
Hypnos: Memory Efficient Homomorphic Processing Unit
Haoxuan Wang∗†§, Yinghao Yang∗†, Hang Lu∗†§B, Xiaowei Li∗†§
∗SKLP, Institute of Computing Technology, Chinese Academy of Sciences,

†University of Chinese Academy of Sciences,
§Zhongguancun Laboratory, Beijing, China

{wanghaoxuan23p, luhang, lxw}@ict.ac.cn, yinghao.y@foxmail.com

Abstract—Fully Homomorphic Encryption (FHE) introduces a novel
paradigm in privacy-preserving computation, extending its applicability
to various scenarios. However, Operating on encrypted data imposes
significant computational challenges, particularly elevating data transmis-
sion and memory access demands. Consequently, developing an efficient
system storage architecture becomes vital for FHE-specific architectures.
Traditional FHE accelerators use a Host+ACC topology, often focusing
on enhancing computational performance and efficient using of on-chip
caches, with the assumption that very large volumes of encrypted data
are already present in the accelerator’s memory while neglecting the
inefficiencies of the unavoidable PCIe bus. In this paper, we propose
Hypnos—a memory-efficient homomorphic encryption processing unit.
In Hypnos, we abstract operators from FHE schemes into commands
suitable for memory-efficient processing units and combine them with a
homomorphic encryption paged memory management system designed
for memory access, significantly reducing the memory access and ex-
ecution time of homomorphic encryption applications. We implement
Hypnos on the QianKun FPGA Card and highlight the following results:
(1) outperforms SOTA ASIC and FPGA solutions by 2.58× and 4.43×; (2)
the communication overhead is reduced by 3.78× compared to traditional
architectures; (3) up to 27.6× and 19.06× energy efficiency improvement
compared to ASIC-based CraterLake and FPGA-based Poseidon for
ResNet-20 respectively.

I. INTRODUCTION

With the rapid development of the internet and cloud computing,
privacy protection and security have become major challenges in
information processing. Against this backdrop, the importance of data
privacy computation technology has become increasingly prominent.
Fully Homomorphic Encryption (FHE) is an important privacy com-
putation technology that is crucial in achieving secure computations
[1], [2].

The primary advantage of FHE is its ability to perform unlimited
addition and multiplication operations without decrypting the data.
This allows complex computations to be executed while the data
remains encrypted. However, this characteristic of FHE results in an
explosive expansion in data volume and computational complexity,
ranging from 10,000 to 100,000 times. This places considerable strain
on memory and computational systems, making it impractical for
general-purpose computing hardware to handle FHE computations
effectively. Therefore, it is essential to develop specialized architec-
tures to enhance the efficiency of FHE computations.

In recent years, several FHE-specific accelerator architectures have
been for FHE acceleration based on FPGA [3], [4] and ASIC
[5]–[9]. The advantage of using FPGAs lies in their lower cost
and programmable nature, which allows for flexible iterations and

Haoxuan Wang and Yinghao Yang are co-first authors. Hang
Lu is the corresponding author. Bo Wang <wangbo@phytium.com.cn>,
Changshan Su <suchangshan1101@phytium.com.cn>, Xiaoyu Li <lixi-
aoyu2261@phytium.com.cn>, Gen Li <ligen@phytium.com.cn>, Yuxing
Tang <tangyuxing@phytium.com.cn> (all with the Phytium Information Tech-
nology Co., LTD) contribute significantly to this paper in terms of the
manuscript submission and rebuttal, and should all be regarded as co-authors.

Host FHE Accelerator

DDR

D
D
R

Hypnos

ARM

DDRDDR

CU

Host

DDRDDR

PCIEPCIE

PCIEPCIE

Indirect

Direct

Fig. 1. Comparison with Traditional FHE Accelerators: In Hypnos, data
processing is conducted directly by the CPU within the device, eliminating
the dependency on the host CPU and bypassing the congested system PCIe
bus.

upgrades of hardware designs to achieve rapid deployment in re-
sponse to the evolving FHE algorithms. In contrast, ASICs deliver
higher performance and lower power consumption, allocating more
substantial hardware resources to address the bottlenecks in FHE,
such as employing up to 180MB-512MB of on-chip scratchpad to
mitigate the overhead caused by data transfers between off-chip
memory and computational units (CUs) [6]–[8]. However, these
ASICs are currently in the simulation phase, making it difficult to
rapidly deploy them for real-world use.

Prior works have typically assumed that substantial volumes of
ciphertext and keys are always stored within the DDR/HBM of the
accelerator. However, this assumption is overly idealistic, as handling
intricate FHE applications often exceeds the capacity of on-chip
memory. This indicates that communication between the host and
the accelerator via the PCIe bus will be frequent. As depicted in
the upper section of Fig.1, communication between the user and the
accelerator is mediated by host memory, necessitating data to traverse
the PCIe bus after initial storage in host memory. This bottleneck
can potentially undermine the performance gains reported in earlier
studies.

