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ABSTRACT 
Vanilla Deep Neural Networks (DNN) after training are represented 

with native floating-point 32 (fp32) weights. We observe that the bit-

level sparsity of these weights is very abundant in the mantissa and can 

be directly exploited to speed up model inference. In this paper, we 

propose Mortar, an off-line/on-line collaborated approach for fp32 

DNN acceleration, which includes two parts: first, an off-line bit 

sparsification algorithm to construct the target formulation by 

“mantissa morphing”, which maintains higher model accuracy while 

increasing bit-level sparsity; second, the associating hardware 

accelerator architecture to speed up the on-line fp32 inference through 

manipulating the enlarged bit sparsity. We highlight the following 

results by evaluating various deep learning tasks, including image 

classification, object detection, video understanding, video & image 

super-resolution, etc.: We (1) increase bit-level sparsity up to 

1.28~2.51x with only a negligible -0.09~0.23% accuracy loss, (2) 

maintain on average 3.55% higher model accuracy while increasing 

more bit-level sparsity than the baseline, (3)and our hardware 

accelerator outperforms up to 4.8x over the baseline, with an area of 

0.031 ��� and power of 68.58 ��. 
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1 Introduction 
Since the prosperity of deep learning from 2012, a variety of deep 

neural networks (DNNs) are deployed on the cloud to provide special 

and important services, ranging from video understanding to 

recommender systems. For instance, cloud service providers such as 

Google and Amazon rely on efficient deep learning to provide precise 

recommendations to their customers. The features of these deployed 

DNNs are usually vanilla models represented in floating-point 32 (fp32 

hereafter) precision, trained using high-performance GPUs.  

The widely adopted, vanilla fp32 DNN usually exhibits satisfiable 

performance with high native model accuracy. The developer also need 

not worry about accuracy loss introduced by model optimization 

methods including pruning and quantization, especially when facing 

corner cases that do not exist in the training dataset. However, fp32 

DNNs are also unfavorable for their slow speed compared with lower 

precisions such as fp16 or int8. The ideal case is that the developer 

could, on one hand, acquire the vanilla accuracy without worrying 

about corner cases, and on the other hand, obtain the fast inference that 

is on par with low-precision models.  

From an architectural perspective, existing DNN accelerators barely 

specialize their architectures for the fp32 precision by ignoring special 

“features” of fp32 operands. For example, the general-purpose 

accelerators TPU [1], KunLun [2], Enflame DTU [3], and MLU290 [4] 

employ the most conventional fp32 multiply-and-accumulation (MAC) 

as the fundamental micro-operation for computing convolutions and 

matrix multiplications. The tedious floating-point arithmetic inevitably 

drags down the inference speed, despite the improvement brought by 

frequency boosts or technology nodes.  

While from our observations, there are exactly certain special features 

that can be utilized to accelerate the fp32 arithmetic. As will be shown 

in Section II, fp32 demonstrates abundant “bit-level sparsity”, 

especially after “exponent alignment”. The shifted position of the 

mantissa must be padded with zeros for addition and multiplication, 

which provides a unique opportunity for manipulating the newly 

generated sparsity during the calculation. Moreover, another side-effect 

of exponent matching is that the essential bits (‘1’ bits) will be shifted 

to the rear according to IEEE 754 standard, and the rear position is often 

less significant but large in the proportion of essential bits. This 
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phenomenon also necessitates optimization for the abundant less-

important bit 1s. 

Therefore, in this paper, we propose a novel DNN acceleration 

methodology, termed Mortar, for faster and higher-performing fp32 

inference. Mortar is a collaborative methodology that contains two 

parts: off-line morphing and on-line acceleration. The off-line  

morphing serves to re-organize the fp32 mantissa by reducing the less 

important bit 1s, complementing the accuracy loss, and shortening the 

valid length used in on-line acceleration. The on-line acceleration 

section involves the practical hardware accelerator with specialized 

micro-operations and bit-level computing architectures to concretely 

enforce the updated DNN model after off-line morphing.  

