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Abstract—The Trusted Execution Environment (TEE) has been
widely implemented by modern hardware vendors to protect
security and privacy-sensitive applications and data, such as Intel
SGX/TDX, ARM TrustZone, AMD SEV, and RISC-V Penglai.
However, existing TEE systems face challenges in balancing
memory isolation among security, performance, and scalability
requirements. Segment-based memory isolation mechanisms, like
RISC-V PMP, struggle to scale effectively to the large number
of segments needed for confidential cloud and data center
environments. On the other hand, table-based isolation methods,
such as page tables, combine address translation with memory
protection, leading to inefficient cross-enclave communication and
potential security vulnerabilities like Rowhammer attacks.

This paper introduces a novel TEE system, LayerTEE, which de-
couples memory protection (to segments) from address translation
(to page tables). This design improves communication performance
by dynamically adjusting memory protection capabilities, without
sacrificing application compatibility. LayerTEE enhances enclave
security and scalability by designing a multi-layer segment-
based isolation mechanism. We have built a prototype of
LayerTEE based on FPGA, incorporating hardware extensions
and software support. The evaluation demonstrates that LayerTEE
significantly surpasses existing TEE solutions, achieving three
orders of magnitude lower communication latency and 10x greater
scalability while maintaining robust security guarantees.

Index Terms—Trusted execution environment (TEE), memory
isolation, communication, RISC-V

I. INTRODUCTION

W ITH the rapid growth of cloud computing, traditional
software applications are increasingly migrating to

the cloud, presenting new challenges for data security and
privacy protection [3], [8], [9], [10], [31]. Trusted execution
environments (TEEs) provide a secure computing environment,
offering a hardware/software co-design protection solution to
safeguard sensitive data and applications in cloud environments
[15], [21], [25], [30], [33], [48]. Enclaves, essential security
containers within TEEs, protect critical application parts from
malicious attacks and software vulnerabilities.

In the cloud environment, enclaves often collaborate to
manage distributed computing tasks or share sensitive data.
Secure and efficient inter-enclave communication is essential
for completing complex operations. For example, multiple
hospitals might share patient data to train a machine-learning
model for disease diagnosis, thereby enhancing the model’s
performance [51]. Collaboration among multiple cloud service
providers has led to the development of an advanced platform
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that enables flexible and efficient communication between
applications [35], [39]. This platform supports interactions both
within a single cloud provider and across multiple providers,
promoting flexibility and cooperation [16], [29], [37], [46],
[49].

Studies have shown that utilizing multiple independent
enclaves to map tasks with untrusted components to distributed
enclaves requires costly communication channels through
untrusted memory areas, which can introduce potential vulnera-
bilities [30]. Cloud service providers rent cloud computing
machines with Intel SGX [36] to offer dedicated enclave
processes for each client [1]. However, the limited secure
memory (PRM) [19] in SGX results in significant overhead
due to multiple copying and encryption/decryption operations
during inter-enclave communication. While Elasticlave [52],
based on the Keystone framework [33], supports inter-enclave
communication, its scalability is constrained by hardware
limitations, making it unsuitable for cloud environments.
Therefore, improving the scalability and performance of inter-
enclave communication while ensuring data security is crucial.

Current TEE communication mechanisms face several lim-
itations. We analyze these mechanisms and classify them
into copy+encryption, remapping, and shared memory. While
secure, the copy+encryption mechanism introduces signifi-
cant performance overhead due to repeated data copy and
encryption/decryption processes. Though more efficient, the
remapping mechanism can suffer security vulnerabilities due
to improper memory isolation. The shared memory mechanism
offers high performance but compromises scalability and poses
potential security risks, as shared memory regions can become
targets for various attacks. These limitations highlight the need
for a more robust solution that effectively balances performance,
scalability and security.

To address these challenges, we propose a novel TEE
communication system, termed LayerTEE. This system lever-
ages the RISC-V physical memory protection (PMP) [7]
and supervisor-mode physical memory protection (SPMP)
mechanisms [27], combined with the shared memory-based
communication mechanism. Specifically, PMP registers isolate
a designated memory block known as the TEE Region. Within
the TEE Region, a pages table mechanism ensures the isolation
of individual enclaves. LayerTEE uses the SPMP mechanism to
decouple page table permission protection, enhancing security
and scalability. The shared memory, isolated via SPMP registers,
facilitates secure inter-enclave communication, effectively miti-
gating attacks targeting the page table. Additionally, LayerTEE
incorporates a series of communication interfaces integrated
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TABLE I
A COMPARISON OF TEE COMMUNICATION MECHANISMS. Isolation MEANS THE ISOLATION MECHANISM AMONG ENCLAVES. Unrestricted MEANS THE
NUMBER OF ENCLAVES IS UNRESTRICTED, THOUGH SYSTEM PERFORMANCE MAY DECLINE IF SECURE MEMORY IS INSUFFICIENT.PERFORMANCE IS

INDICATED BY ARROWS: ↑ (HIGH), ↓ (LOW), AND → (MEDIUM). R. AND T. DENOTE THE SECURITY RISKS FROM ROWHAMMER AND TOCTTOU ATTACKS.
LAYERTEE UNIQUELY OFFERS SCALABLE, HIGH-PERFORMANCE, AND SECURE INTER-ENCLAVE COMMUNICATION.

System Inter-Enclave Communication
Name Arch Isolation Scalability Mechanism Performance Security Inter-TEE Region
SGX [19], [36] Intel Table-based Unrestricted Copy+encryption ↓ ! %

Data-Enclave [51] Intel Table-based Unrestricted Shared memory ↑ R. & T. %

TDX [31] Intel Table-based Unrestricted Shared memory → R. & T. %

SEV [3] AMD Table-based Unrestricted Shared memory → R. & T. %

CCA [8] ARM Table-based Unrestricted Shared memory → R. & T. %

Komodo [26] ARM Table-based Unrestricted Remapping → R. %

Sanctuary [14] ARM Table-based Unrestricted Shared memory ↑ R. & T. %

Sanctum [20] RISC-V Segment-based DRAM Regions Copy+encryption ↓ R. %

Elasticlave [52] RISC-V Segment-based (PMPs-2)/2 Shared memory ↑ ! %

Penglai-TVM [25] RISC-V Table-based Unrestricted Remapping → R. %

Penglai-PMP [24] RISC-V Segment-based PMPs Copy+encryption ↓ ! %

LayerTEE RISC-V Decoupled Unrestricted Shared memory ↑ ! !

with the SPMP mechanism to secure the communication
process, thereby defending against time-of-check to time-of-
use (TOCTTOU) attacks [22]. Our main contributions are
summarized as follows:

• We design a novel TEE communication system named
LayerTEE. LayerTEE uses the shared memory mecha-
nism for inter-enclave communication and leverages the
SPMP mechanism to decouple permission protection from
the enclaves’ page tables, achieving high security and
scalability.