Current designs of FHE accelerator architectures emphasize en-
hancing computational efficiency and optimizing the utilization of
on-chip memory [10]. They often neglect the utilization efficiency of
off-chip memory. In fact, in FHE schemes based on Residue Number
Systems (RNS), the sizes of ciphertexts and keys vary dynamically
during computation. Allocating and managing memory with a fixed
size will lead to a large amount of redundant information being stored
in memory, thereby reducing memory utilization efficiency. It will
exacerbate the overhead of PCIe communication.

compute time 0.125 0.321 0.099 2.58 2.03 0.80% 1.98% 0.64% 9.53% 33.22%
Transfer Time 15.48 15.93 15.48 24.49 4.08 99.20% 98.02% 99.36% 90.47% 66.78%
total 15.61 16.25 15.58 27.07 6.11

ARK
(16GB)

CLk
(16GB)

Sharp
(16GB)

Piseidon
(8GB)

Ours
(16GB)

Compute 0.125 0.321 0.099 2.58 2.03
Transfer 15.48 15.93 15.48 24.49 4.08
PCIe Trans. Volume 496.98 496.98 496.98 786 130.99

PCIe 5.0 64GB/s
PCIe 5.0

没讲内存多大 没讲内存多大 没讲内存多大

4 4 4 4 4 0

ARK Craterlake Sharp FAB Poseidon Ours 222.63

1
5

.4
8

(9
9

.2
%

)

1
5

.9
3

(9
6

.1
%

)

1
5

.4
8

(9
9

.3
%

)

2
4

.4
9

(9
0

.5
%

)

4
.0

8
(6

6
.8

%
)

0.125
(0.8%)

0.321
(3.9%)

0.099
(0.7%)

2.58
(9.5%)

2.03
(33.2%)

0

6

12

18

24

30

ARK
(16GB)

CLk
(16GB)

Sharp
(16GB)

Piseidon
(8GB)

Ours
(16GB)

E
xe

cu
ti

o
n

 T
im

e
 (

s)
Transfer Compute

94.91

786.2

496.98

0

200

400

600

800

1000

Infinite 8GB 16GB

P
C

Ie
 T

ra
ff

ic
. (

G
B

)

Ori.Data
1.1MB

Fig. 2. Execution time breakdown of ResNet-20. The data size under FHE
encryption is severely inflated compared to plaintext (1.1MB marked in
red), introducing significant PCIe communication overheads. PCIe transfer
overhead is high for existing accelerator architectures, over 96% for ASIC
accelerators and up to 90% for FPGA-based Poseidon.

In this paper, we propose Hypnos, a memory-efficient homomor-
phic processing unit that changes the way computational units access
encrypted data and significantly reduces the amount of ciphertext and
key transmission. For RNS-based FHE applications where the data
volume exceeds the off-chip memory, we propose a homomorphic
encryption page memory management system, which reduces mem-
ory fragmentation and the volume of data communicated with the
host.

In summary, our contributions are as follows:

• We propose a practical, memory-efficient homomorphic process-
ing unit named Hypnos. It aims to mitigate the performance
overhead caused by inefficient PCIe communication and improve
off-chip memory utilization.

• We propose a novel memory management system based on
“HE page” to manage memory at the RNS component level,
significantly increase memory utilization, and further reduce the
data transfer volumes during the execution of FHE applications.

• We implement a prototype of Hypnos on the commercial
Qiankun, and evaluate its performance in practical FHE ap-
plications. We highlight the following results: (1) Hypnos
outperforms SOTA ASIC and FPGA solutions by 2.58× and
4.43×, respectively; (2) communication overhead is reduced by
3.78× compared to traditional accelerator architectures; (3)In
terms of energy efficiency, Hypnos also surpasses existing ASIC
and FPGA accelerators by a factor of 27.6× and 19.06×,
respectively.

II. BACKGROUND & MOTIVATION

A. Platform Limitations for FHE Accelerators

Due to the on-board memory limitation problems, accelerators
must frequently transmit large volumes of ciphertext and keys when
processing FHE applications. This extensive data movement between
the host DDR and the accelerator’s local memory can severely impact
performance. Prior works have often underestimated this issue. In our
evaluation of the ResNet-20 application based on the SEAL library, as
depicted in the left half of Fig. 2, despite the superior computational
efficiency of ASIC accelerators, the overhead associated with PCIe
transfers can account for up to 96% of the total execution time.
Similarly, FPGA accelerators confront analogous issues attributable
to their limited onboard memory. The right side of Fig. 2 shows the

0x0000_0000

0x0001_FFFF

. . . Ciphertext
 Ct-a(C0,C1)

KSkey
KSk-a

C
iphertext

C
t-b(C

0',C
1')

0x0002_0000

. . .
0x0003_FFFF

0x0004_0000

0x0005_FFFF

. . .

. . .

0x0000_0000

0x0001_FFFF

. . .

0x0002_0000

. . .
0x0003_FFFF
0x0004_0000

0x0005_00FF

. . .

. . .

0x0001_00FF

0x0005_FFFF

Memory
Fragment

Homomorphic
 Evaluation

C
iphertext

 C
t-a(C

0',C
1')

K
Skey

K
Sk-a

Ciphertext
Ct-b(C0,C1)

Fig. 3. Memory fragmentation during homomorphic computation. Changes in
the number of RNS components of ciphertext lead to memory fragmentation.

increase in PCIe communication overhead under different onboard
memory sizes, where the "infinite" item represents the communi-
cation scenario when all data is loaded into the onboard memory
at once. The results show that, under memory constraints, PCIe
communication volume can surge dramatically. Therefore, reducing
PCIe communication overhead is a critical consideration for FHE
accelerators. Otherwise, continuously optimizing the performance of
the accelerators alone will not eliminate the PCIe communication
bottleneck within the entire acceleration system.