Mortar is a cost-effective method, as the software operation, i.e., the 

off-line morphing, only manipulates the target mantissa using a low-

complexity optimization algorithm that neither is time-consuming nor 

requires powerful training facilities. The time spent is also adequate 

depending on the model size. Furthermore, the proposed on-line 

acceleration is a low-cost hardware architecture using combinatorial  

circuits to fulfill fp32 MACs. Generally speaking, this paper makes the 

following contributions: 

(1) We propose Mortar, a novel on/off-line collaborative approach 
for general-purpose deep learning acceleration. Based on the two 

key observations, our method targets and manipulates the abundant bit-

level sparsity in the fp32 mantissa as well as trivial bit ones to form a 

more hardware-friendly DNN. The actual inference is implemented on-

line on the proposed Mortar accelerator. 

(2) We thoroughly evaluate Mortar and compare it with several state-

of-the-art baselines. The following results are highlighted:  

Accuracy & Sparsity Ratio: Mortar achieves 1.28x~2.51x sparsity 

improvement with negligible model accuracy loss of -0.09~0.23%. 

Compared with baseline BitX [5], Mortar can achieve an average of 

3.55% higher accuracy while improving 1.05x bit-sparsity than BitX. 
Accelerator Performance: Comparing Mortar Accelerator’s 

performance with other state-of-art accelerators, we achieve 4.607x and 

6.032x performance improvement over Pragmatic [6] as the baseline. 

2 Background and Motivation  
2.1 Sparsity Parallelism 
Targeting the bit-level sparsity for DNN acceleration is not a new idea. 

Many schemes in the literature have directly leveraged in-situ zero-bit 

skipping mechanisms to avoid ineffectual computations [6] [7], or 

special encoding methods to create more bit sparsity headroom [8] [9]. 

However, these approaches mostly focus on the fixed-point or integer 

operands, which means their associating accelerators are restricted to 

only DNN inference and not general training purposes. Very few works 

try to accelerate MACs by targeting the bit sparsity in the fp32 operands. 

A standard fp32 operand includes the signed bit (1 bit), exponent (8 

bits), and mantissa (23 bits). Because the mantissa is 23-bit long, its 

sparsity is more abundant, and it exhibits special features that could be 

leveraged for general-purposed acceleration.  

Figure 1 illustrates our first observation, analyzing the sparsity 

distribution in vanilla DNN weights. The X-axis denotes the mantissa 

bit positions from 1 ~ 23 (the first hidden bit 1 is not accounted [6]), Y-

axis denotes sequential layers of the model, and Z-axis shows the bit 

sparsity proportion, calculated by the percent of ‘1’ bits over the total 

number of binary bits. The figure reveals a uniform behavior in all 

tested DNNs, that is, the sparsity distribution is even (~50%) 

throughout the bit positions. This is reasonable as each bit has a 50% 

possibility to be 0 or 1. We call this phenomenon “sparsity parallelism”. 

The problem with this is that the less significant bit positions have a 

similar bit sparsity but only play a trivial role in the final product. It 

motivates us to reorganize the mantissa bits to align the sparsity 

proportions with each bit’s significance in the product. Hence, the less 

important bit positions can expose more bit-sparsity for zero skipping. 

Mortar leverages this characteristic in off-line morphing to enlarge the 

sparsity in the rear positions under tight accuracy requirements. 

2.2 Sparsity Irregularity 
As the particular feature of the fp32 arithmetic, exponent matching 

aims to align two mantissas with the same bit significance in the same 

position. On top of the previous observation of the static and uniform 

sparsity, our second observation is that the exponent matching will 

generate more sparsity due to the shifting operation making the sparsity 

distribution highly irregular. As shown in Figure 2, the X-axis now has 

a longer bit length to contain the shifted bits. The rear bit position 

extends beyond 23 and attains even the 58th-bit position, i.e. 2���. The 

whole distribution exhibits an “arch” shape, with the front essential-bit 

proportion dropping from 50% to less than 10% on average. Most bit 

1s concentrate in positions 10~28, and we call this phenomenon 

“sparsity irregularity”.  

This observation implicates a potential opportunity to compute fewer 

bit 1s while still maintaining target accuracy. Since the rear bits are tiny 

in value, we can safely migrate several rear bit 1s (setting rear bit 1s to 

0s) to compensate for the front zero bit that is turned to one, because 

the sum of several rear bit 1s can approximate the value of a front bit 1. 

