
Mortar: Morphing the Bit Level Sparsity for General Purpose
Deep Learning Acceleration

Yunhung Gao
School of Electronics Engineering

and Computer Science

Peking University

Beijing China

Hongyan Li
State Key Lab of Computer

Architecture, Institute of Computing

Technology, CAS

University of Chinese Academy of

Sciences

Beijing, China

Kevin Zhang
School of Electronics Engineering

and Computer Science

Peking University

Beijing, China

Xueru Yu
Shanghai Integrated Circuits R&D Center Co. Ltd

Shanghai, China

Hang Lu
State Key Lab of Computer Architecture, Institute of

Computing Technology, CAS

University of Chinese Academy of Sciences

Beijing, China

ABSTRACT
Vanilla Deep Neural Networks (DNN) after training are represented

with native floating-point 32 (fp32) weights. We observe that the bit-

level sparsity of these weights is very abundant in the mantissa and can

be directly exploited to speed up model inference. In this paper, we

propose Mortar, an off-line/on-line collaborated approach for fp32

DNN acceleration, which includes two parts: first, an off-line bit

sparsification algorithm to construct the target formulation by

“mantissa morphing”, which maintains higher model accuracy while

increasing bit-level sparsity; second, the associating hardware

accelerator architecture to speed up the on-line fp32 inference through

manipulating the enlarged bit sparsity. We highlight the following

results by evaluating various deep learning tasks, including image

classification, object detection, video understanding, video & image

super-resolution, etc.: We (1) increase bit-level sparsity up to

1.28~2.51x with only a negligible -0.09~0.23% accuracy loss, (2)

maintain on average 3.55% higher model accuracy while increasing

more bit-level sparsity than the baseline, (3)and our hardware

accelerator outperforms up to 4.8x over the baseline, with an area of

0.031 ��� and power of 68.58 ��.

CCS CONCEPTS
•Computer systems organization •Neural networks

KEYWORDS
deep learning accelerator, neural networks, bit-level sparsity

ACM Reference format:
Yunhung Gao, Hongyan Li, Kevin Zhang, Xueru Yu and Hang Lu. 2022. Mortar:

Morphing the Bit Level Sparsity for General Purpose Deep Learning Acceleration. In

28th Asia and South Pacific Design Automation Conference (ASPDAC '23). ACM,
Tokyo, Japan, 6 pages. https://doi.org/10.1145/3566097.3567868

1 Introduction
Since the prosperity of deep learning from 2012, a variety of deep

neural networks (DNNs) are deployed on the cloud to provide special

and important services, ranging from video understanding to

recommender systems. For instance, cloud service providers such as

Google and Amazon rely on efficient deep learning to provide precise

recommendations to their customers. The features of these deployed

DNNs are usually vanilla models represented in floating-point 32 (fp32

hereafter) precision, trained using high-performance GPUs.

The widely adopted, vanilla fp32 DNN usually exhibits satisfiable

performance with high native model accuracy. The developer also need

not worry about accuracy loss introduced by model optimization

methods including pruning and quantization, especially when facing

corner cases that do not exist in the training dataset. However, fp32

DNNs are also unfavorable for their slow speed compared with lower

precisions such as fp16 or int8. The ideal case is that the developer

could, on one hand, acquire the vanilla accuracy without worrying

about corner cases, and on the other hand, obtain the fast inference that

is on par with low-precision models.

From an architectural perspective, existing DNN accelerators barely

specialize their architectures for the fp32 precision by ignoring special

“features” of fp32 operands. For example, the general-purpose

accelerators TPU [1], KunLun [2], Enflame DTU [3], and MLU290 [4]

employ the most conventional fp32 multiply-and-accumulation (MAC)

as the fundamental micro-operation for computing convolutions and

matrix multiplications. The tedious floating-point arithmetic inevitably

drags down the inference speed, despite the improvement brought by

frequency boosts or technology nodes.

While from our observations, there are exactly certain special features

that can be utilized to accelerate the fp32 arithmetic. As will be shown

in Section II, fp32 demonstrates abundant “bit-level sparsity”,

especially after “exponent alignment”. The shifted position of the

mantissa must be padded with zeros for addition and multiplication,

which provides a unique opportunity for manipulating the newly

generated sparsity during the calculation. Moreover, another side-effect

of exponent matching is that the essential bits (‘1’ bits) will be shifted

to the rear according to IEEE 754 standard, and the rear position is often

less significant but large in the proportion of essential bits. This

Author 1, 2 and 3 contributed equally. Corresponding author is Hang Lu, email:

luhang@ict.ac.cn.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

ASPDAC '23, January 16–19, 2023, Tokyo, Japan
© 2023 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-9783-4/23/01.

https://doi.org/10.1145/3566097.3567868

739

ASPDAC '23, January 16–19, 2023, Tokyo, Japan Y. Gao, H. Li et al.

phenomenon also necessitates optimization for the abundant less-

important bit 1s.