• We propose a multi-layer communication pattern, distin-
guishing between intra-TEE Region and inter-TEE Region
communications. The former is suitable for efficient data
transfer between “closer” enclaves, whereas the latter
secures data exchange across “more distant” enclaves
using shared memory Region and extra interfaces.

• We implement a prototype of LayerTEE on the Penglai-
based platform and integrate it into the high-performant
open-source RISC-V processor core, Xiangshan Nanhu
Core. Evaluation on the Xilinx VU19P FPGA shows that
LayerTEE requires minimal additional hardware resources,
using only 0.2% more LUTs and 0.04% more FFs. It
securely and efficiently supports communication among
at least 100 pairs of enclaves, demonstrating performance
improvements of one to three orders of magnitude over
the Penglai-PMP system across various data transfer sizes.

We organize this paper as follows. Section II introduces the
communication mechanisms in existing TEE systems and their
limitations. Section III overviews the LayerTEE framework.
Section IV details the design. Section V details the LayerTEE
implementation. Section VI presents the system evaluation and
security analysis. Section VII concludes this work.

II. MOTIVATION

A. Inter-Enclave Communication Mechanisms

Inter-process communication (IPC) is crucial in modern OSes
for better modularity and is increasingly important for TEE

systems [34], [38], [41], [43]. IPC facilitates functions decom-
position and collaborative work, supports complex application
scenarios, and enables multitasking [1], [30], [51]. A secure,
efficient, and scalable communication system is crucial in cloud
computing; however, current inter-enclave communication
schemes fall short of meeting these requirements.

Existing inter-enclave communication mechanisms include
copy+encryption, remapping, and shared memory, as summa-
rized in Table I. TEE systems like Intel SGX [36], RISC-V
Sanctum [20], and Penglai-PMP [24] use the copy+encryption
mechanism, where data is encrypted and transmitted to un-
trusted memory by sender enclave and then decrypted by
the receiver enclave. This mechanism ensures data confi-
dentiality and integrity but incurs high overhead due to the
encryption/decryption and copying processes. ARM Komodo
[26] and RISC-V Penglai-TVM [25] adopt the remapping
mechanism, where enclaves unmap and remap physical mem-
ory for communication. This mechanism can defend against
TOCTTOU attacks but is not ideal in efficiency due to its coarse
communication granularity (4KB page units) and significant
overhead (e.g., TLB shootdown issues [6]). Intel TDX [31]
AMD SEV [3], and ARM CCA [8] map shared memory
via page tables in a virtual machine, avoiding performance
loss from copying and remapping but leaving page tables
vulnerable to attacks like Rowhammer [2] and TOCTTOU
[22]. Moreover, their isolation is based on permission tables,
which introduces additional memory references, resulting in
significant performance overhead [23]. Data-Enclave [51]
maps the physical memory of one enclave as shared memory
to the communicating enclave, also potentially susceptible
to Rowhammer and TOCTTOU attacks. High-concurrency
demands in cloud environments amplify these security risks.
Elasticlave [52], based on Keystone [33] and RISC-V PMP
[7], improves security by isolating shared memory but strug-
gles with high-concurrency communication due to resource
constraints. Additionally, existing TEE communication systems
universally lack support for inter-enclave communication across
different TEE Regions, limiting their scalability and flexibility

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3575014

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on September 15,2025 at 02:11:41 UTC from IEEE Xplore.  Restrictions apply. 



3

shared

data

Producer 

Enclave

encrypted

data

encrypt Untrusted 

Memory

encrypted

data

shared

data

Consumer 

Enclave

encrypted

data

unmap

Shared 

Memory

(a) Producer-Consumer Pattern

shared

data

decrypt

copy copy

map

map map

shared

data

Client Enclave
Req

encrypted

data

encrypt

Untrusted 

Memory

Server Enclave

encrypted

data

encrypted

data

copy

copy

Req
decrypt process

Resp
encrypt encrypted

data

copy

copy

encrypted

data
Resp

decrypt

Req

Untrusted 

Memory

encrypted

data

Shared Memory

Req

unmap

map

Resp

unmap

map

map

map

Resp

process

(b) Client-Server Pattern

r/w r
r/w

r/w

Source 

Enclave
shared

data

encrypted

data

Destination 

Enclave

encrypted

data

shared

data

Untrusted Memory

Proxy Enclave

encrypted

data

shared

data
decrypt process shared

data
encrypt encrypted

data

shared

data

shared

data

Untrusted Memory

encrypted

data

encrypt

copy

copy

encrypted

data

copy

copy

decrypt

unmap

Shared Memory

map

map unmap

map
r/w

map
r

map r/w

(c) Proxy Pattern

shared

data

shared

data

process

r

r/w

r/w

r/w

r

operateCopy + Encryption 

mechanism process:
Entity

operateRemapping 

mechanism process: permission
Entity Entity Entity

operateShared memory 

mechanism process: permission
Entity Entity

processapplication-specific 

data processing:
Entity EntityLegend:

Fig. 1. In-depth analysis of implementation processes for three distinct inter-enclave communication mechanisms across various bilateral communication
patterns.
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Fig. 2. Breakdowns of three communication mechanisms within the producer-
consumer pattern. Data labels are proportionally scaled to reflect actual
measurements and are expressed in cycles.

in cloud computing environments.

B. Inter-Enclave Communication Patterns

1) Bilateral Communication Patterns: We apply the commu-
nication mechanisms discussed in §II-A to three representative
bilateral data sharing patterns in real-world scenarios as outlined
in [52], as shown in Fig. 1.

Pattern 1: Producer-Consumer. In this pattern, the producer
enclave transfers data to the consumer enclave (Fig. 1(a)). This
method is useful for signalling the completion of sub-tasks
in larger processes, such as batch processing scripts in web
frameworks [28], [45].