Therefore, if all layers in a DNN are reorganized in this manner, the 

accelerator only needs to target the front essential bits to effectively 

reduce the computational overheads of the fp32 DNN. However, 

achieving this objective is complicated, which entails an accuracy 

constraint and the associated hardware design. In the next section, we 

will elaborate on how Mortar is designed for these purposes.  

3 Methodology  
3.1 General Concept 
Without loss of generality, a floating-point operand following IEEE-

754 [10] standards consists of three parts: signed bit (S), mantissa (M), 

and exponent (E). Employing the float-32 format (fp32), the mantissa 

is 23 bits long, the exponent occupies 8 bits, and the sign is one bit long. 

The floating-point operand fp can be expressed as �	 = (
1)�1. � ×
2��
��, in which e is the actual position of the binary point plus 127. 

We consider a series of fp32 MACs in computing the partial sum of 

convolutions, and the expression [11] can be transformed from:

 � ����
��� × �� = � (
1)�����
��� �� × ��� × 2��� ] 

ResNet18 SqueezeNet1_0

 
Figure 1: Bit-level sparsity before exponent alignment. 

ResNet18 SqueezeNet1_0

 
Figure 2: Bit-level sparsity after exponent alignment.  
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= � � [����������
!�������� (
1)���"�#� · (��
��� �$� × ���

! )] × 2����%!] (1) 

Therefore, we infer that floating-point MACs are equivalent to a series 

of bit-level operations on the corresponding mantissa, which means the 

floating-point partial sum can be converted into bit-level operations, 

with sparsity considered. Moreover, based on our observations, the bit 

level sparsity of the DNN model's weights is plentiful in the mantissa, 

which can be directly leveraged to accelerate model inference.  

The state-of-the-art techniques for decreasing the computing cost of 

data size in DNN tasks include pruning and compression. Based on bit-

level manipulation, a faster and more efficient DNN computation can 

be obtained by reducing the number of bits to be computed. However, 

reducing too many bits causes a decrease in model accuracy, so there 

are two conflicting optimization objectives for pruning and 

compression, which respectively are the maximization of accuracy and 

the minimization of computation. We notice the conflict between the 

two goals: pruning reduces the number of MACs operations by 

increasing the bit-sparsity of weights at the price of model accuracy. 

Especially when the number of eliminated bits exceeds a certain 

threshold, the model accuracy begins to decline as shown in BitX . To 

tackle these problems, our technique delays the trade-off inflection 

point in order to retain the model's accuracy to the greatest extent while 

significantly increasing the sparsity of the weights.

3.2 Mortar 
We propose Mortar, a software and hardware co-design accelerating 

DNN inference for general purposes. First, Mortar uses "mantissa 

morphing," a special bit sparsification approach based on bit-level 

operations, to maximize the model's bit-level sparsity and DNN 

acceleration for software-level optimization. Figure 4 provides a 

straightforward illustration of the concept of mantissa morphing:

 The initial weight is shown in Figure 4(a). Through analyzing the bit 

significance, we infer that the overall value represented by multiple 

valid bits of figure (a) is very similar to the single valid bit located in 

figure (b). This leads us to design an algorithm locating the most 

significant '1' bit that can be optimized, i.e., a '1' bit preceded by a '0'. 

We turn the preceding '0' into a '1' bit and clear all succeeding bits.  

Intuitively, the original weight is only transformed to the new weight if 

their difference falls within an acceptable range. Consequently, 

deciding which bit to compensate into a ‘1’ is essential to mantissa 

morphing. A precision algorithm is introduced to establish the error 

range & to control the difference between the morphing weight �'and 

the initial weight �. Below is the precise formula for Precision: 

&*+-/0/34 = 5 6 ��‘���
��

 6 = 7 8�
��

 7 < & 9 ?  1 : 0 (2) 

where & is a hyperparameter weighing the tradeoff between sparsity 

and accuracy. The precision function is called on each optimizing '1' 

bit, and if the left-hand side is smaller than &, then we apply mantissa 

morphing at this position, replacing � with �'. However, when the 

error is greater than &, the compensation effect exceeds a suitable range, 

and the search for the next valid bit is necessary. Not only does this 

indicator avoid over and under-compensation, but it also enables the 

flexibility of adjusting the tradeoff between the two objectives of 

accuracy and pruning: if & is extremely large, the morphing conditions 

are looser and the algorithm will delete more bit 1 s, increasing sparsity 

at the cost of model accuracy. On the other hand, a lower & will be 

more restrictive when selecting morphing bits, preserving more 

information for accuracy. 