To address this bottleneck, we propose integrating a CPU onto the
accelerator to manage the direct transmission of ciphertexts and keys,
thereby reducing the overhead associated with PCIe communications.
Hypnos exhibiting similar computational performance compared to
the FPGA-based accelerator Poseidon achieves superior overall per-
formance due to its reduced PCIe overhead. Even when benchmarked
against more computationally powerful ASICs, Hypnos can elevate
system performance through optimized PCIe communication.

B. Neglected Memory Fragmentation

In RNS-based FHE schemes, ciphertexts and keys are represented
as polynomials. As shown in Fig. 3, during computations, the number
of polynomials changes, leading to variations in ciphertext size
and the number of RNS components required for keys. Fixed-size
memory management results in memory fragmentation and decreased
utilization, particularly evident in applications like ResNet-20 and
LR-Train using the CKKS scheme, where memory efficiency is
notably reduced, increasing the frequency of data replacement and
PCIe communication overhead. However, the BFV scheme, with its
constant ciphertext and key sizes, is not affected by this issue.

Fortunately, the size of the RNS components in RNS-based FHE
schemes is predetermined, meaning that all ciphertexts and keys can
be considered composed of multiple fixed-size data segments. This
provides an opportunity for optimizing memory utilization efficiency.

III. HYPONS ARCHITECTURE

A. Architecture Overview

As shown in Fig.4, the Hypnos architecture comprises three distinct
regions: the Processing System (PS), Programmable Logic (PL), and
Network-On-Chip (NOC).

The PS region is equipped with a CPU that runs an operating
system, responsible for initializing the state of the compute units and
executing FHE computation applications. This includes handling FHE
operations, data transfers, and monitoring the status of the compute
units.

CPU Platform
Cortex-A72 Core

I-Cache D-Cache

CPU Platform
Cortex-A72 Core

I-Cache D-Cache

L2-CacheL2-Cache

CPU Platform
Cortex-A72 Core

I-Cache D-Cache

L2-Cache

DMADMA

HEPMU

FHE Compute Unit

DMADMA

Shared
Memory

C
PU

 Platform

Command Buffer

Local MemoryLocal Memory

NoC Region
PS Region
PL Region

Command
Decoder

Muti-Issue Order Unit

Execution Unit

Register
 File

CM
C I
RI
L

..
.

..
.

..
.

..
.

..
.

..
.

Writeback
Buffer

0x1000_0000
Ciphertext a-RNS1

0x1000_1000Cipher text a-
RS2 0x1000_2000

0x000F_1000
Ciphers Table

I D Count

KSKeys Table

Ciphertext a-RNS2

DDR Controller

CP R
esult

0x0000_0000
Rotate Key-a1

0x0000_4000Cipher text a-
RS2 0x0000_8000

0x0000_C000

0x0000_F000

Relin Key-b2
Cipher text a-

RS2Rotate Key-a2Cipher text a-
RS2Rotate Key-a2

Cipher text a-
RS2Rotate Key-a3Cipher text a-
RS2Rotate Key-a3

. . .

. . .
Ciphertext a-RNS3

Addr1 Addr2
Addr3

... ...

Page Processing Unit

ModelOperator
driver

R
egister
 File

Level

6Bit

Var IDVar IDOpcode

16Bit * 34Bit6Bit

Reserved

Configuration
Info

Configuration
Info

Source
 File

Source
 File

Cipher-Text
KSKeys

Cipher-Text
KSKeys

Arrch64
Compiler

Exec()
AXI4-Lite

Command

Bank0

Bank1

Bank2

. . .

D
M

A

Homomorphic
encryption

Shard Memory
（UnCached）

OS
Memory
Space

Keys
Memory Space

CipherText
Memory Space

...

ARM-A72
CPU HEPMU

FHE Controller

Execution Unit

DMA
Req

CT
KT

X8
6

H
O

ST

I D Count Addr1 Addr2
Addr3

... ...

Configuration
Register PMFSMPMFSM

ID
Management

ID
Management

Result ID

8Byte

CM
C I
RI
L

System Memory

Register File

FHE Controller

PCMULTPCMULT

CCMULT

PCADD

CCADD

RESCALE

ROTATE

DMA
Req

Fig. 4. Hypnos overall architecture. The heterogeneous ARM+FPGA computing architecture features a Cortex-A72 CPU, connected through a NoC to various
components including the FHE CUs, HEPMU, and memory subsystems. This setup highlights the multi-layered interaction between processing units, local
and system memories, DMA channels, and specialized encryption hardware, illustrating a memory-efficient system for FHE acceleration.

The PL region offers reconfigurable hardware resources serving as
compute unit(CU), composed of six fundamental FHE operators that
support computations for various FHE schemes. The CU includes
an FHE controller, register file, and Homomorphic Encryption Page
Management Unit(HEPMU), responsible for command execution,
caching, and memory management, respectively.

The NOC region acts as the interconnection network, utilizing the
on-chip buses of the AMD Xilinx Versal ACAP series to facilitate
high-speed communication between components and support point-
to-point data transfers.