To analyze the performance overhead and underlying causes
of different communication mechanisms, we conducted latency
tests within the producer-consumer pattern using three distinct
communication mechanisms across various record sizes. The
results (Fig. 2) indicate that the copy+encryption mechanism
incurs the highest overhead due to extensive copying and
the encryption/decryption process. The remapping mechanism
shows moderate overhead from remapping and unmapping
operations, which causes TLB shootdown issues. The shared
memory mechanism has the lowest overhead, with minimal
instruction level and read/write costs, which remain consistent
regardless of data size.

Pattern 2: Client-Server. In this pattern, the client and
server enclaves concurrently read and write shared data for
exchange, as shown in Fig. 1(b). Implementing this pattern
with the copy+encryption mechanism involves four data copy
operations and two pairs of encryption/decryption processes.
The remapping mechanism requires two unmapping and two

mapping operations on the shared data memory. Conversely,
the shared memory mechanism necessitates only two mapping
operations on the shared data memory.

Pattern 3: Proxy. In this pattern, a proxy enclave processes
data from a source enclave and then forwards it to a destination
enclave, as shown in Fig. 1(c). For instance, a caching proxy
in a web service can store responses to frequent requests and
modify incoming requests (e.g., Nginx [40]). Implementing
this pattern with the copy+encryption mechanism requires
four data copying operations and two pairs of encryption
and decryption processes. Utilizing the remapping mechanism
involves two unmapping and two mapping operations on
the shared data memory. Alternatively, employing the shared
memory mechanism necessitates only three mapping operations
on the shared data memory.

2) Multilateral Communication Patterns: In a cloud en-
vironment, multiple concurrent enclaves work together to
execute complex tasks, often involving bilateral communication
patterns. In these situations, the TEE system must support the
simultaneous operation of many enclaves while maintaining
both performance and security. We propose two multilateral
communication patterns to address these needs: multi-bilateral
communication and single-producer multi-consumer.

Pattern 4: Multi-Bilateral Communication. In this pattern,
multiple pairs of enclaves engage in one-to-one communications
simultaneously. This pattern encompasses various bilateral
communication scenarios. For example, consider a financial
services application where multiple producer enclaves generate
financial data and transmit it to corresponding consumer
enclaves for analysis.

Pattern 5: Single-Producer Multi-Consumer. In this pattern,
a producer enclave processes data and transmits it to multiple
consumer enclaves. For instance, a healthcare firm can provide
personalized recommendations based on customer-provided
information, such as medical histories [1]. This enables multiple
clients to query a shared database without disclosing personal
health details.

By supporting multilateral communication patterns, the TEE
system can effectively manage complex interactions among
enclaves. Using the copy+encryption mechanism to achieve
multilateral communication patterns involves numerous copying
and encryption/decryption steps, significantly reducing commu-
nication performance. Similarly, remapping mechanisms require
multiple unmapping and mapping page tables, increasing the
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chances of TLB shootdowns and decreasing efficiency. In
contrast, shared memory mechanisms enhance performance
by reducing these overheads and enabling more efficient data
exchange among enclaves.

3) Multi-layer Communication Pattern: In cloud computing
environments, multiple service providers require separate
regions to run their tenants’ sensitive applications independently.
This isolation enhances data security, optimizes resource
management, and improves overall system security [16]. In
this scenario, multiple enclaves often require communication
across different physical and logical regions to perform complex
tasks. Traditional communication patterns may not efficiently
support these cross-region interactions, leading to performance
bottlenecks and security challenges. To address these issues,
we propose a multi-layer communication pattern. This pattern
can initially support multiple TEE Regions, allowing different
cloud providers to run their sensitive applications securely.
Secondly, it facilitates inter-enclave communication both within
a single TEE Region and between different TEE Regions.
By leveraging the multi-layer communication pattern, we
can improve enclave interactions’ flexibility, performance and
security across different cloud environments.

C. Challenges

Challenge-1: Scalability and security over shared memory. Us-
ing shared memory for inter-enclave communication, although
it provides optimal performance, poses significant challenges
related to scalability and security. Hardware resources such as
RISC-V PMP can isolate each enclave and shared memory to
ensure security. However, the limited number of PMP registers
(typically only 16) restricts the number of enclaves and shared
memory blocks that can be supported, thus affecting the scala-
bility of inter-enclave communication. To improve scalability,
page tables can isolate enclaves and shared memory blocks, and
map shared memory to the enclaves needing communication.
However, this approach is susceptible to TOCTTOU attacks,
where attackers exploit state changes in shared memory data
between the check and use phases. Additionally, attackers
might use techniques like Rowhammer to tamper with page
tables, potentially mapping shared memory to malicious entities,
leading to data leakage or tampering. Balancing performance,
scalability, and security is the primary challenge in designing
efficient and secure inter-enclave communication mechanisms.
Challenge-2: Secure and efficient data exchange across the
TEE Regions. Multi-TEE Region systems allow developers
to deploy sensitive applications in separate regions, enhancing
flexibility and security. Hardware resources like RISC-V PMP
can partition memory into multiple TEE Regions to achieve
physical isolation. However, maintaining secure isolation
among multiple enclaves within a single TEE Region remains
challenging. Collaboration between enclaves across different
TEE Regions enables efficient handling of complex tasks.
Traditional copy+encryption mechanisms ensure secure inter-
TEE Region communication but have significant performance
overhead. Shared memory is a more efficient communication
method, but allocating it within a TEE Region for a specific
enclave requires granting access permissions to other enclaves,

potentially compromising their security. Thus, the main chal-
lenges in inter-TEE Region communication are the secure
creation of shared memory and the design of communication
interfaces. In summary, designing a flexible and efficient
communication mechanism while ensuring secure isolation
is a critical challenge for multi-TEE Region systems.

The key insights to resolve the above challenges are
decoupling protection (based on segment) from sharing
(based on page tables) and introducing a layered segment-
based isolation design with secure interfaces for multi-layer
communication. First, the decoupling can achieve high security
without compromising performance. The system only relies on
register-based segments for security protection, which can de-
fend against attackers targeting page tables (e.g., Rowhammer).
Second, we introduce a layered segment-based isolation design
that can achieve scalable segments compared to existing single-
layer designs. Finally, we design a set of secure interfaces,
combined with isolation mechanisms, to implement the TEE
multi-layer communication pattern.