At the off-line level, the trained fp32 weights are first processed 

through mantissa morphing, which establishes a hardware-friendly 

approach to fully use the numerous insignificant bits while preserving 

the original accuracy. The detailed technique of Mortar's off line 

algorithm is elaborated below. 

(1) Pre-processing 
Consider the example of the mantissa of six fp32 weights in Figure 3(a) 

We obtain a bit matrix displaying the binary mantissa stored in memory. 

The example shows 23 bit-width mantissa with the leftmost bit having 

the largest significance and the rightmost having the smallest 

significance that corresponds to values 2�
  to 2��� . Each row 

Algorithm 1: Mantissa Morphing
Input: Original fp32 weight, �� 
Output: New weight after mantissa morphing, ��', 
1:
2: 

Interpret the n-bit exponent > =  [+
, … ,  +@] and mantissa  

� =  [�
, …  �@], the actual position of > is determined. 

3: Set the value for parameter ‘&’ in Precision function 

4: 
5:
6: 
7: 
8: 
9: 
10: 
11: 
12: 

foreach column A in �  
if �B = 1 and �B�
 = 0: 

�B�
‘  = 1; 
    foreach column E in � [A :  -] 

       �F‘  = 0; 
if (&*+-/0/34(�, �G, &)) # precision judge 

          Return �G, A + 1; 
    else �'  =  �; 

continue 

*Loop 7 can be parallelized for speedups 

w 1.78

w=2.00

·····  (a)

·····  (b)

00 11

0 000 0 00

10

0 1

1
Ea=2

Eb=2

1

Offset  0.22 (11%)

 
Figure 4: An example of ‘Mantissa morphing’. 

(a) Step 1: preprocessing 
the floating-point weights

Add the hidden bit 
1 in IEEE 753

w0 1.625

w1 13.75

w2 17.63

w3 14.31

w4 5.688

w5 73.00

1111

11

1 1

23-bit mantissa

1

1

1

1 1

1

1

1 111 11

11 11

0

the hidden bit '1' in IEEE 754 the binary pointEi  exponentLegend: Last encoded bit

0 0 00 0 0

00

0 00 01 1 1 1

0 00

0

000 00 0 0

0 1

1

1

Mantissa

1

11

0 00 0 0

00

0 00 1

0 00

00

000 00 0

0

0 0 0

0 00 00

00 0 0

00

0 00

0 0

1111

11

1

E2=3

E1=0

E3=4

E6=6

1

23-bit mantissa

1 1

1

1

1 111 1
E5=2

11 1
E4=3

0 0 00 0 0

00

0 00 0 1 1 11

0 0 00

0 0

000 00 0

0 1

0

0

0

0 Avaliable Morphing

E2=3

E1=0

E3=4

E6=6

E5=2

E4=3
0

E2=3

E1=0

E3=4

E6=6

E5=2

E4=3

11

w0'=1.75

w1'=14.0

w2'=22.0

w3'=15.0

w4'=6.00

w5'=80.0

1

1

1

1

1

1

1

1

1

0 Unavailable Morphing First encoded bit

P>0.077

P>0.018

P>0.021

P>0.046

P>0.054

P>0.096

0.361 0.021

0.018

0.077

1

1

1

1

1

1

0" s

0" s

0" s

0" s

0" s

0" s

P=0.1
0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

0" s

Interval: (0~2)

Interval: (0~2)

Interval: (0~3)

Interval: (0~3)

Interval: (0~1)

Interval: (0~2)

Mantissa morphing

(b) Step 2: selecting the bit 
for 'mantissa morphing'

(c) Step 3: applying 'mortar encoding' to 
infer computing interval for each weight 

0.046

0 0
0.054

0.0960.315

00011

1 0

 
Figure 3  The off-line procedure of Mortar. Bit matrix for pre-processing is shown in (a). (b) demonstrates the process of selecting the 
bits to apply ‘mantissa morphing’ with P=0.1. And Mortar encoding, as shown in (c) to infer the data interval for each weight. 
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represents a particular weight and is marked with a different color. 