Therefore, in this paper, we propose a novel DNN acceleration

methodology, termed Mortar, for faster and higher-performing fp32

inference. Mortar is a collaborative methodology that contains two

parts: off-line morphing and on-line acceleration. The off-line

morphing serves to re-organize the fp32 mantissa by reducing the less

important bit 1s, complementing the accuracy loss, and shortening the

valid length used in on-line acceleration. The on-line acceleration

section involves the practical hardware accelerator with specialized

micro-operations and bit-level computing architectures to concretely

enforce the updated DNN model after off-line morphing.

Mortar is a cost-effective method, as the software operation, i.e., the

off-line morphing, only manipulates the target mantissa using a low-

complexity optimization algorithm that neither is time-consuming nor

requires powerful training facilities. The time spent is also adequate

depending on the model size. Furthermore, the proposed on-line

acceleration is a low-cost hardware architecture using combinatorial

circuits to fulfill fp32 MACs. Generally speaking, this paper makes the

following contributions:

(1) We propose Mortar, a novel on/off-line collaborative approach
for general-purpose deep learning acceleration. Based on the two

key observations, our method targets and manipulates the abundant bit-

level sparsity in the fp32 mantissa as well as trivial bit ones to form a

more hardware-friendly DNN. The actual inference is implemented on-

line on the proposed Mortar accelerator.

(2) We thoroughly evaluate Mortar and compare it with several state-

of-the-art baselines. The following results are highlighted:

Accuracy & Sparsity Ratio: Mortar achieves 1.28x~2.51x sparsity

improvement with negligible model accuracy loss of -0.09~0.23%.

Compared with baseline BitX [5], Mortar can achieve an average of

3.55% higher accuracy while improving 1.05x bit-sparsity than BitX.
Accelerator Performance: Comparing Mortar Accelerator’s

performance with other state-of-art accelerators, we achieve 4.607x and

6.032x performance improvement over Pragmatic [6] as the baseline.

2 Background and Motivation
2.1 Sparsity Parallelism
Targeting the bit-level sparsity for DNN acceleration is not a new idea.

Many schemes in the literature have directly leveraged in-situ zero-bit

skipping mechanisms to avoid ineffectual computations [6] [7], or

special encoding methods to create more bit sparsity headroom [8] [9].

However, these approaches mostly focus on the fixed-point or integer

operands, which means their associating accelerators are restricted to

only DNN inference and not general training purposes. Very few works

try to accelerate MACs by targeting the bit sparsity in the fp32 operands.

A standard fp32 operand includes the signed bit (1 bit), exponent (8

bits), and mantissa (23 bits). Because the mantissa is 23-bit long, its

sparsity is more abundant, and it exhibits special features that could be

leveraged for general-purposed acceleration.

Figure 1 illustrates our first observation, analyzing the sparsity

distribution in vanilla DNN weights. The X-axis denotes the mantissa

bit positions from 1 ~ 23 (the first hidden bit 1 is not accounted [6]), Y-

axis denotes sequential layers of the model, and Z-axis shows the bit

sparsity proportion, calculated by the percent of ‘1’ bits over the total

number of binary bits. The figure reveals a uniform behavior in all

tested DNNs, that is, the sparsity distribution is even (~50%)

throughout the bit positions. This is reasonable as each bit has a 50%

possibility to be 0 or 1. We call this phenomenon “sparsity parallelism”.

The problem with this is that the less significant bit positions have a

similar bit sparsity but only play a trivial role in the final product. It

motivates us to reorganize the mantissa bits to align the sparsity

proportions with each bit’s significance in the product. Hence, the less

important bit positions can expose more bit-sparsity for zero skipping.

Mortar leverages this characteristic in off-line morphing to enlarge the

sparsity in the rear positions under tight accuracy requirements.

2.2 Sparsity Irregularity
As the particular feature of the fp32 arithmetic, exponent matching

aims to align two mantissas with the same bit significance in the same

position. On top of the previous observation of the static and uniform

sparsity, our second observation is that the exponent matching will

generate more sparsity due to the shifting operation making the sparsity

distribution highly irregular. As shown in Figure 2, the X-axis now has

a longer bit length to contain the shifted bits. The rear bit position

extends beyond 23 and attains even the 58th-bit position, i.e. 2���. The

whole distribution exhibits an “arch” shape, with the front essential-bit

proportion dropping from 50% to less than 10% on average. Most bit

1s concentrate in positions 10~28, and we call this phenomenon

“sparsity irregularity”.

