head in FAB’s multi-card architecture has a more detrimental
impact on system performance.

E. Scalability Analysis
As shown in Fig. 9 (a) and Fig. 9 (b), the efficiency of

both CNN and LLM models improves with an increase in the
number of cards. For ResNet-50, the performance of ConvBN
scales faster compared to Boot, indicating that Boot has
relatively lower parallelism compared to other procedures. As
the number of cards increases, Boot will reach its performance
bottleneck sooner. For OPT-6.7B, the performance growth
curves of its key procedures are closely matched and maintain
a high rate of increase. This is due to the rich parallelism
in these procedures, which remains underutilized even with

11

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

Im
pr

ov
em

en
t

(a) Performance of key procedures of ResNet-50

ConvBN
ReLU
Pooling
FC
Boot

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

Im
pr

o
ve

m
e

nt

(b) Performance of key procedures of OPT-6.7B

Attention

Norm

FFN

Boot

0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64

P
er

ce
nt

ag
e

(c) Communication percentage of full system

ResNet-18

ResNet-50

BERT-base

OPT-6.7B

Fig. 9. Scalability analysis of the computing nodes.

TABLE IV
FPGA RESOURCE UTILIZATION OF HYDRA WITH A SINGLE CARD.

Resource Utilized Available Utilization (%)

LUTs (k) 997 1,304 76.5
FFs (k) 1,375 2,607 52.7

DSP 8,704 9,024 96.5
BRAM 3,072 4,032 76.2
URAMs 768 962 79.8

64 computing nodes. As the number of nodes continues to
expand, the performance will be further improved significantly.

Fig. 9 (c) illustrates the change in the proportion of com-
munication overhead to total overhead. The communication
overhead of ResNet-18 grows most rapidly, while that of OPT-
6.7B increases more slowly. As the number of nodes increases,
ResNet-18’s performance growth will slow and reach its
bottleneck sooner. In contrast, OPT-6.7B still has substantial
room for performance improvement. This also demonstrates
that Hydra’s scalability can handle increasingly larger model
sizes while maintaining excellent performance.

F. FPGA Resource Utilization

Table IV shows the FPGA resource utilization of Hydra’s
single card prototype. The DSP has the highest utilization of
96.5%, which is mainly used for NTT, a large number of
multiplication computations in the MM cell. the LUT and FF
utilization is slightly smaller compared to the DSP, 76.5% and
52.7%, respectively. hydra uses both BRAMs and URAMs.
dual-port BRAM is used as a data cache for the CUs to provide
read/write usage of 3072 blocks accounting for 76.2% of the
total available resources, while only a single-port URAM is
used to cache the secret key required for computation at a
utilization rate of 79.8%.

G. Parameters Selection

Table V shows the selection of key parameters, i.e., Radix
and bs, in the DFT during bootstrapping when the multipli-
cation depth consumption is 3 (as set in [12], [30]). Due to
the different usage of ciphertext slots in homomorphic DL
inference, we list the parameter settings under different slot
numbers. Hydra-S only contains a single accelerator card, and
the optimal parameters in terms of the algorithm are also
optimal for it. Hydra-M and Hydra-L, on the other hand, have
8 and 64 FPGA cards respectively, so their choice of bs differs
from Hydra-S and is chosen to minimize the bs+ gs

Card num .
Furthermore, it can be seen that the bs of Hydra-L is smaller
than that of Hydra-M. This is because under more computing
nodes, a larger gs can exert its parallel computing capability.

TABLE V
THE OPTIMAL CHOICE OF THE PARAMETERS RADIX AND BS UNDER

THREE PROTOTYPES OF HYDRA.

logSlots Hydra-S Hydra-M Hydra-L
Radix bs Radix bs Radix bs

12 (16,16,16) (4,4,4) (16,16,16) (1,2,2) (8,4,128) (1,1,2)
13 (16,16,32) (4,4,8) (32,16,16) (2,2,2) (8,8,128) (1,1,2)
14 (32,16,32) (4,4,8) (32,16,32) (2,2,2) (8,16,128) (1,1,2)
15 (32,32,32) (4,8,8) (32,16,64) (2,2,4) (8,32,128) (1,1,2)