According to IEEE 754, a hidden '1' is inserted into the mantissa's 

leftmost bit. The triangle mark represents the true relevance of weight 

by the value of the exponent. 

(2) Mantissa morphing 
Figure 3(b) describes the core operation for mantissa morphing, and 

the pseudo-code is provided in Algorithm 1. The initial weights are 

adjusted off-line, and the parameter & is the threshold for morphing. 

For each weight �� , the conditioned search begins from the most 

significant bit and progresses to the least important bit, and Mortar 

finds a A such that ��,B  is valued '1' (line 4~5). Then, the preceding 

��,B�
 bit is converted to '1' and all subsequent bits to '0', which we 

declare as the new weight ��' (line 6~8). Finally, ��, ��', and & are 

input into the Precision function. In Figure 3(b), ‘0’ bits with green 

backgrounds represent positions satisfying the morphing requirements. 

Finally, the new �� is returned along with the morphing bit’s location. 

Contrarily, 0 bits in red are positions failing the precision function test 

and where the weight is preserved until the next suitable bit. (Line 9~12) 

(3) Mortar encoding 
Figure 3(c) shows the mortar encoding process. Due to the mechanism 

of the mortar algorithm, we can automatically spot the specific location 

A 
 1 of the last valid bit in each weight, followed by continuous '0' bits. 

Since the first valid bit is always the hidden '1' of each weight, the 

computing interval of each weight can be readily obtained from these 

data. This interval determines the specific computation range for the 

associating on-line accelerator design, substantially reducing the 

computational cycles and avoiding invalid operations to non-trivially 

improve the computation's efficiency.  

3.3 Benefits of Off-line Mantissa Morphing 
The previous examples highlight two key features of our technique: 

(1) The sparsity of weights’ bits has been significantly improved: 
The bit-level sparsity of Figure 4(a) is five times that of Figure 4(b) 

with a negligible error of merely 0.22 (11%). Due to the 

aforementioned property that MACs can be converted into bit-level 

operations; our technique is a cost-effective tradeoff to increase 

computation speed through data sparsification while retaining model 

precision. 

 (2) The irregularity of the weights’ bits has significantly improved: 
The initial weight in Figure 4(a) reveals that the '1' bits may be 

irregularly distributed (especially the important last bit), necessitating 

implementations of zero-skipping procedures for hardware accelerators 

that creates design overheads. However, our algorithm eliminates the 

need for such zero-skipping techniques by obtaining the morphing 

position as the final bit and clearing subsequent bits. Therefore, 

regardless of how subsequent bits are distributed, they are all set to ‘0’, 

consequently resulting in fewer computation cycles.  

To conclude, the main difference between mantissa morphing and 

conventional pruning is the employment of the technique bit 

compensation. Rather than only pruning the bits with lower 

significance, a '0' bit with a higher significance is changed to a '1' bit, 

minimizing the model's accuracy degradation. 

4  Mortar Accelerator 
After the proposed off-line ‘mantissa morphing’ algorithm, we then 

design an accompanying hardware accelerator for the on-line speed up 

of fp-32 inference. The overall architecture of the Mortar accelerator is 

shown in Figure 5, and the area and energy breakdown are given 

inFigure 7 For the memory systems, the memory access is through 

DMA, and the local buffer stores the data fetched from the Memory. 

Mortar PE, which comprises of an array of Mortar CU, receives the 

input of activations ��~���
 and weights ��~���
.  

In the microarchitecture of CU, we use a serial architecture to perform 

a /I × /I Multiply-Accumulate (MAC) operation per cycle, where 

/ indicates the /-th input of � and �.The mantissa bits of activation 

�$�~� are serially inputted into the CU along with weight mantissa bits 

���~�. Each selector receiving the weight mantissa is controlled by the 

‘mortar encoding’ signal to select only the valid data interval for each 

weight; the unselected status will output 0 automatically. With the 

advantages of serially computing ��J  and �$J  (� = 0,1 ·· /), we 

can utilize a simple combinational logic to output the multiplication 

value rather than a multiplier in each cycle, reducing the overhead of 

hardware design. The shifter then shifts the output value of each cycle 

with the corresponding bit significance to ensure the correctness of the 

result. For floating point numbers, the shifting operation is performed 

by the exponent accumulation in �, not introducing much overhead. 