This observation implicates a potential opportunity to compute fewer

bit 1s while still maintaining target accuracy. Since the rear bits are tiny

in value, we can safely migrate several rear bit 1s (setting rear bit 1s to

0s) to compensate for the front zero bit that is turned to one, because

the sum of several rear bit 1s can approximate the value of a front bit 1.

Therefore, if all layers in a DNN are reorganized in this manner, the

accelerator only needs to target the front essential bits to effectively

reduce the computational overheads of the fp32 DNN. However,

achieving this objective is complicated, which entails an accuracy

constraint and the associated hardware design. In the next section, we

will elaborate on how Mortar is designed for these purposes.

3 Methodology
3.1 General Concept
Without loss of generality, a floating-point operand following IEEE-

754 [10] standards consists of three parts: signed bit (S), mantissa (M),

and exponent (E). Employing the float-32 format (fp32), the mantissa

is 23 bits long, the exponent occupies 8 bits, and the sign is one bit long.

The floating-point operand fp can be expressed as �	 = (
1)�1. � ×
2��
��, in which e is the actual position of the binary point plus 127.

We consider a series of fp32 MACs in computing the partial sum of

convolutions, and the expression [11] can be transformed from:

 � ����
��� × �� = � (
1)�����
��� �� × ��� × 2���]

ResNet18 SqueezeNet1_0

Figure 1: Bit-level sparsity before exponent alignment.

ResNet18 SqueezeNet1_0

Figure 2: Bit-level sparsity after exponent alignment.

740

Mortar: Morphing the Bit Level Sparsity for General Purpose Deep Learning Acceleration ASPDAC '23, January 16–19, 2023, Tokyo, Japan

= � � [����������
!�������� (
1)���"�#� · (��
��� �$� × ���

!)] × 2����%!] (1)

Therefore, we infer that floating-point MACs are equivalent to a series

of bit-level operations on the corresponding mantissa, which means the

floating-point partial sum can be converted into bit-level operations,

with sparsity considered. Moreover, based on our observations, the bit

level sparsity of the DNN model's weights is plentiful in the mantissa,

which can be directly leveraged to accelerate model inference.

The state-of-the-art techniques for decreasing the computing cost of

data size in DNN tasks include pruning and compression. Based on bit-

level manipulation, a faster and more efficient DNN computation can

be obtained by reducing the number of bits to be computed. However,

reducing too many bits causes a decrease in model accuracy, so there

are two conflicting optimization objectives for pruning and

compression, which respectively are the maximization of accuracy and

the minimization of computation. We notice the conflict between the

two goals: pruning reduces the number of MACs operations by

increasing the bit-sparsity of weights at the price of model accuracy.

Especially when the number of eliminated bits exceeds a certain

threshold, the model accuracy begins to decline as shown in BitX . To

tackle these problems, our technique delays the trade-off inflection

point in order to retain the model's accuracy to the greatest extent while

significantly increasing the sparsity of the weights.

3.2 Mortar
We propose Mortar, a software and hardware co-design accelerating

DNN inference for general purposes. First, Mortar uses "mantissa

morphing," a special bit sparsification approach based on bit-level

operations, to maximize the model's bit-level sparsity and DNN

acceleration for software-level optimization. Figure 4 provides a

straightforward illustration of the concept of mantissa morphing:

 The initial weight is shown in Figure 4(a). Through analyzing the bit

significance, we infer that the overall value represented by multiple

valid bits of figure (a) is very similar to the single valid bit located in

figure (b). This leads us to design an algorithm locating the most

significant '1' bit that can be optimized, i.e., a '1' bit preceded by a '0'.

We turn the preceding '0' into a '1' bit and clear all succeeding bits.

Intuitively, the original weight is only transformed to the new weight if

their difference falls within an acceptable range. Consequently,

deciding which bit to compensate into a ‘1’ is essential to mantissa

morphing. A precision algorithm is introduced to establish the error

range & to control the difference between the morphing weight �'and

the initial weight �. Below is the precise formula for Precision:

&*+-/0/34 = 5 6 ��‘���
��

 6 = 7 8�
��

 7 < & 9 ? 1 : 0 (2)

where & is a hyperparameter weighing the tradeoff between sparsity

and accuracy. The precision function is called on each optimizing '1'

bit, and if the left-hand side is smaller than &, then we apply mantissa

morphing at this position, replacing � with �'. However, when the

error is greater than &, the compensation effect exceeds a suitable range,

and the search for the next valid bit is necessary. Not only does this

indicator avoid over and under-compensation, but it also enables the

flexibility of adjusting the tradeoff between the two objectives of

accuracy and pruning: if & is extremely large, the morphing conditions

are looser and the algorithm will delete more bit 1 s, increasing sparsity

at the cost of model accuracy. On the other hand, a lower & will be

more restrictive when selecting morphing bits, preserving more

information for accuracy.