B. FHE Execution&Controller Unit

Hypnos adopts an abstracted methodology utilizing operational-
level operators, as opposed to basic operators (such as NTT, MM,
MA, etc.), providing 64 parallel processing units. Within these
operational-level constructs, basic operators function in a cascaded
arrangement, with each unit possessing its own cache, thereby mit-
igating accesses to main memory and enhancing the efficiency of
request processing alongside the overall system performance. Inter-
nally, the Barrett Reduction algorithm [11] is employed for modular
multiplication (MM), while the Number Theoretic Transform (NTT)
utilizes a radix-8 design and incorporates optimizations derived from
Poseidon [4].

The FHE controller is responsible for scheduling, whereas the
command decoder assigns tasks to the functional units. The role
of the Multi-Issue Order Unit is to disseminate processed command
information to the CUs. Computed results are subsequently stored
in registers via a write-back buffer. The HEPMU manages memory

v

Var IDVar IDVar ID
LevelLevel

Register
File

Bank0

Bank1

Bank2

KT

CT

Var IDVar IDVar ID

K/CK/CK/C

AddrAddrAddr

To R
F

To
 E

U

ID Management

M
U

X

vConfiguration RegistervConfiguration Register

A
ddr B

uffer
A

ddr B
uffer

Address LogicAddress Logic
DataDataDataData

Replacement UnitReplacement Unit

. . .

PMFSMPMFSM

Page Processing Unit

Table
Controller

Table
Controller

ResultResultResult

Transfer
Switch

Transfer
Switch

DDR ControllerDDR Controller

Addr

ReqReq AddrAddr

R/WR/W

Fig. 5. Micro-architecture of Homomorphic Encryption Page Management
Unit (HEPMU).

operations and returns results either to the CPU or for further
computations.

C. HEPMU

The cornerstone of Hypnos is the HEPMU, which implements
paged memory management at the granularity of RNS components.
The microarchitecture of the HEPMU is illustrated in Fig.5. The
detailed workflow of the HEPMU will be elaborated upon in Sec.IV;
herein, we focus solely on the hardware architecture design.

Configuration Register provides scalable memory management
granularity and table entries of varying sizes based on different
applications and security parameters. Configuration details are written

if (!(encrypted1.is_ntt_form()&&encrypted1.is_ntt_form())){
 throw invalid_argument("encrypted 1 or 2 must be in NTT form");
 }
// Execute Ciphertext Multiply
mod_switch_to_next(encrypted1,encrypted1);
rotate_internal(encrypted1, steps, galois_keys);
multiply_inplace(encrypted1, encrypted2);
relinearize_inplace(encrypted1, relin_keys);

Ciphertext
Encrypted1

ID 6891

Ciphertext
Encrypted2

ID 0216

ID
62314
0216
. . .

Level
20
14
. . .

ID
6891
4812

. . .

Level
14
2

. . .ID
 M

ap . . .

SU
C

ES
S

FAILURE

Multiply 6891 0216 2524 14Reserved

AXI4-Lite to the CU

ID Addr1 Addr2 Addr3 . . .

6891 0x8837 0x1291 0x6597.

Add ID:6891 to
Ciphertext table

Ciphertext table

Homomorphic
Encryption

Shared Memory

Local
Memory

Rotate Add

OP
ID
ID
ID
L

OP
ID
ID
ID
L

Command
Buffer

Decoder

Encrypted1 ID Encrypted2 ID Level

Addr1 Addr2 Addr3
6891 0x8837 0x1291 0x6597
ID

0216 0x2267 0x6383 0x3623

. . .
Local

Memory

Register File

. . .

. . .

.

Level

6Bit

Var IDVar IDOpcode

16Bit * 34Bit6Bit

Reserved Result ID

Execution Command 8Byte

Ciphertext table

Multiply
result ID

level

Multiply
result ID

level

Multiply. . .
C

ipherTextC
ip

he
rT

ex
t R

esult

Stage 1 Stage 2 Stage 3Stage 1 Stage 2 Stage 3

Fig. 6. This diagram illustrates the multi-stage execution process of a command within Hypnos, providing a detailed account of the entire workflow. Each
stage is managed and invoked via specific operation IDs, addresses, and level parameters, ensuring the accurate execution of the encrypted command.

via the AXI4-Lite bus and are utilized during the execution of
FHE applications. Additionally, the CPU can read this configuration
information through the same bus to determine the status of Hypnos.

Page Management Finite State Machine (PMFSM) acts as the
central control logic, switching between idle, write, eviction, and
read states according to the sequence of commands, coordinating
task scheduling within the HEPMU.

ID Management performs ID-to-address translation, querying
addresses from the Key Table (KT) and Ciphertext Table (CT)
based on the type of ciphertext variable, and writing addresses to
the buffer. Notably, the CT and KT are stored in a register file
to accommodate dynamic changes in table sizes due to varying
parameter configurations. For example, when the modulo chain length
L = 32 and the memory size is 16GB, the sizes of CT and KT are
69KB and 17.25KB, respectively.

Page Processing Unit (PPU) executes operations related to the
RNS page table, retrieving RNS components based on address
information and placing them in the register file for computation.
When page replacement is required, it writes page information back
to the KT or CT.