III. ARCHITECTURE OVERVIEW

A. Architecture
We highlight two key aspects of LayerTEE abstraction: (1)

memory isolation with decoupled protection and (2) multi-
layer inter-enclave communication. These abstractions are
integrated into a secure monitor operating in the highest
privilege mode, such as machine mode in RISC-V, as illustrated
in Fig. 3(a). The secure monitor comprehensively manages all
enclaves within the system. It provides a robust set of APIs,
enabling users to seamlessly deploy, manage, and interact with
enclaves. Additionally, the secure monitor handles the lifecycle
of enclaves, including their creation, destruction, and context
switching, ensuring that the system remains safe and efficient
during operation. During system startup, the secure monitor
is loaded and authenticated by the boot ROM to ensure its
integrity and trustworthiness.

We utilize the RISC-V PMP mechanism to isolate secure
physical memory regions, referred to as TEE Regions. Ad-
ditionally, we introduce the RISC-V SPMP [27] mechanism
to decouple permission protection from the enclaves’ page
tables within a TEE Region, thereby defending against attacks
targeting the page tables. As shown in Fig. 3(b), the secure
monitor operates in machine mode (M-mode) and can access
all memory. The OS runs in supervisor mode (S-mode) and is
prohibited from accessing the secure monitor and TEE Regions
memory. Host applications and enclaves run in user mode (U-
mode) and can only access their own memory. When enclaves
are deployed within the same TEE Region, they are physically
closer, and their interactions are classified as ”intra-TEE Region
communication”. If they belong to different TEE Regions, they
are more distant, and their interactions are defined as ”inter-
TEE Region communication”.

This layered approach ensures the confidentiality of the data
within the TEE Regions.

We introduce several interfaces to facilitate inter-enclave
communication within and across different TEE Regions.
Combined with the SPMP mechanism, these interfaces en-
able efficient and secure inter-enclave communication. This
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Fig. 3. The system architecture and memory access control of LayerTEE. (a) LayerTEE provides versatile inter-enclave communication and decoupled
protection over SOTA TEE systems like Penglai. (b) The secure monitor (M-mode) has full access. The OS (S-mode) is restricted from the secure monitor and
TEE Regions. Host apps and enclaves (U-mode) are confined to their own regions.

mitigates TOCTTOU attacks by protecting the communication
process from timing vulnerabilities through the shared memory
mechanism. These interfaces enhance the TEE system’s flexibil-
ity and security, supporting scalable and secure multi-enclave
applications.

B. Threat Model

The trusted computing base (TCB) of LayerTEE includes the
hardware CPU and the secure monitor. We assume that attackers
possess extensive knowledge of the OS, hardware components,
and network configuration. They are also capable of creating
and executing malicious enclaves within the system. Using
these vulnerabilities or malicious enclaves, they could intercept
and manipulate messages between the CPU and other hardware
components, potentially leading to unauthorized data access
and system manipulation. Furthermore, attackers might employ
specific techniques such as TOCTTOU attacks and attacks
targeting page tables, like Rowhammer, to extract sensitive
information. These attacks can compromise the integrity and
confidentiality of the system’s data by exploiting the race
condition time window and memory vulnerabilities. The side-
channel attacks (e.g., timing or power analysis attacks) pertain
to distinct security dimensions and require specialized defense
strategies, which fall outside the scope of this work’s focus
on communication security mechanisms. Concerning denial-
of-service (DoS) attacks, our threat model inherently relies on
the assumption that the host OS adheres to standard resource
management protocols, as memory reclamation and similar
operations ultimately depend on host OS privileges. The
definition of threat model aligns with established conventions
in TEE research [25], [33], [36], [52].

IV. LAYERTEE DESIGN

This section primarily examines how the secure monitor
leverages hardware extensions alongside the proposed commu-
nication interfaces to achieve the design goals.

A. Isolation with Decoupled Protection

RISC-V PMP Background. RISC-V’s physical memory
protection (PMP) mechanism divides physical memory into
distinct regions, each with specific access permissions (read,
write, execute) [24]. These regions are managed using the
pmpaddr and pmpcfg registers, which are control and status
registers (CSRs) and can only be modified in M-mode. Each
memory region is defined by a continuous address range,
specified by two address registers or a single address register
with an embedded size. When memory access is requested
from S-mode or U-mode, the hardware checks if the target
address falls within a defined PMP region and verifies the
corresponding permissions. M-mode configures PMP regions
to be non-readable, non-writable, and non-executable to isolate
its memory from S/U-mode. Additional regions are set up for
the operating system and user applications, allowing appropriate
access while maintaining M-mode isolation. PMP enforces a
strict separation between M-mode and S/U-mode, enhancing
system security and integrity.

Scalability Challenges. RISC-V-based TEEs like Keystone and
Penglai-PMP use the PMP mechanism to isolate enclaves. In
M-mode, PMP includes 16 sets of address and configuration
registers. These registers define physical memory regions’ size,
location, and access permissions. Memory access is granted
only if PMP checks pass; otherwise, access is denied. Each
enclave’s isolation requires a dedicated set of PMP registers,
but the limited number of PMP registers restricts the concurrent
enclaves. This limitation poses a scalability challenge for RISC-
V-based TEEs in cloud environments that require handling
many tasks simultaneously.

Table-based Memory Isolation. Within a TEE Region isolated
by PMP registers, a page table mechanism is employed to
isolate enclaves further, as shown in Fig. 4. Each enclave
has its own page tables stored in dedicated memory, which
the secure monitor configures to map to its specific memory
space. This approach supports the simultaneous creation of
multiple enclaves within the same TEE Region. In the Sv39
page table structure (3-level page table), hardware memory
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access requires four references: three for the page table pages
and one for the data pages. Each access involves a PMP check
to verify permission. However, this approach is vulnerable
to attacks targeting page tables like Rowhammer, which can
leak sensitive data. To counter this, we introduce the RISC-V
SPMP mechanism [27] to decouple permission protection from
page tables, enhancing the isolation and protection of enclaves
within the TEE Region.

RISC-V SPMP Mechanism. SPMP is a segment-based design
similar to RISC-V PMP. It supports 16 entries, each consisting
of an address register and a configuration register. The SPMP
entries can define the range of physical memory regions
managed, with the range limited by the A field in the
configuration register and the address register. The access
permissions for these regions are determined by the X (execute),
W (write), and R (read) fields in the configuration register. The
S field of the configuration marks a rule as S-mode-only when
set and U-mode-only when unset.