At the off-line level, the trained fp32 weights are first processed

through mantissa morphing, which establishes a hardware-friendly

approach to fully use the numerous insignificant bits while preserving

the original accuracy. The detailed technique of Mortar's off line

algorithm is elaborated below.

(1) Pre-processing
Consider the example of the mantissa of six fp32 weights in Figure 3(a)

We obtain a bit matrix displaying the binary mantissa stored in memory.

The example shows 23 bit-width mantissa with the leftmost bit having

the largest significance and the rightmost having the smallest

significance that corresponds to values 2�
 to 2��� . Each row

Algorithm 1: Mantissa Morphing
Input: Original fp32 weight, ��
Output: New weight after mantissa morphing, ��',
1:
2:

Interpret the n-bit exponent > = [+
, … , +@] and mantissa

� = [�
, … �@], the actual position of > is determined.

3: Set the value for parameter ‘&’ in Precision function

4:
5:
6:
7:
8:
9:
10:
11:
12:

foreach column A in �
if �B = 1 and �B�
 = 0:

�B�
‘ = 1;
 foreach column E in � [A : -]

 �F‘ = 0;
if (&*+-/0/34(�, �G, &)) # precision judge

 Return �G, A + 1;
 else �' = �;

continue

*Loop 7 can be parallelized for speedups

w 1.78

w=2.00

····· (a)

····· (b)

00 11

0 000 0 00

10

0 1

1
Ea=2

Eb=2

1

Offset 0.22 (11%)

Figure 4: An example of ‘Mantissa morphing’.

(a) Step 1: preprocessing
the floating-point weights

Add the hidden bit
1 in IEEE 753

w0 1.625

w1 13.75

w2 17.63

w3 14.31

w4 5.688

w5 73.00

1111

11

1 1

23-bit mantissa

1

1

1

1 1

1

1

1 111 11

11 11

0

the hidden bit '1' in IEEE 754 the binary pointEi exponentLegend: Last encoded bit

0 0 00 0 0

00

0 00 01 1 1 1

0 00

0

000 00 0 0

0 1

1

1

Mantissa

1

11

0 00 0 0

00

0 00 1

0 00

00

000 00 0

0

0 0 0

0 00 00

00 0 0

00

0 00

0 0

1111

11

1

E2=3

E1=0

E3=4

E6=6

1

23-bit mantissa

1 1

1

1

1 111 1
E5=2

11 1
E4=3

0 0 00 0 0

00

0 00 0 1 1 11

0 0 00

0 0

000 00 0

0 1

0

0

0

0 Avaliable Morphing

E2=3

E1=0

E3=4

E6=6

E5=2

E4=3
0

E2=3

E1=0

E3=4

E6=6

E5=2

E4=3

11

w0'=1.75

w1'=14.0

w2'=22.0

w3'=15.0

w4'=6.00

w5'=80.0

1

1

1

1

1

1

1

1

1

0 Unavailable Morphing First encoded bit

P>0.077

P>0.018

P>0.021

P>0.046

P>0.054

P>0.096

0.361 0.021

0.018

0.077

1

1

1

1

1

1

0" s

0" s

0" s

0" s

0" s

0" s

P=0.1
0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

Interval: (0~2)

Interval: (0~2)

Interval: (0~3)

Interval: (0~3)

Interval: (0~1)

Interval: (0~2)

Mantissa morphing

(b) Step 2: selecting the bit
for 'mantissa morphing'

(c) Step 3: applying 'mortar encoding' to
infer computing interval for each weight

0.046

0 0
0.054

0.0960.315

00011

1 0

Figure 3 The off-line procedure of Mortar. Bit matrix for pre-processing is shown in (a). (b) demonstrates the process of selecting the
bits to apply ‘mantissa morphing’ with P=0.1. And Mortar encoding, as shown in (c) to infer the data interval for each weight.

741

ASPDAC '23, January 16–19, 2023, Tokyo, Japan Y. Gao, H. Li et al.

represents a particular weight and is marked with a different color.

According to IEEE 754, a hidden '1' is inserted into the mantissa's

leftmost bit. The triangle mark represents the true relevance of weight

by the value of the exponent.

(2) Mantissa morphing
Figure 3(b) describes the core operation for mantissa morphing, and

the pseudo-code is provided in Algorithm 1. The initial weights are

adjusted off-line, and the parameter & is the threshold for morphing.

For each weight �� , the conditioned search begins from the most

significant bit and progresses to the least important bit, and Mortar

finds a A such that ��,B is valued '1' (line 4~5). Then, the preceding

��,B�
 bit is converted to '1' and all subsequent bits to '0', which we

declare as the new weight ��' (line 6~8). Finally, ��, ��', and & are

input into the Precision function. In Figure 3(b), ‘0’ bits with green

backgrounds represent positions satisfying the morphing requirements.