It is noteworthy that, as shown in the lower-left portion of Fig.4,
a portion of the system memory is designated as shared memory,
specifically reserved for storing ciphertexts and keys, and configured
as uncacheable. This design choice is because, during homomorphic
computations, the CPU processes address information rather than
the ciphertexts and keys themselves. Moreover, the uncacheable
attribute of the shared memory eliminates the computational overhead
associated with cache coherence checks and cache flushing. Given
that different applications have varying requirements for ciphertext
and key memory spaces, the sizes of these spaces are dynamically
specified by the FHE program running on the CPU. For instance, in
CNN applications that require a large number of keys, a larger key
storage space can be allocated to mitigate the need for frequent data
exchanges.

Regarding the design of page table replacement strategies in the
HEPMU, we evaluated several strategies for ResNet-20 on Hypnos.
The performance of ResNet-20 indicated that, both in terms of
execution time and the number of replacements, the Least Recently
Used (LRU) strategy demonstrated performance closest to the optimal
(OPT). Consequently, we adopted LRU as the page table replacement
strategy in the HEPMU.

IV. HE PAGED MANAGEMENT SYSTEM

In prior accelerator designs, despite the adoption of RNS decompo-
sition, ciphertexts and keys were still transmitted and stored as whole
units. Only during the execution phase were the necessary RNS com-
ponents used for computation, leading to unused RNS components
inefficiently occupying memory space. To address this, we propose a
memory-efficient homomorphic paging memory management system
designed to manage ciphertexts and keys in memory with precision,
thereby optimizing memory usage and enhancing performance.

This system operates at the level of RNS components and achieves
software-hardware collaboration. The CPU is responsible for execut-
ing the top-level homomorphic encryption application code, while the
CU manages the physical addresses of homomorphic variables and
executes FHE operators. The close collaboration between the CPU
and CU is key to achieving efficient computation. Fig. 6 illustrates the
execution flow of homomorphic encryption application computations,
including the details of memory management.

CPU Side: FHE applications execute on the CPU after specialized
compilation. As shown in Stage ❶ of Fig. 6, when the program
requires acceleration via FHE operators, it first queries the ID Map
maintained on the software end to verify whether the required
variables exist in the CU memory. In Stage ❷, if all variables are
present, the program sends the command data to the CU and waits
for a result signal. In the lower part of Stage ❷, if any variables
are missing, they are sent to the CU, and the PPU updates the
variable IDs and their levels in the ID Map and the CT or KT.
During this process, the CPU only accesses the IDs and Level of
the variables and awaits an interrupt signal indicating the completion
of the computation.

Compute Unit Side: Address management, data replacement, and
write-back within the memory system are all performed on the CU
side. Upon receiving a command, the compute unit verifies that all
ciphertext variables are present in memory. It then retrieves and
decodes the command content from the Command Buffer, using the
IDs to locate the physical addresses of the variables in the CT and KT.
The Level indicates the required depth of multiplication. The HEPMU
transfers the variables to the register file, and the decoder inputs the
type of computation and auxiliary information to the operator. Once
the computation is complete, the result ID and the computed result
are written back to the register file, as shown in Stage ❸. The CU
notifies the CPU of the result and its physical address via an interrupt.
The CPU then fetches the result to complete the command execution
cycle.

host:256 Systemy

layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
H t M 256GB H t M 0 0 0 0 0 0 0 0 0 0 0 0 0 11 6158 27 1286 14 516 14 5134 14 5108 14 5082 18 3856Host Memory 256GB Host Memory 0 0 0 0 0 0 0 0 0 0 0 0 0 11.6158 27.1286 14.516 14.5134 14.5108 14.5082 18.3856
System Memory 32GB DDR4 System Memory(Shared Memory) 17.56 6.79 6.97 18.96 18.97 20.65 21.2167 22.0617 22.9067 23.7517 23.753 23.735 23.774 23.7542 23.7614 23.764 23.7666 23.7692 23.7718 23.7744
Local Memory 16GB HBM Local Memory(Total) 18 86 26 8 26 8 26 8 26 8 26 8 26 8 29 5 31 1 29 7 29 7 29 7 29 7 31 1 31 1 31 1 31 1 31 1 31 1 31 1Local Memory 16GB HBM Local Memory(Total) 18.86 26.8 26.8 26.8 26.8 26.8 26.8 29.5 31.1 29.7 29.7 29.7 29.7 31.1 31.1 31.1 31.1 31.1 31.1 31.1

Local Memory(Key Resident) 9.7
Local Memory(Key&Cipher Text) 9 16 17 1 17 1 17 1 17 1 17 1 17 1 19 8 21 4 20 20 20 20 21 4 21 4 21 4 21 4 21 4 21 4 21 4Local Memory(Key&Cipher Text) 9.16 17.1 17.1 17.1 17.1 17.1 17.1 19.8 21.4 20 20 20 20 21.4 21.4 21.4 21.4 21.4 21.4 21.4

24 22.324 22.3
24.25 26.19 26.19 26.19 26.19 26.19 26.19 42.68 54.32 45.59 45.59 45.59 45.59 78.57 94.09 81.48 81.48 81.48 81.48 85.36

40
Host Memory System Memory(Shared Memory) Local Memory(Total) Local Memory(Key Resident) Local Memory(Key&Cipher Text)

3030

2020

10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8.25 8.91 8.91 8.91 8.91 8.91 8.91 14.52 18.48 15.51 15.51 15.51 15.51 28.48 34.32 29.7 29.7 29.7 29.7 30.03
5.28 0.99 0 0 0 0 0 7.92 7.92 0.33 0 0 0 18.15 22.44 18.48 18.48 18.48 18.48 29.045.28 0.99 0 0 0 0 0 7.92 7.92 0.33 0 0 0 18.15 22.44 18.48 18.48 18.48 18.48 29.04