The corresponding shift for MACs is >�J + >$J , representing the 

multiplication of activation and weight bits in the cycle. Lastly, the 

adder tree performs the final partial-sum &0K�J accumulation. 

5 Evaluation and Discussion 
5.1 Benchmark and Framework 
The deep learning models and the pre-trained parameters on ImageNet 

[12] dataset is directly obtained from PyTorch [13]. The benchmark 

models are shown in Table 1 to demonstrate the ability of Mortar for 

general purpose DNN task acceleration. We choose the tasks from 

different domains including Image Classification, Object Detection, 

Video Understanding, Video & Image Super Resolution, and style 

transfer. The benchmarks cover “large” models with the parameter size 

such as 88.79M (ResNext101 [14]), 86.61M (ViT [15]), as well as 

“small” models with the parameter size of 2.58M (D3DNet [16]). To 

further demonstrate the generalization capability of Mortar, YoloV3 

[17] is trained on the COCO [18] dataset. Our experiments extensively 

evaluate Mortar’s effect on model accuracy and sparsity increase, and 

we compare the performance with SOTA hardware pruning accelerator 
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Figure 5: Overview of Mortar-overall architecture and the microarchitecture of Mortar Computing Unit (CU). 
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BitX. We selected discrete values for hyperparameter & in our design 

space exploration, which attempt to explore the tradeoff in the 

algorithm.  

5.2 Accuracy and Sparsity 
Table 2 shows the accuracy and sparsity changes for different types of 

datasets that apply mantissa morphing using the threshold ‘P = 0.1’. We 

empirically find this value of & to be a well-balanced tradeoff for most  

models. Result shows that in general cases, the sparsity improvement 

of a model can reach 2x with a neglectable accuracy degradation.  

Additionally, we compared Mortar with BitX, a SOTA DNN 

accelerator using hardware pruning to increase bit-level sparsity for 

inference acceleration. We selected several models (DenseNet161 [19], 

ResNext101 [20], ResNet18) for the image classification task, and we 

focus on the difference in accuracy losses between Mortar and BitX at 

similar sparsity improvement levels. As shown in Table 3, Mortar 

greatly outperforms SOTA approach in accuracy while maintaining a 

slightly improved sparsity. Especially on ResNext101 and ResNet18, 

the difference in model accuracy is close to 5%, which is a non-trivial 

improvement for the classification task. 

Discussion: As shown in our experiments, the sparsity of the model 

can be substantially improved by our algorithm with a negligible 

accuracy loss. However, despite the parameter &  set at 0.1 having 

strong generality, we still find that there is no accuracy degradation on 

D3DNet. On YoloV3, the sparsity improvement is not as large when 

P=0.1. Above datum indicates that & needs to be finely adjusted for 

certain model, and the detail discussion is illustrated later. 

Although BitX greatly improves the sparsity of model weights, it falls 

short in not considering the difference of each weight in the model,  

where its fixed-position pruning leads to over/under-pruning. Mortar, 

on the other hand, accounts for the different sparsity proportions of 

each weight in mantissa morphing, compressing weights according to 

bit significance and utilizing a bitwise compensation to implement fine-

grained compression that preserves high accuracy. Thus, we conclude 

that Mortar addresses sparsification more precisely, saturating bit-level 

sparsity and greatly extending the cost-benefit tradeoff between 

accuracy and compression.  

5.3 Accelerator Speedup and Energy-use Analysis 
We concretely analyze the speedup by focusing on the performance of 

Mortar hardware accelerator compared to other SOTA accelerators. In 

Figure 6, we selected SOTA accelerator Pragmatic [8] as the baseline 

and ResNet50 and SqueezeNet1_1 [21] as inference models. Mortar's 

performance on ResNet50 is 4.467x that of the baseline. On 

SqueezeNet1_1, Mortar outperforms the baseline by 6.032x, 

surpassing all other methods including BitX . Moreover, we evaluated 

the power and physical area of Mortar in Figure 7. 