Finally, the new �� is returned along with the morphing bit’s location.

Contrarily, 0 bits in red are positions failing the precision function test

and where the weight is preserved until the next suitable bit. (Line 9~12)

(3) Mortar encoding
Figure 3(c) shows the mortar encoding process. Due to the mechanism

of the mortar algorithm, we can automatically spot the specific location

A
 1 of the last valid bit in each weight, followed by continuous '0' bits.

Since the first valid bit is always the hidden '1' of each weight, the

computing interval of each weight can be readily obtained from these

data. This interval determines the specific computation range for the

associating on-line accelerator design, substantially reducing the

computational cycles and avoiding invalid operations to non-trivially

improve the computation's efficiency.

3.3 Benefits of Off-line Mantissa Morphing
The previous examples highlight two key features of our technique:

(1) The sparsity of weights’ bits has been significantly improved:
The bit-level sparsity of Figure 4(a) is five times that of Figure 4(b)

with a negligible error of merely 0.22 (11%). Due to the

aforementioned property that MACs can be converted into bit-level

operations; our technique is a cost-effective tradeoff to increase

computation speed through data sparsification while retaining model

precision.

 (2) The irregularity of the weights’ bits has significantly improved:
The initial weight in Figure 4(a) reveals that the '1' bits may be

irregularly distributed (especially the important last bit), necessitating

implementations of zero-skipping procedures for hardware accelerators

that creates design overheads. However, our algorithm eliminates the

need for such zero-skipping techniques by obtaining the morphing

position as the final bit and clearing subsequent bits. Therefore,

regardless of how subsequent bits are distributed, they are all set to ‘0’,

consequently resulting in fewer computation cycles.

To conclude, the main difference between mantissa morphing and

conventional pruning is the employment of the technique bit

compensation. Rather than only pruning the bits with lower

significance, a '0' bit with a higher significance is changed to a '1' bit,

minimizing the model's accuracy degradation.

4 Mortar Accelerator
After the proposed off-line ‘mantissa morphing’ algorithm, we then

design an accompanying hardware accelerator for the on-line speed up

of fp-32 inference. The overall architecture of the Mortar accelerator is

shown in Figure 5, and the area and energy breakdown are given

inFigure 7 For the memory systems, the memory access is through

DMA, and the local buffer stores the data fetched from the Memory.

Mortar PE, which comprises of an array of Mortar CU, receives the

input of activations ��~���
 and weights ��~���
.

In the microarchitecture of CU, we use a serial architecture to perform

a /I × /I Multiply-Accumulate (MAC) operation per cycle, where

/ indicates the /-th input of � and �.The mantissa bits of activation

�$�~� are serially inputted into the CU along with weight mantissa bits

���~�. Each selector receiving the weight mantissa is controlled by the

‘mortar encoding’ signal to select only the valid data interval for each

weight; the unselected status will output 0 automatically. With the

advantages of serially computing ��J and �$J (� = 0,1 ·· /), we

can utilize a simple combinational logic to output the multiplication

value rather than a multiplier in each cycle, reducing the overhead of

hardware design. The shifter then shifts the output value of each cycle

with the corresponding bit significance to ensure the correctness of the

result. For floating point numbers, the shifting operation is performed

by the exponent accumulation in �, not introducing much overhead.

The corresponding shift for MACs is >�J + >$J , representing the

multiplication of activation and weight bits in the cycle. Lastly, the

adder tree performs the final partial-sum &0K�J accumulation.

5 Evaluation and Discussion
5.1 Benchmark and Framework
The deep learning models and the pre-trained parameters on ImageNet

[12] dataset is directly obtained from PyTorch [13]. The benchmark

models are shown in Table 1 to demonstrate the ability of Mortar for

general purpose DNN task acceleration. We choose the tasks from

different domains including Image Classification, Object Detection,

Video Understanding, Video & Image Super Resolution, and style

transfer. The benchmarks cover “large” models with the parameter size

such as 88.79M (ResNext101 [14]), 86.61M (ViT [15]), as well as

“small” models with the parameter size of 2.58M (D3DNet [16]). To

further demonstrate the generalization capability of Mortar, YoloV3

[17] is trained on the COCO [18] dataset. Our experiments extensively

evaluate Mortar’s effect on model accuracy and sparsity increase, and

we compare the performance with SOTA hardware pruning accelerator

R

Mortar-
Computing

Unit(CU)