0

layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
传输时间 Host+Accel. Swap Num 0 41 45 45 45 45 45 37 60 47 47 47 47 58 70 58 58 58 58 32
’ H pnos S ap N m 0 24 27 27 27 27 27 23 29 28 29 28 29 15 29 29 29 27 27 0’ Hypnos Swap Num 0 24 27 27 27 27 27 23 29 28 29 28 29 15 29 29 29 27 27 0

Host+Accel. Actual Memory Utilization 60.93% 71.58% 51.54% 51.54% 51.54% 51.54% 51.54% 42.35% 37.41% 41.49% 41.83% 42.13% 43.10% 27.44% 22.62% 26.04% 26.25% 26.25% 26.25% 4.20%
Hypnos Actual Memory Utilization 98 39% 83 28% 85 32% 85 12% 85 32% 85 12% 85 32% 89 42% 89 21% 88 37% 88 55% 88 47% 88 55% 92 63% 92 09% 92 39% 91 10% 91 05% 91 10% 91 37%Hypnos Actual Memory Utilization 98.39% 83.28% 85.32% 85.12% 85.32% 85.12% 85.32% 89.42% 89.21% 88.37% 88.55% 88.47% 88.55% 92.63% 92.09% 92.39% 91.10% 91.05% 91.10% 91.37%
Host+Accel. Transfer Volume 8.25 12.54 17.82 17.82 17.82 17.82 17.82 23.43 26.73 24.42 23.43 23.76 23.43 35.74 40.26 36.96 36.63 36.63 36.63 19.14
Hypnos Transfer Volume 5.302 6.34 6.578 6.578 6.578 6.578 6.578 8.394 6.941 5.819 5.819 5.819 5.819 10.252 8.162 6.105 5.632 5.61 5.61 1.034Hypnos Transfer Volume 5.302 6.34 6.578 6.578 6.578 6.578 6.578 8.394 6.941 5.819 5.819 5.819 5.819 10.252 8.162 6.105 5.632 5.61 5.61 1.034

H t+A l A t l M Utili ti H t+A l T f V l H t A l S NHost+Accel. Actual Memory Utilization
Hypnos Actual Memory Utilization

Host+Accel. Transfer Volume
Hypnos Transfer Volume

Host+Accel. Swap Num
Hypnos Swap Num

100%
y y

50 75

80%

io
n 40

um
e 60

be
r

60%ili
za

ti

30

r V
ol

u

45

N
um

b

40%al
 U

ti

20ns
fe

r

30w
ap

 N

20%Ac
tu

a

10

Tr
an

15

Sw

0%

20%A

0

10

0

15

0%
1 3 5 7 9 11 13 15 17 19

0
1 3 5 7 9 11 13 15 17 19

0
1 3 5 7 9 11 13 15 17 19

为了公平⽐较，将以前⼯作中的Pcie+ACC架构抽象出来，参数集设置为统⼀的参数，内存⼤⼩为16Gb

Fig. 7. How (a) memory utilization, (b) transfer volume, (c) swap number change at each layer of ResNet-20 under encrypted execution when comparing
Hypnos to traditional architectures, with both systems featuring a uniform memory size of 16GB and differing in granularity: the traditional architecture
managing memory at the granularity of entire ciphertexts, while Hypnos operates at the granularity of a single RNS component.

TABLE I
PERFORMANCE COMPARISON OF FOUR BENCHMARK APPLICATIONS
WITH THE BASELINE FHE ACCELERATOR, MEASURED IN TWO TIME

UNITS: SECONDS (S) AND MILLISECONDS (MS)

Works
ResNet-20

(in s)

LR-Train

(in s)

PSI

(in ms)

PIR

(in ms)

(ASIC) ARK 15.61 0.34 422.73 306.10

(ASIC) Craterlake 15.80 0.25 408.45 303.97

(ASIC) Sharp 15.58 0.18 417.73 305.23

(FPGA) Poseidon 27.07 2.32 689.79 389.77

(FPGA) FAB 22.68 3.22 1168.12 472.30

(FPGA)Hypnos 6.11 1.89 278.27 86.72

V. EVALUATION

A. Experimental Setup

Platform. Hypnos is implemented on the Qiankun FPGA Card
from Ant Inc., featuring a dual-core ARM A72 processor, over 1.7
million LUTs, and more than 7000 DSPs. The specific FPGA model
is the xcvp1502-vsva2785-2MHP-e-S.

Baseline. In our experiments, Hypnos was compared with state-of-
the-art ASIC-based FHE accelerators, including ARK [6], Craterlake
[5], and SHARP [8], and FPGA-based accelerators such as FAB [3]
and Poseidon [4]. Some accelerators only implemented portions of
the Benchmark. For clarity, we evaluated these architectures based
on the complexity of each Benchmark.

Benchmark: We use the following 4 benchmarks (as shown in
TableI) for evaluation:

(1) ResNet-20: Implemented and trained with the CIFAR-10
dataset, featuring 19 convolutional layers and one fully-connected
layer, with ReLU activation functions [12].

(2) Logistic Regression (LR): Based on the HELR algorithm
using the CKKS scheme [1], incorporating Bootstrapping with a

multiplication depth of L = 38 evaluated over 10 iterations supported
by two Bootstrapping operations.