TEE Region Memory Management. When creating an enclave
within a TEE Region, the secure monitor allocates a contiguous
physical memory region, sets up the page tables, and assigns
metadata containing the enclave’s information. This metadata,
stored in an isolated memory area managed by the secure
monitor, includes the enclave’s unique identifier (eid), starting
physical address, memory size, SPMP register context, and
more. During enclave creation, the secure monitor configures
the SPMP context based on the allocated physical address,
size, and access permissions. When the enclave is executed,
the secure monitor uses this SPMP context to write into the
SPMP address and configuration registers via the CSR.write
instruction, ensuring the correct memory access permissions.
When switching to another enclave, the secure monitor retrieves
the target enclave’s SPMP context using its eid and loads it
into the SPMP registers. This dynamic adjustment of SPMP
register configurations ensures strict isolation among different
enclaves. Thus, within the TEE Region, the management and
switching of the SPMP register context effectively facilitate
the physical memory isolation of multiple enclaves.

Using segment-based SPMP registers, we decouple permis-
sion protection from page tables, establishing a secure and
scalable enclave isolation mechanism. As shown in Fig. 4,
the system performs an SPMP check alongside each PMP
check, allowing memory access only if both checks pass. This
approach enhances security and efficiency by storing permission
settings directly in registers and conducting checks internally
within the CPU. Additionally, LayerTEE can create multiple
TEE Regions, each capable of hosting unrestricted enclaves.

TABLE II
INTER-ENCLAVE COMMUNICATION INSTRUCTIONS IN LAYERTEE. P MEANS

ACCESS PERMISSION TO ANOTHER ENCLAVE.

Instructions Semantics
shmid = create(key, size) create a shared memory
err = map(vaddr, shmid) map vaddr range to a shared memory
err = transfer(shmid, eid, P) transfer P to another enclave
err = attach(shmid) associate with a shared memory
err = detach(shmid) disassociate with a shared memory
err = share(shmid) share a shared memory with read-only
err = destroy(shmid) destroy a shared memory

Enclaves that communicate frequently (“close enclaves”) can
be created within the same TEE Region, while those with less
frequent communication (“distant enclaves”) can be created in
different TEE Regions. This approach highlights LayerTEE’s
scalability, security, and adaptability.

B. Inter-Enclave Communication within the TEE Region

Communication Interface. In our system, the enclave initiating
communication is the enclaver, and the enclave receiving
communication is the enclavee. Table II outlines the seven
instructions for versatile inter-enclave communication within
LayerTEE. In this scheme, the key is predefined by the
user-defined communication schemes and includes two parts:
shm key and enclave key. The shm key is used to connect
enclavee to shared memory, while the enclave key ensures the
enclavee is correctly identified when the enclaver transfers
shared memory permissions. This paper details the design and
implementation of this inter-enclave communication mechanism
through a client-server communication flow.
Communication Flow. A predefined key is bound to the eid
during the creation of each enclave requiring communication.
For enclaves communicating via the same shared memory, their
shm keys are identical, while enclave keys are unique. Fig. 5(b)
shows the communication flow between two enclaves in the
TEE Region using a client-server pattern and the changes in
SPMP registers at each stage.

Stage ①: The enclaver issues the create instruction to
request the shared memory. The secure monitor allocates the
memory, binds its shmid with the shm key and the enclaver’s
eid, and updates the SPMP registers and the enclaver’s
SPMP context. Upon successfully creating shared memory,
the enclavee obtains the shmid via shm key and associates the
memory using the attach instruction.

Stage ②: Both enclaves execute the map instruction, map-
ping the shared memory into their virtual address spaces.
The enclaver has read and write access, but the enclavee
cannot access the memory because the SPMP registers store
the information of the enclaver.

Stage ③: After writing data, enclaver transfers access
permissions of the shared memory to the enclavee using the
transfer instruction. The secure monitor updates the SPMP
registers, allowing the enclavee to read the request (req) and
provide a response (resp).

Stage ④: After sending its resp, the enclavee transfers
access permissions back to the enclaver using the transfer
instruction.
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TABLE III
UPDATED INTER-ENCLAVE COMMUNICATION INSTRUCTIONS IN LAYERTEE.

THE USER SELECTS THE MODE AND CK VALUE.

Instructions Semantics
shmid = create(mode, key, size) create a shared memory

err = destroy(shmid, ck)
destroy a shared memory
and determine whether
to check ShMRegion

Stage ⑤: When communication concludes, the enclavee
uses the detach instruction to disassociate from the shared
memory, and the enclaver destroy the shared memory using
the destroy instruction. The secure monitor clears the SPMP
configurations and memory mappings, releasing resources.

The bilateral and multi-bilateral communication patterns in
§II-B all follow this fundamental flow. By using the share
instruction, the enclaver can set the shared memory to read-only,
allowing the enclavees executing the attach instruction to
read data, thus enabling the single-producer multiple-consumer
communication pattern.
Ownership Transfer. In this scheme, the transfer instruc-
tion triggers a trap into the M-mode secure monitor, which
reconfigures the SPMP registers to facilitate shared memory
ownership transfer among enclaves. This approach avoids the
overhead of multiple unmapping and remapping operations
needed in a remapping mechanism and enhances security
against TOCTTOU attacks and targeting page table attacks.

C. Inter-TEE Region Communication

To support multi-layer communication in a multi-cloud
environment, we design inter-enclave communication across
TEE Regions in the LayerTEE system.

The intra-TEE Region communication scheme described in
§IV-B does not meet the requirements for inter-TEE Region
communication, as the communicating enclaves are located in
different TEE Regions. Creating shared memory within one
TEE Region and keeping its PMP permissions open during
communication can pose a security risk to other enclaves

within the same region. While the traditional copy+encryption
method can facilitate inter-TEE Region communication, it
incurs significant performance overhead. Therefore, we use the
shared memory mechanism to address the needs of inter-TEE
Region communication, as shown in Fig. 5(a).

We updated certain communication instructions from Table II,
detailed in Table III. When an enclaver initiates communication,
the appropriate mode is selected based on the scenario to invoke
the create instruction for shared memory creation.

Mode 0 is designed for communication between enclaves
within the same TEE Region. In this mode, shared memory is
created within the same TEE Region and isolated using SPMP
registers.