Mortar
Encoder

0 psum0

Sel

En j-1

Selector

0Selector

0Selector

psum1

MA0

DMA

W0
W1
W2

WN-1

Local
BufferMemory

CU

CU

CU

CU

CU

CU CU

CU

CU

Mortar-PE

output
activation

f

A0 Ai
MA1 MAiAi+1 A2i+1 AN-i-1 AN-1

MW0[0]

MW0[23]

Output

MW1[0]

MW1[23]

MWi[0]

MWi[23]

W0

Wi

Wi+1

W2i+1

WN-i-1

WN-1

A0
A1
A2

AN-1

psumi

En j-1

Mortar
Encoder

Sel

En j-1

j-1En

Mortar
Encoder

Sel

En j-1

j-1En

>>

>>

>>

(EA0+EW0)

(EA1+EW1)

(EAi+EWi)

Figure 5: Overview of Mortar-overall architecture and the microarchitecture of Mortar Computing Unit (CU).

742

Mortar: Morphing the Bit Level Sparsity for General Purpose Deep Learning Acceleration ASPDAC '23, January 16–19, 2023, Tokyo, Japan

BitX. We selected discrete values for hyperparameter & in our design

space exploration, which attempt to explore the tradeoff in the

algorithm.

5.2 Accuracy and Sparsity
Table 2 shows the accuracy and sparsity changes for different types of

datasets that apply mantissa morphing using the threshold ‘P = 0.1’. We

empirically find this value of & to be a well-balanced tradeoff for most

models. Result shows that in general cases, the sparsity improvement

of a model can reach 2x with a neglectable accuracy degradation.

Additionally, we compared Mortar with BitX, a SOTA DNN

accelerator using hardware pruning to increase bit-level sparsity for

inference acceleration. We selected several models (DenseNet161 [19],

ResNext101 [20], ResNet18) for the image classification task, and we

focus on the difference in accuracy losses between Mortar and BitX at

similar sparsity improvement levels. As shown in Table 3, Mortar

greatly outperforms SOTA approach in accuracy while maintaining a

slightly improved sparsity. Especially on ResNext101 and ResNet18,

the difference in model accuracy is close to 5%, which is a non-trivial

improvement for the classification task.

Discussion: As shown in our experiments, the sparsity of the model

can be substantially improved by our algorithm with a negligible

accuracy loss. However, despite the parameter & set at 0.1 having

strong generality, we still find that there is no accuracy degradation on

D3DNet. On YoloV3, the sparsity improvement is not as large when

P=0.1. Above datum indicates that & needs to be finely adjusted for

certain model, and the detail discussion is illustrated later.

Although BitX greatly improves the sparsity of model weights, it falls

short in not considering the difference of each weight in the model,

where its fixed-position pruning leads to over/under-pruning. Mortar,

on the other hand, accounts for the different sparsity proportions of

each weight in mantissa morphing, compressing weights according to

bit significance and utilizing a bitwise compensation to implement fine-

grained compression that preserves high accuracy. Thus, we conclude

that Mortar addresses sparsification more precisely, saturating bit-level

sparsity and greatly extending the cost-benefit tradeoff between

accuracy and compression.

5.3 Accelerator Speedup and Energy-use Analysis
We concretely analyze the speedup by focusing on the performance of

Mortar hardware accelerator compared to other SOTA accelerators. In

Figure 6, we selected SOTA accelerator Pragmatic [8] as the baseline

and ResNet50 and SqueezeNet1_1 [21] as inference models. Mortar's

performance on ResNet50 is 4.467x that of the baseline. On

SqueezeNet1_1, Mortar outperforms the baseline by 6.032x,

surpassing all other methods including BitX . Moreover, we evaluated

the power and physical area of Mortar in Figure 7.

Discussion: The experimental results illustrate that Mortar

outperforms BitX Accelerator substantially in acceleration and energy

efficiency. Mortar’s encoding mechanism greatly reduces cycles that

do not contribute significantly to the model performance by only

focusing on the encoded intervals. Other compared methods rely

primarily on zero-skipping techniques to determine the computational

interval. Mortar eliminates such design overheads and accelerates

performance as the process is effortlessly obtained with the off-line

algorithm

Table 1: Benchmark DNNs and their original specs for evaluating Mortar’s Performance.
Models Domain Type Dataset Metric GFLOPS Weights (M) Orig. Accuracy

DenseNet161 Image Classification 2D Convolution ILSVRC2012 Top-1 % 15.64 28.68 75.28

ResNext101 Image Classification 2D Convolution ILSVRC2012 Top-1 % 33.02 88.79 78.24

ResNet18 Image Classification 2D Convolution ILSVRC2012 Top-1 3.64 11.69 67.28

YoloV3 Object Detection 2D Convolution COCO mAP 25.42 61.95 52.73

FCOS Object Detection Feature Pyramid COCO mAP 80.14 32.02 0.382

ViT Video Understanding Transformers ILSVRC2012 Top_1(%) 29.42 86.61 83.89

D3DNet Video Super Resolution 3D Deformable Viemo-90k
PSNR

408.82 2.58
36.05

SSIM 0.94

LapSRN Image Super Resolution 2D De-Convolution SET14 / 736.73 0.87 See Figure 8(a)

CartoonGAN Style Transfer GAN Flickr / 108.98 11.69 See Figure 8(b)

Table 2: Model accuracy and sparsity change after applying
mantissa morphing at P=0.1.