(3) Private Set Intersection (PSI): Evaluated using the SEAL APSI
open-source library for computing the intersection of two asymmetric
sets, with the sender’s set containing 228 elements and the receiver’s
set 210 elements [13].

(4) Private Information Retrieval (PIR): Benchmark evaluates the
SEAL PIR open-source library for encrypted queries on the server
side, involving a query for a single item from a dataset of 220 entries
[14].

B. Full-system Performance

The design goal of Hypnos is to provide an architecture capable of
running complete FHE applications. We demonstrate the full-system
performance of Hypnos in comparison to previous accelerators. As
shown in Table I, for data-intensive applications such as ResNet-20,
PSI, and PIR, the primary bottleneck is the overhead of memory
access. Hypnos can leverage its strengths, achieving up to a 2.58×
improvement in performance on ASIC-based accelerators and up to
a 4.4× improvement on FPGA-based accelerators. LR-Train, on the
other hand, is a HE application that is computationally intensive with
minimal memory access; it does not involve large-scale databases
or extensive rotating keys. In terms of computational performance,
Hypnos achieves a 1.7× improvement over FPGA accelerators,
though a performance gap remains compared to ASIC accelerators.

C. Energy Efficiency

We utilize Energy-Delay Product (EDP) as the metric for energy
efficiency. TableII presents the energy efficiency performance of
Hypnos compared with ASIC-based accelerators ARK and Crakelake,
and the FPGA-based accelerator Poseidon across four benchmarks.
In ResNet-20, PSI and PIR, Hypnos outperforms both ASIC and
FPGA accelerators, achieving enhancements of 27.6×, and 19.06×
respectively. This is primarily due to the substantial data transfers,
which contribute to significant PCIe overhead. Hypnos’ memory-
efficient architecture excels in managing these demands. However, in
the LR-Train applications, Hypnos does not match the performance of
ASIC accelerators in terms of EDP, due to FPGA’s limited resources,
yet it still surpasses the FPGA accelerator Poseidon.

1 RS 2 RS 4 RS 8 RS 1 RS 2 RS 4 RS 8 RS
Resnet-56 45.2 49.67 55.87 65.86 RF Overhead 1.00 0.75 0.68 0.59
Resnet-20 6.11 6.47 7.06 7.30 Memory Utilization 1.00 0.97 0.83 0.68 93.96 91 77.57 63.79
LR-Train 1.89 1.92 1.98 2.03 Data Volume 1.00 1.01 1.13 1.16 131.43 133.03 148.1 152.68

Switch Number 1.00 0.99 1.01 1.09 897 887 907 980

⽆法在⼀个柱状图中每个柱再画堆积图
45.2 49.67 55.87 65.86

32.56 35.56 38.56 32.56
15.5 16.19 17.93 21.12

4/51.2

8GB 16GB 32GB 64GB
Resnet-20 8.72 6.11 5.12 5.08
LR-Train 1.89 1.89 1.89 1.89
PSI 0.97 0.97 0.97 0.97
PIR 0.026 0.026 0.026 0.026

⽆法在⼀个柱状图中每个柱再画堆积图
难看

6.11

1.89

6.47

1.92

7.06

1.98

7.30

2.03

0
1
2
3
4
5
6
7
8

Resnet-20 LR-Train

Ex
ec

ut
io

n
Ti

m
e

(m
s)

1 RS 2 RS 4 RS 8 RS

1.00 1.00 1.00 1.00

0.75

0.97 1.01 0.99

0.68

0.83

1.13
1.01

0.59
0.68

1.16
1.09

0.0

0.3

0.6

0.9

1.2

1.5

RF Overhead Memory
Utilization

Data Volume Switch Number

O
ve

rh
ea

d
(r

el
at

iv
e)

1 RS 2 RS 4 RS 8 RS

8.72

6.11

5.12 5.08

1.89 1.89 1.89 1.89

0.97 0.97 0.97 0.97

0.026 0.026 0.026 0.0260

2

4

6

8

10

8GB 16GB 32GB 64GB

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Resnet-20 LR-Train PSI PIR

(b) (c)(a)

Fig. 8. Analysis of sensitivity. (a) and (b) explore the granularity of memory management within ResNet-20 and LR-Train. (c) examines the impact of
memory size on the Hypnos for selected benchmarks.

TABLE II
EFFICIENCY ANALYSIS. WE USE ENERGY-DELAY PRODUCT (EDP) AS THE

METRIC. LOWER IS BETTER.

Work ResNet-20 LR-Train PSI PIR

ARK 68545.1 32.5 50267.4 26356.8

Craterlake 51675.5 12.9 34533.3 19125.8

Poseidon 87619.1 643.6 56892.1 18165.3

Hypnos 4730.1 452.6 9810.7 952.8

TABLE III
HARDWARE RESOURCE UTILIZATION

Resources LUT(K) FF(K) BRAM DSP

Used 860 1,115 2,511 4,990

Percentage (50.02%) (32.41%) (65.36%) (67.07%)

D. Memory

In prior work, both ASIC and FPGA-based FHE accelerators utilize
a Host as the master end for HE applications, necessitating data
transfers via the bandwidth-limited PCIe protocol. Consequently, we
abstract this arrangement into a Host+Accelerator model. Fig.7 uses
ResNet-20 as an example, with the CNN layers represented on the
horizontal axis, to compare and analyze the advantages of the Hypnos
architecture over traditional architectures through three metrics.