Mode 1 is intended for temporary communication between
enclaves in different TEE Regions. In this mode, the secure
monitor allocates a memory block of the specified size
in untrusted memory, isolates it using PMP registers, and
synchronizes the address information into the SPMP registers
context of the enclaver. During communication, the PMP
permissions for this memory remain open to ensure access
checks pass smoothly. When other enclaves or untrusted
applications run, the PMP permissions are closed to prevent
unauthorized access. Subsequent communication flows, such as
the enclavee invoking the attach instruction to associate the
shared memory or the enclaver invoking the transfer in-
struction to transfer shared memory permissions to the enclavee,
follow the same process as intra-TEE Region communication.
Once communication is complete, the destroy instruction
is invoked to release the shared memory and free resources.

Mode 2 is designed for communication among many
enclaves across multiple TEE Regions. In this mode, the secure
monitor first allocates a large fixed-size memory block in un-
trusted memory, isolates it using PMP registers, and designates
it as a Shared Memory Region (ShMRegion). The size of this
region is determined by the LayerTEE system based on the
available memory capacity. If sufficient contiguous physical
memory is unavailable, inter-enclave communication defaults to
mode 1. Next, the secure monitor allocates a physical memory
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Fig. 6. LayerTEE implementation based on Xiangshan Nanhu Core. The red
box highlights the areas most closely associated with the PMP and SPMP
checker.

block of the specified size within the ShMRegion and configures
the address information into the SPMP registers context of the
enclaver. The subsequent communication process follows the
same steps as previously described. During communication,
the PMP permissions for the ShMRegion remain open, and the
ownership of the shared memory is transferred by invoking the
transfer instruction to switch the SPMP registers context.
When non-communicating enclaves or untrusted applications
are running, the PMP permissions for the ShMRegion are
closed. Upon completion of communication, the enclaver
invokes the destroy instruction to release the shared memory.
When the destroy instruction is invoked, the secure monitor
decides whether to check for remaining shared memory within
the ShMRegion based on the value of ck (ck=0 means no
check, ck=1 means check). If none exists, the region’s memory
is released, and the data is cleared.

In summary, the three communication modes designed
in the LayerTEE system effectively support both intra-TEE
Region and inter-TEE Region communication across various
scenarios. By utilizing the shared memory mechanism, the
LayerTEE system ensures security and significantly enhances
communication performance.

V. IMPLEMENTATION

Hardware. We extend the SOTA RISC-V high-performance
processor, Xiangshan Nanhu-V2 (an 11-level superscalar out-
of-order core) [50] by adding 16 SPMP CSR registers and
introducing an SPMP Checker module, as shown in the Fig. 6.
During memory access, the MMU translates virtual addresses
into physical addresses, performing parallel PMP and SPMP
checks. Memory access is allowed only if both checks pass;
otherwise, it is prohibited. These modifications do not alter the
core’s pipelines.

Software. We implement LayerTEE on the Penglai Enclave
(PMP version, v0.2 release [24]), an advanced RISC-V platform
open-source TEE. Penglai Enclave provides Linux drivers, an
SDK, and authentication mechanisms for creating, running,
relaying, and destroying enclaves. We extend the secure monitor
to support scalable and efficient inter-enclave communication
and TEE Region memory management without using a guarded

TABLE IV
SIMULATION CONFIGURATIONS.

Parameter Value / Description

Xiangshan
Core
Nanhu V2
Architecture

Processor OoO RISC-V CPU@2GHz
Front-end 6-way decoder,

64-entry fetch target queue,
48-entry instruction buffer,
256-entry micro branch target buffer,
2048-entry fetch target buffer,
16K-entry TAGE-SC, RAS, ITTAGE

Execute 6-way rename/dispatch,
256-entry ROB,
192 int/fp physical registers,
ALU, MUL/DIV, JUMP/CSR/I2F,
LD, STA, STD, FMAC, FMISC

LSU 80-entry load queue,
64-entry store queue

L1 Cache 128KB 8-way I-cache/D-cache
L2 Cache 1MB 8-way non-inclusive
LLC 6MB 8-way non-inclusive
L1 I/D TLB 40-entry ITLB (32-entry normalpage,

8-entry superpage)
full-associative, 136-entry DTLB

L2 TLB 2048 entries
Memory 8GB DDR4 KVR26S19S8/8
OS Buildroot, Linux 5.10, OpenSBI 0.9

page table proposed by Penglai-TVM or other new hardware
features.

Methodology. We evaluate LayerTEE on the Xilinx Virtex
UltraScale+ VU19P (XCVU19P) FPGA [4], which simulates
a Nanhu Core System on Chip (SoC) running at 2GHz. The
detailed hardware configurations are provided in Table IV. Our
microbenchmark tests compare the communication performance
of LayerTEE with several other systems: PL-Copy (based on the
original PMP version), PL-Remapping (an enhanced Penglai-
PMP version with a remapping communication mechanism),
PL-PMPTable (an improved Penglai-PMP version incorporating
the PMP-Table mechanism), and PL-PT-Copy (an extension
of the Penglai-PMP version with a page table mechanism and
copy+encryption communication mechanism). We compared
LayerTEE with Penglai-PMP and Host-with-SPMP, a non-TEE
environment equipped with SPMP hardware for application-
level benchmarks. Further details can be found in §VI.

Note: This paper extends our previous work on Dep-
TEE [42] by introducing LayerTEE, an enhanced system for
inter-enclave communication. LayerTEE improves the shared
memory mechanism by establishing the ShMRegion, designed
explicitly for inter-enclave communication across different TEE
Regions, thereby facilitating inter-TEE Region communication.
Within a single TEE Region, the inter-enclave communication
mechanism in LayerTEE remains identical to that of Dep-
TEE. As a result, the communication performance across the
five pattern regions is unchanged. Consequently, a quantitative
comparison between LayerTEE and Dep-TEE is unnecessary,
as LayerTEE inherently reflects Dep-TEE’s performance within
a TEE Region. Importantly, LayerTEE does not introduce new
hardware extensions, ensuring the hardware overhead remains
consistent with Dep-TEE.
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VI. EVALUATION

A. Microbenchmarks

To evaluate the communication performance of LayerTEE,
we design a comprehensive set of benchmarks that include five
communication patterns utilizing three different communica-
tion mechanisms. Our research focuses on data transmission
performance, intentionally excluding data processing aspects.
We examined the efficiency of data transmission in LayerTEE
and PL-Remapping and the data copying performance in PL-
Copy without considering encryption or decryption operations.
The microbenchmark tests are structured into two main
parts. The first part evaluates the inter-enclave communication
performance within the same TEE Region. The second part
evaluates the inter-enclave communication performance across
different TEE Regions. This division allows for a detailed
analysis of the communication capabilities in various scenarios.