Models
Baseline Mortar

Accuracy / Sparsity
DenseNet161 75.28/1x 75.37/1.58x

ResNext101 78.24/1x 78.26/1.81x

ResNet18 67.28/1x 67.22/2.09x

YoloV3 52.73/1x 52.50/1.28x

FCOS 0.382/1x 0.378/1.38x

ViT 83.89/1x 83.66/2.51x

D3DNet
36.05

1x
36.05

2.28x
0.94 0.94

Avg. loss/sparsity 0.00/1x -0.06/1.85x

Table 3: Accuracy/Sparsity comparison with BitX.
Models Original BitX Mortar

DenseNet161 75.28/1x 74.79/1.61x 75.37/1.58x

ResNext101 78.24/1x 73.00/1.74x 78.26/1.81x
ResNet18 67.28/1x 62.52/1.90x 67.22/2.09x

Avg. loss / sparsity 0.00/1x -3.50/1.75x +0.05/1.83x

Figure 6: Speedup comparison of mortar and other SOTA
accelerators in (a) 4.467x over the baseline in ResNet50, (b)
6.032x over the baseline in SqueezeNet1_1.

0.63
1

2.307

3.739

4.467

0

5

N
or

m
al

iz
ed

 A
cc

el
er

at
or

Pe

rfo
ra

m
nc

e

ResNet50

stripes(16b)
pragmatic(16b)
BitX-mild(float 32)
BitX-wild(float 32)
mortar

0.61
1

2.338

3.791

6.032

0

7

N
or

m
al

iz
ed

 A
cc

el
er

at
or

Pe

rfo
ra

m
nc

e

SqueezeNet1-1

stripes(16b)
pragmatic(16b)
BitX-mild(float 32)
BitX-wild(float 32)
mortar

Figure 7: Mortar’ Area & Energy Breakdown for PE-only
and full system.

0% 20% 40% 60% 80% 100%

E-alignment CU x 16 Misc&Control

85.56%

0% 20% 40% 60% 80% 100%

E-alignment CU x 16 Misc&Control DDR3 Access

 (a)PE-only
Area: 0.003��2
Power:53.71��

(b)Full-system
Area: 0.031��2
Power:68.58��

743

ASPDAC '23, January 16–19, 2023, Tokyo, Japan Y. Gao, H. Li et al.

5.4 Design Space Exploration
In the previous section, we analyzed the model sensitivity towards &

=0.1 on accuracy and sparsity. Experimental results empirically prove

that this value outperforms BitX. However, & = 0.1 is not the optimal

tradeoff turning point for all models; hence, as shown in Table 4, the

design space exploration is conducted to find the optimal value through

testing accuracy under different & . We find that for most models,

setting 0.0001< & <0.05 maintains equal accuracy with the baseline,

and even improvements in certain cases. However, most model

accuracy starts to decrease when & L 0.1 , and when & L 0.5 the

accuracy decreases significantly.

Discussion: Our exploration indicates that & = 0.1 is a relatively

general threshold applicable for most models. For certain model such

as D3DNet, the turning point have not been reached even when &

reaches 0.5; thus, we can increase the pruning effort to further improve

sparsity. This also demonstrates that we can adjust the value of &

appropriately for each model to align the data closer to the inflection

point when accelerating different models.

5.6 Visual Comparison
To qualitatively analyze Mortar, we apply our approach on multiple

image processing tasks to visually display Mortar’s effect on image

outputs. In Figure 8, we apply Mortar on both 4x Super Resolution

with LapSRN [22] and CartoonGAN [23], showing results for both

original and enhanced models.

Discussion: Our results show that Mortar’s effect on the original model

is not only quantitatively minimal, but also qualitatively imperceptible

to the end-user. Mortar maintains a high-level quality of its outputs.