(1) Memory Utilization: Defined as the percentage of RNS
components used for computation at each layer. For example, with
Lmax=30 and an encryption operation level of 10, the MU is 33.33%.
Traditional accelerators exhibit low MU due to unused data occupying
memory; MU can drop below 20% at the final layer. Hypnos
does not reach 100% MU because some variables are frequently
reused in higher-level computations, optimizing which would degrade
performance.

(2) Transfer Volume: Refers to the data volume transferred via
PCIe at each layer. As shown in Fig.7 (b), initially, Hypnos exhibits
similar transfer volumes to traditional architectures since variables
are fresh ciphertexts at higher levels. Mid-layer volumes are reduced
by 73.55% due to Hypnos’ homomorphic encryption page-based
memory management. At the final layer, volumes decrease sharply
as it is a fully connected layer requiring less data.

(3) Swap Number: Counts the number of memory variable swaps
due to insufficient memory. The decrease in swap frequency can be
attributed to the increase in MU. As shown in Fig.7 (c), Hypnos

decreases the total number of swaps by more than 50% compared to
traditional architectures.

E. FPGA Resource Utilization

Hypnos operates on an ARM+FPGA heterogeneous computing
platform. TableIII delineates the resource utilization within the PL
region. This includes the CU, controllers, register files, and the
HEPMU. A significant portion of the DSP blocks are allocated to
operator computations, whereas the DSP blocks within the HEPMU
primarily support the hardware implementation of the LRU replace-
ment algorithm and manage physical addresses. In the context of the
HEPMU, BRAM is utilized for caching homomorphically encrypted
variables. It is worth noting that the ARM processor, NoC, and DDR
controller on the FPGA card are implemented as hard IP cores and
thus do not consume any of the FPGA’s programmable resources.

F. Sensitivity

Fig. 8 explores the (a) (b) impact of memory management gran-
ularity based on RNS components and (c) the size of the memory.
Larger RNS granularity leads to increased memory fragmentation,
reducing FHE storage system efficiency and overall performance.
Using ResNet-20 as an example, increasing the granularity to Lmax

diminishes memory utilization, increasing data transfer volume and
swap frequency to pre-optimization levels. For applications with
large data volumes, increasing off-chip memory from 8GB to 16GB
significantly reduces execution time, with minimal gains beyond
16GB. Smaller data volume applications are less sensitive to memory
size, indicating that memory size allocation should be tailored to meet
specific application requirements

VI. CONCLUSION

In this paper, we implemented the memory-efficient homomorphic
processing unit Hypnos on the FPGA card. By integrating a CPU,
the CU can directly access homomorphically encrypted data. Ad-
ditionally, we introduce a homomorphic encryption paging memory
management system that operates at the granularity of RNS compo-
nents to manage memory, thereby reducing data movement during
execution. Hypnos demonstrates remarkable efficiency in performing
data-intensive computations. Compared to FHE accelerators based
on ASICs, utilizing FPGAs as an implementation platform has more
practical significance, enabling lower-cost updates and iterations of
FHE algorithms. We hope our work will inspire new design concepts
for domain-specific accelerators tailored for FHE applications.

VII. ACKNOWLEDGMENT

This work was supported in part by the National Natural Science
Foundation of China under Grant 62172387; in part by the CCF-
Phytium Fund 2023.

REFERENCES

[1] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic regression on
homomorphic encrypted data at scale,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 9466–
9471.

[2] H. Chabanne, R. Lescuyer, J. Milgram, C. Morel, and E. Prouff, “Recog-
nition over encrypted faces,” in Mobile, Secure, and Programmable
Networking: 4th International Conference, MSPN 2018, Paris, France,
June 18-20, 2018, Revised Selected Papers 4. Springer, 2019, pp. 174–
191.

[3] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-
drakasan, V. Vaikuntanathan, and A. Joshi, “Fab: An fpga-based accel-
erator for bootstrappable fully homomorphic encryption,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 882–895.

[4] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical homomorphic encryption accelerator,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 870–881.

[5] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data.” in ISCA, 2022, pp. 173–187.

[6] J. Kim, G. Lee, S. Kim, G. Sohn, M. Rhu, J. Kim, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2022, pp. 1237–
1254.

[7] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn, “Bts:
An accelerator for bootstrappable fully homomorphic encryption,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 711–725.

[8] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn, “Sharp: A short-
word hierarchical accelerator for robust and practical fully homomorphic
encryption,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, 2023, pp. 1–15.

[9] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable acceler-
ator for fully homomorphic encryption,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
238–252.

[10] R. Agrawal, L. De Castro, C. Juvekar, A. Chandrakasan, V. Vaikun-
tanathan, and A. Joshi, “Mad: Memory-aware design techniques for
accelerating fully homomorphic encryption,” in Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,
2023, pp. 685–697.

[11] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[12] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network,” IEEE
Access, vol. 10, pp. 30 039–30 054, 2022.

[13] “Microsoft APSI,” https://github.com/microsoft/APSI, Dec. 2023, mi-
crosoft Research, Redmond, WA.

[14] “Microsoft SealPIR,” https://github.com/microsoft/SealPIR, Jun. 2023,
microsoft Research, Redmond, WA.