H. Discussion

Hydra is a scale-out acceleration architecture designed
based on the rich application-level parallelism in secure DL
(including CNN and LLM) inference. In addition to the opti-
mized allocation strategy and hardware architecture design, the
characteristics of the specific application itself also affect the
performance potential of Hydra. For CNNs such as ResNet-
18 and ResNet-50, although they have a deeper network layer
depth, there are data dependencies between different residual
blocks. Hydra can only fully parallelize and accelerate the
independent residual network layer without data dependencies,
and its performance mainly depends on the parallelism of
the layer. For LLMs, the main component is the Transformer
module, whose main computational bottleneck is large-scale
dense matrix multiplication, rather than cascading a number of
small-scale data-dependent layers that do not require more fre-
quent data distribution and aggregation. Therefore, it is easier
to exploit Hydra’s strengths compared to the ResNet family,
which is why Hydra performs better on LLMs compared to
CNNs for the EDAP shown in Table III. This is not to say
that Hydra is not suitable for CNNs. In fact, the parallelism
on independent network layers is also abundant in CNNs, as
Table I proves. Thus, Hydra is suitable for a wide range of
DL models, particularly those with significant computation and
parallelism in data-independent network layers.

VI. CONCLUSION

In this paper, we propose Hydra, the high-performance
scale-out accelerator architecture for FHE-based DL inference.
We design task decomposition and mapping methods for all
major steps (including bootstrapping). By designing inde-
pendent computation and communication modules and their
corresponding synchronization mechanisms, Hydra maximizes
the overlap of communication latency and computation latency
among computing nodes, thereby achieving excellent system
performance. Hydra can support arbitrary node expansion to
cope with the computational expansion of large-scale and even
ultra-large-scale DL models, proposing a new paradigm for the
design of secure DL inference accelerator architectures.

12

REFERENCES

[1] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 9466–
9471.

[2] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu, “Pir-psi: scaling
private contact discovery,” Cryptology ePrint Archive, 2018.

[3] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
1243–1255.

[4] L. Shen, X. Chen, D. Wang, B. Fang, and Y. Dong, “Efficient and
private set intersection of human genomes,” in 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2018,
pp. 761–764.

[5] A. Al Badawi, C. Jin, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. R. Chandrasekhar, “Towards the alexnet
moment for homomorphic encryption: Hcnn, the first homomorphic cnn
on encrypted data with gpus,” IEEE Transactions on Emerging Topics
in Computing, vol. 9, no. 3, pp. 1330–1343, 2020.

[6] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning. PMLR, 2016, pp. 201–210.

[7] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” arXiv preprint arXiv:1711.05189, 2017.

[8] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,”
arXiv preprint arXiv:1811.09953, 2018.

[9] H. Chabanne, R. Lescuyer, J. Milgram, C. Morel, and E. Prouff, “Recog-
nition over encrypted faces,” in Mobile, Secure, and Programmable
Networking: 4th International Conference, MSPN 2018, Paris, France,
June 18-20, 2018, Revised Selected Papers 4. Springer, 2019, pp. 174–
191.

[10] T. Ishiyama, T. Suzuki, and H. Yamana, “Highly accurate cnn inference
using approximate activation functions over homomorphic encryption,”
in 2020 IEEE International Conference on Big Data (Big Data). IEEE,
2020, pp. 3989–3995.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[12] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi,
“Low-complexity deep convolutional neural networks on fully homo-
morphic encryption using multiplexed parallel convolutions,” in Inter-
national Conference on Machine Learning. PMLR, 2022, pp. 12 403–
12 422.

[13] J. Zhang, J. Liu, X. Yang, Y. Wang, K. Chen, X. Hou, K. Ren,
and X. Yang, “Secure transformer inference made non-interactive,”
Cryptology ePrint Archive, 2024.

[14] E. Liberty, Z. Karnin, B. Xiang, L. Rouesnel, B. Coskun, R. Nallapati,
J. Delgado, A. Sadoughi, Y. Astashonok, P. Das et al., “Elastic machine
learning algorithms in amazon sagemaker,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, 2020,
pp. 731–737.