6 Conclusion
In this paper, we propose a novel off-line/on-line collaborated approach

for general purpose deep learning acceleration — the software

optimization “mantissa morphing,” and the associating hardware

accelerator design “Mortar accelerator”. Mortar leverages the concept

of bit compensation when optimizing bit-level operation, significantly

increasing the bit-level sparsity for accelerating while maintaining high

inference accuracy with models based on fp32. Moreover, the

performance of the algorithm has strong generalization capabilities in

different model tasks and datasets, concurrently outperforming existing

hardware pruning accelerators. To further cater for specific needs, the

parameter “&” can be adjusted automatically to search for optimal

accuracy-speed tradeoff. We hope this work will encourage future

accelerator designs to become more efficient and more all-purposed.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science

Foundation of China under Grant 62172387, in part by the Youth

Innovation Promotion Association CAS under Grant 2021098.

REFERENCES
[1] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor ProcessinUnit,”

in ISCA, 2017.

[2] J. Ouyang et al., “3.3 Kunlun: A 14nm High-Performance AI Processor for Diversified

Workloads,” in ISSCC, 2021.

[3] E. Technology. "Enflame DTU," https://www.servethehome.com/enflame-dtu-1-0-ai-

compute-chip-at-hot-chips-33/.

[4] Cambricon. "CambriconMLU290,"

https://www.cambricon.com/index.php?m=content&c=index&a=lists&catid=340.

[5] H. Li et al., “BitX: Empower Versatile Inference with Hardware Runtime Pruning,” in

ICPP, 2021.

[6] J. Albericio et al., “Bit-Pragmatic Deep Neural Network Computing,” in MICRO, 2017.

[7] H. Lu et al., “Tetris: Re-architecting Convolutional Neural Network Computation for

Machine Learning Accelerators,” in ICCAD, 2018.

[8] F. Tu et al., “A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8 Reconfigurable

Digital CIM Processor with Unified FP/INT Pipeline and Bitwise In-Memory Booth

Multiplication for Cloud Deep Learning Acceleration,” in ISSCC, 2022.

[9] S. Sharify et al., “Laconic deep learning inference acceleration,” in ISCA, 2019.

[10] IEEE. "IEEE Standard for Floating-Point Arithmetic (754-2019),"

https://standards.ieee.org/standard/754-2019.html.

[11] H. Lu et al., “Distilling Bit-level Sparsity Parallelism for General Purpose Deep

Learning Acceleration,” in MICRO, 2021.

[12] J. Deng et al., “ImageNet: A large-scale hierarchical image database,” in CVPR, 2009.

[13] Facebook. "Pytorch," https://pytorch.org/.

[14] S. Xie et al., “Aggregated Residual Transformations for Deep Neural Networks,” in

CVPR, 2017.

[15] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale,” in ICLR, 2020.

[16] X. Ying et al., “Deformable 3D Convolution for Video Super-Resolution,”

arXiv:2004.02803, 2020.

[17] J. Redmon, and A. Farhadi, “YOLOv3: An Incremental Improvement,” in CVPR, 2018.

[18] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” in ECCV, 2014.

[19] G. Huang et al., “Densely Connected Convolutional Networks,” in CVPR, 2017.

[20] K. He et al., “Deep Residual Learning for Image Recognition,” in CVPR, 2016.

[21] F. Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<0.5MB model size,” arXiv:1602.07360, 2010.

[22] W.-S. Lai et al., “Deep Laplacian Pyramid Networks for Fast and Accurate Super-

Resolution,” in CVPR, 2017.

[23] Y. Chen et al., “CartoonGAN: Generative Adversarial Networks for Photo

Cartoonization,” in CVPR, 2018.

Original image
(195x195)

4x Super Resolution
(780x780)

4x Super Resolution via Mortar
(780x780) Original image With Cartoon Style

Transfer
Cartoon Style Transfer

with Mortar

(a) visual comparison for LapSRN (b) visual comparison for CartoonGAN
Figure 8: visual demonstrations of (a) 4x super resolution inference via Mortar, (b) cartoon style transfer via Mortar.

Table 4: Design space exploration of key design parameter ‘P’ on various models and P=0.1 is the turning-point for most models.
Model Baseline P=0.0001 P=0.0005 P=0.001 P= 0.005 P=0.01 P=0.05 P=0.1 P=0.3 P=0.5

DenseNet161 75.28 75.28 75.28 75.28 75.28 75.27 75.29 75.31 75.37 75.06

ResNext101 78.24 78.24 78.24 78.25 78.25 78.27 78.29 78.26 77.93 77.41

ResNet18 67.28 67.29 67.29 67.29 67.29 67.28 67.28 67.22 67.13 66.92

YoloV3 52.73 52.75 52.75 52.75 52.73 52.73 52.69 52.50 51.72 51.38

FCOS 0.382 0.382 0.382 0.382 0.382 0.382 0.382 0.378 0.318 0.258

ViT 83.89 83.89 83.89 83.88 83.88 83.88 83.76 83.66 83.33 82.91

D3DNet
36.05 36.05 36.05 36.05 36.05 36.05 36.05 36.05 36.02 35.97

0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

744

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