1) Performance of Intra-TEE Region: We evaluate the per-
formance of LayerTEE and compare it with three major types
of TEE communication mechanisms: PL-copy (representing
TEEs that use copy+encryption mechanisms, such as SGX [36]
and Sanctum [20]), PL-Remapping (representing TEEs that
use remapping mechanisms, such as Komodo [26] and Penglai-
TVM [25]), and PL-PMPTable (representing confidential virtual
machine types of TEEs that use permission table isolation and
shared memory communication, such as Intel TDX [31] and
ARM CCA [8]).

Bilateral communication patterns results. Using microbench-
mark tests, we evaluate the data transfer performance of
three bilateral communication patterns, i.e., producer-consumer,
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Fig. 9. Performance of single-producer multi-consumer communication.

client-server, and proxy. The analysis focuses on how data
size affects transfer latency, with Fig. 7 illustrating the results
for record sizes ranging from 0.5 KB to 2 MB. The results
demonstrate that LayerTEE consistently delivers significant
performance advantages in all three communication patterns.
For instance, in the producer-consumer pattern, LayerTEE
achieves a 7× performance improvement over PL-Copy for 8
KB of data, dramatically increasing to 2000× for 2 MB of data.
Similarly, in the client-server and proxy patterns, LayerTEE
outperforms PL-Remapping and PL-Copy by 10× and several
hundred times, respectively, when handling larger data volumes.
The performance decline of PL-Copy with increasing data size
is primarily due to data copying overhead, which is further
exacerbated when encryption and decryption operations are
included. For PL-Remapping, performance drops significantly
beyond 128 KB of data because frequent unmapping and
remapping operations impose considerable overhead. While
PL-PMPTable benefits from the shared memory mechanism,
its performance remains slightly lower than LayerTEE. This
is attributed to the additional overhead from multiple memory
accesses required for permission checks in its permission table
isolation mechanism.

Multilateral communication patterns results. In the multilat-
eral communication patterns, we evaluate the performance of
different systems in the producer-consumer pattern while trans-
ferring 1 MB of data. Evaluating performance with a larger data
size is crucial to ensure efficient communication within TEEs
under substantial load. Fig. 8 shows the performance of each
system as the number of enclave pairs increases, ranging from
1 to 100 pairs. The results show that LayerTEE significantly
outperforms PL-Copy, with performance improvements of over
3000× when transferring 1 MB of data. As the number of
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enclave pairs exceeds 10, both PL-Copy and PL-Remapping
fail to support additional communication due to limitations in
PMP register resources. Similarly, Elasticlave [52], based on
the Keystone [33] design, faces scalability issues for the same
reason—insufficient PMP registers. In contrast, LayerTEE can
efficiently support communication among more than 100 pairs
of enclaves, highlighting its strong potential for handling large-
scale multitask processing. Although PL-PMPTable supports
communication over 100 enclave pairs, its performance lags
behind LayerTEE due to the multiple memory accesses required
per permission check, resulting in significant overhead.

In the single-producer multi-consumer pattern, we analyze
data transfer latency across different systems as the number
of consumer enclaves varies. Fig. 9 shows the performance
of each system, including data read and write latency, when
transferring 1 MB of data with the number of consumer
enclaves ranging from 5 to 100. This reflects common usage
scenarios and evaluates the scalability of the systems under
varying loads. As we can see, LayerTEE exhibits substantially
superior communication performance compared to PL-Copy
and PL-PMPTable, while also achieving a modest yet consistent
advantage over PL-Remapping. This advantage arises from
LayerTEE’s dynamic SPMP register adjustment mechanism
that optimizes large-scale communication data management,
while other baseline systems suffer significant overhead due
to their inherent limitations: PL-Copy requires redundant
data duplication, PL-Remapping demands frequent page table
remapping, and PL-PMPTable incurs multiple memory accesses
for permission checks. It is noteworthy that PL-Copy and PL-
Remapping, like Elasticlave, encounter scalability limitations
beyond 20 consumer enclaves due to insufficient PMP regis-
ters. In comparison, LayerTEE supports communication with
unrestricted consumer enclaves, demonstrating its exceptional
capability for cloud computing environments that demand large-
scale concurrent task execution.

B. Performance of Inter-TEE Region

Since current TEE architectures do not yet support the con-
cept of TEE Regions and no existing comparison baselines are
available, we designed and implemented a baseline system, PL-
PT-Copy and PL-PT-Remapping. Based on Penglai-PMP, this
system uses the page table mechanism to isolate each enclave
within physically separated memory regions managed by PMP
registers. Inter-enclave communication is achieved through a
copy+encryption and Remapping mechanism. Using bilateral
and multilateral communication patterns, our performance
evaluation compares LayerTEE with PL-PT-Copy and PL-PT-
Remapping. Enclaves requiring communication are created in
different TEE Regions to simulate real-world scenarios. We
analyze the performance of the three systems under various
communication patterns to determine their effectiveness and
efficiency.

Results. LayerTEE not only supports inter-TEE Region com-
munication but also demonstrates significant performance
advantages in both bilateral (Fig. 10 (a), (b), and (c)) and
multilateral (Fig. 10 (d) and (e)) communication patterns. This
performance is primarily due to LayerTEE ’s use of the shared

memory mechanism, which allows data exchange through direct
instructions, making its performance less dependent on data
size. In contrast, while PL-PT-Copy can also support inter-TEE
Region communication, its copy and encryption operations
introduce a significant performance overhead as data size
increases. This overhead reduces efficiency, particularly in
large data transfers and multi-task environments. The PL-PT-
Remapping demonstrates comparable performance to Layer-
TEE in low-data-volume communication scenarios, but exhibits
substantial performance degradation under high-data-volume
conditions. This limitation is attributed to the inherent overhead
of the page table remapping mechanism when processing
large-scale data transfers, primarily caused by system-level
maintenance operations, including TLB flush operations and
page table entry reconstruction. In addition, since the enclave
isolation mechanisms of these two systems rely on page tables,
their security is still threatened by page table attacks. On the
other hand, LayerTEE shows more pronounced advantages
in handling large-scale data transfers and concurrent tasks.
It provides an advanced platform that facilitates efficient
communication within a single cloud provider and supports
collaboration across multiple providers. This flexibility allows
LayerTEE to adapt to various communication scenarios, sig-
nificantly enhancing the efficiency and scalability of cross-
cloud and inter-TEE Region communication. Consequently,
LayerTEE offers an effective solution for complex application
environments, making it a robust choice for modern cloud
computing needs.