[15] J. Kim, G. Lee, S. Kim, G. Sohn, J. Kim, M. Rhu, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” arXiv preprint arXiv:2205.00922, 2022.

[16] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, 2022, pp. 711–725.

[17] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable acceler-
ator for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
238–252.

[18] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-
drakasan, V. Vaikuntanathan, and A. Joshi, “Fab: An fpga-based accel-
erator for bootstrappable fully homomorphic encryption,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 882–895.

[19] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical homomorphic encryption accelerator,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 870–881.

[20] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295–1309.

[21] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “Sharp: A short-
word hierarchical accelerator for robust and practical fully homomorphic
encryption,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, 2023, pp. 1–15.

[22] R. Agrawal, L. De Castro, C. Juvekar, A. Chandrakasan, V. Vaikun-
tanathan, and A. Joshi, “Mad: Memory-aware design techniques for
accelerating fully homomorphic encryption,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
2023, pp. 685–697.

[23] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung,
D. Pao, and I. Verbauwhede, “High-speed polynomial multiplication
architecture for ring-lwe and she cryptosystems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 157–166,
2014.

[24] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Rutenbar,
“Hardware architecture of a number theoretic transform for a boot-
strappable rns-based homomorphic encryption scheme,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). IEEE, 2020, pp. 56–64.

[25] E. Öztürk, Y. Doröz, E. Savaş, and B. Sunar, “A custom accelerator for
homomorphic encryption applications,” IEEE Transactions on Comput-
ers, vol. 66, no. 1, pp. 3–16, 2016.

[26] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung,
D. Pao, and I. Verbauwhede, “High-speed polynomial multiplication
architecture for ring-lwe and she cryptosystems,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 157–166,
2014.

[27] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
“Hepcloud: An fpga-based multicore processor for fv somewhat homo-
morphic function evaluation,” IEEE Transactions on Computers, vol. 67,
no. 11, pp. 1637–1650, 2018.

[28] A. C. Mert, S. Kwon, Y. Shin, D. Yoo, Y. Lee, S. S. Roy et al., “Medha:
Microcoded hardware accelerator for computing on encrypted data,”
arXiv preprint arXiv:2210.05476, 2022.

[29] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
26–39.

[30] S. Cheon, Y. Lee, D. Kim, J. M. Lee, S. Jung, T. Kim, D. Lee, and
H. Kim, “Dacapo: Automatic bootstrapping management for efficient
fully homomorphic encryption.”

[31] DESILO, “Liberate.FHE: A New FHE Library for Bridging the Gap be-
tween Theory and Practice with a Focus on Performance and Accuracy,”
2023, https://github.com/Desilo/liberate-fhe.

[32] A. Al Badawi, B. Veeravalli, J. Lin, N. Xiao, M. Kazuaki, and A. K. M.
Mi, “Multi-gpu design and performance evaluation of homomorphic en-
cryption on gpu clusters,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 2, pp. 379–391, 2020.

[33] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data.” in ISCA, 2022, pp. 173–187.

[34] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping
for approximate homomorphic encryption,” in Advances in Cryptology–
EUROCRYPT 2018: 37th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29-May 3, 2018 Proceedings, Part I 37. Springer, 2018, pp. 360–384.

[35] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[36] Xilinx, “Product brief of smartssd,” https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

13

https://github.com/Desilo/liberate-fhe
 https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
 https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

	Introduction
	Why Scale-out?
	The Affinity to DL Parallelism
	Challenges
	Architectural Design Weaknesses
	Computational Tasks Mapping
	Coordination and Synchronization

	Methodology
	Key Procedures of CNN and LLM
	Bootstrapping

	Hydra Architecture
	Overall Architecture
	Computation and Communication Module
	Synchronization Mechanism
	Scheduling Strategy and Dependence Management

	Evaluation
	Experimental Setup
	Performance
	Full-system performance
	Key Procedure Performance

	Energy
	Scalability Comparison
	Scalability Analysis
	FPGA Resource Utilization
	Parameters Selection
	Discussion

	Conclusion
	References