C. Benchmark suites

We use the RV8 [17] benchmark suite to evaluate the
performance of compute-intensive workloads in environments
with physical memory isolation. We port the benchmark suite
to LayerTEE and execute it in two additional environments
for comparison: Penglai-PMP, the original TEE environment,
and Host-with-SPMP, a rich execution environment (REE)
augmented with SPMP check extensions. Additionally, we use
Redis [44], a widely used in-memory data store, to evaluate the
SPMP mechanism’s impact on memory-intensive applications.
The Redis benchmark simulates multiple client connections to
a Redis server, measuring the average number of requests per
second.
Results. As shown in Fig. 11, introducing the SPMP mechanism
in LayerTEE results in negligible performance overhead for
CPU-intensive applications compared to Penglai-PMP. Simi-
larly, Fig. 12 demonstrates that the SPMP mechanism does
not introduce significant overhead for the Nanhu V2 Core in
memory-intensive applications. This is because, during the
design phase, the CPU simultaneously performs PMP and
SPMP checks when the MMU translates virtual addresses
to physical addresses, resulting in minimal overhead for the
original PMP system.

D. Hardware Costs

The Vivado [5] resource utilization report (Table V) shows
the impact of the SPMP mechanism on the FPGA. After
implementing the SPMP mechanism on the Xiangshan Nanhu
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V2 Core, we observed that the hardware cost is remarkably
low. Specifically, Look-Up Tables (LUTs) are used only 0.2%,
Flip-Flops (FFs) are used 0.04%, and other resources in the
top module are used negligibly. These results indicate that
introducing the SPMP mechanism demands minimal additional
hardware resources, demonstrating its efficiency in controlling
hardware costs.

E. Security Analysis

LayerTEE’s communication system is implemented on
Penglai TEE. The Mounted Merkle Tree (MMT) ensures data
and code integrity, while cache line locking prevents cache
side-channel attacks. Additionally, segment-based registers for
physical memory isolation can protect the enclave’s privacy
from untrusted OS applications.

Mitigating Rowhammer Attacks. Rowhammer attacks exploit
hardware flaws to induce bit flips in memory cells, potentially
compromising page tables and altering memory mappings.
TEEs like Intel TDX [31] and AMD SEV [3] rely on
shared memory mechanisms for inter-enclave communication.
However, these TEEs map shared memory directly to an
enclave’s physical address space using page tables, leaving
them vulnerable to Rowhammer attacks. In the LayerTEE

TABLE V
HARDWARE RESOURCE COSTS OF THE TOP MODULE IN FPGA.

Recourse NanhuV2 Core NanhuV2 Core-with-SPMP Cost
LUT 1259204 1267350 0.20%
LUTRAM 68336 68332 0.00%
FF 447069 450546 0.04%
BRAM 336 336 0.00%
URAM 90 90 0.00%
DSP 3 3 0.00%

system, relying solely on page tables to isolate enclaves and
shared memory in the TEE Region introduces vulnerabilities
to Rowhammer attacks. A malicious enclave could exploit
Rowhammer through two attack vectors: (1) manipulating its
own page table permissions to evade memory isolation, and (2)
corrupting a target enclave’s page tables to gain unauthorized
access to sensitive data. Our proposed solution employs the
SPMP mechanism to isolate enclaves and shared memory
within the TEE Region. Every memory access undergoes CPU-
level SPMP physical address checks, ensuring robust protection
even when page tables are compromised by Rowhammer. Even
if a malicious enclave successfully modifies its own page
table, any attempt to access another enclave’s memory region
would still be intercepted by SPMP checks. While attackers
might corrupt data within an enclave, they are prevented from
extracting sensitive information. Our approach complements
existing Rowhammer defenses, such as guard rows [12], [13],
[32], counter-based methods [47], and error-correcting codes
(ECC) [11], [18], which provide additional layers of protection
and are orthogonal to this work.

Defending against TOCTTOU Attacks. TOCTTOU attacks
exploit the gap between checking and using a resource, allowing
malicious enclaves to manipulate shared memory during this
window. TEE communication systems like Data-Enclave [51]
reduce communication overhead by mapping shared memory
to multiple enclaves simultaneously. However, this approach
makes them particularly susceptible to TOCTTOU attacks. In
the TEE Region without SPMP-based isolation, communicating
enclaves retain concurrent access to the shared memory. When
a target enclave completes access verification and initiates
operations (e.g., read/write), the malicious enclave can reacquire
the same memory region to disrupt these operations. This
temporal inconsistency in permission views creates exploitable
conditions for TOCTTOU attacks. LayerTEE mitigates this
risk by using the SPMP mechanism to enforce shared memory
ownership transfer through the transfer instruction. This
ensures that only one enclave has write access to the shared
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memory at any time, preventing TOCTTOU attacks and
ensuring secure, consistent access.

In summary, the aforementioned works use the shared
memory mechanism to implement inter-enclave communication,
achieving similar performance but lacking security, making
them vulnerable to attacks targeting page tables and TOCT-
TOU attacks. LayerTEE enhances security by utilizing the
SPMP mechanism for permission decoupling, maintaining high
performance while improving protection against these attacks.

VII. CONCLUSION

This paper presents LayerTEE, a novel TEE communication
system that addresses the limitations of existing TEE solutions
in balancing performance, security, and scalability. Using the
RISC-V PMP and SPMP mechanisms, LayerTEE decouples
memory protection from address translation, enabling secure
shared memory communication while mitigating vulnerabilities
such as Rowhammer and TOCTTOU attacks. LayerTEE intro-
duces a multi-layer communication design that distinguishes
between intra-TEE Region and inter-TEE Region interactions.
Experimental results show LayerTEE achieves significantly
reduced communication latency, improved scalability, and
robust security guarantees compared to existing solutions.
This work highlights the potential of LayerTEE to advance
TEE communication systems, offering a practical and efficient
solution for emerging security-sensitive applications. Future
research can explore further optimizations and extensions to
enhance LayerTEE ’s applicability across diverse hardware
architectures and use cases.
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