Discussion: The experimental results illustrate that Mortar 

outperforms BitX Accelerator substantially in acceleration and energy 

efficiency. Mortar’s encoding mechanism greatly reduces cycles that 

do not contribute significantly to the model performance by only 

focusing on the encoded intervals. Other compared methods rely 

primarily on zero-skipping techniques to determine the computational 

interval. Mortar eliminates such design overheads and accelerates 

performance as the process is effortlessly obtained with the off-line 

algorithm   

Table 1: Benchmark DNNs and their original specs for evaluating Mortar’s Performance. 
Models Domain Type Dataset Metric GFLOPS Weights (M) Orig. Accuracy 

DenseNet161 Image Classification 2D Convolution ILSVRC2012 Top-1 % 15.64 28.68 75.28 

ResNext101 Image Classification 2D Convolution ILSVRC2012 Top-1 % 33.02 88.79 78.24 

ResNet18  Image Classification 2D Convolution ILSVRC2012 Top-1 3.64 11.69 67.28 

YoloV3 Object Detection 2D Convolution COCO mAP 25.42 61.95 52.73 

FCOS Object Detection Feature Pyramid COCO mAP 80.14 32.02 0.382 

ViT Video Understanding Transformers ILSVRC2012 Top_1(%) 29.42 86.61 83.89 

D3DNet Video Super Resolution 3D Deformable Viemo-90k 
PSNR 

408.82 2.58 
36.05 

SSIM 0.94

LapSRN Image Super Resolution 2D De-Convolution SET14 / 736.73 0.87 See Figure 8(a) 

CartoonGAN Style Transfer GAN Flickr / 108.98 11.69 See Figure 8(b)

Table 2: Model accuracy and sparsity change after applying 
mantissa morphing at P=0.1. 

Models 
Baseline Mortar 

Accuracy / Sparsity 
DenseNet161 75.28/1x 75.37/1.58x 

ResNext101 78.24/1x 78.26/1.81x 

ResNet18 67.28/1x 67.22/2.09x 

YoloV3 52.73/1x 52.50/1.28x 

FCOS  0.382/1x 0.378/1.38x 

ViT 83.89/1x 83.66/2.51x 

D3DNet 
36.05 

1x 
36.05 

2.28x 
0.94 0.94 

Avg. loss/sparsity 0.00/1x -0.06/1.85x 

Table 3: Accuracy/Sparsity comparison with BitX. 
Models Original BitX Mortar  

DenseNet161 75.28/1x 74.79/1.61x 75.37/1.58x 

ResNext101 78.24/1x 73.00/1.74x 78.26/1.81x 
ResNet18 67.28/1x 62.52/1.90x 67.22/2.09x 

Avg. loss / sparsity 0.00/1x -3.50/1.75x +0.05/1.83x

 
Figure 6: Speedup comparison of mortar and other SOTA 
accelerators in (a) 4.467x over the baseline in ResNet50, (b) 
6.032x over the baseline in SqueezeNet1_1.

0.63
1

2.307

3.739

4.467

0

5

N
or

m
al

iz
ed

 A
cc

el
er

at
or

 
Pe

rfo
ra

m
nc

e

ResNet50

stripes(16b)
pragmatic(16b)
BitX-mild(float 32)
BitX-wild(float 32)
mortar

0.61
1

2.338

3.791

6.032

0

7

N
or

m
al

iz
ed

 A
cc

el
er

at
or

 
Pe

rfo
ra

m
nc

e

SqueezeNet1-1

stripes(16b)
pragmatic(16b)
BitX-mild(float 32)
BitX-wild(float 32)
mortar

 
Figure 7: Mortar’ Area & Energy Breakdown for PE-only 
and full system. 
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5.4 Design Space Exploration 
In the previous section, we analyzed the model sensitivity towards & 

=0.1 on accuracy and sparsity. Experimental results empirically prove 

that this value outperforms BitX. However, & = 0.1 is not the optimal 

tradeoff turning point for all models; hence, as shown in Table 4, the 

design space exploration is conducted to find the optimal value through 

testing accuracy under different & . We find that for most models, 

setting 0.0001< & <0.05 maintains equal accuracy with the baseline, 

and even improvements in certain cases. However, most model 

accuracy starts to decrease when & L 0.1 , and when & L 0.5  the 

accuracy decreases significantly. 

Discussion: Our exploration indicates that &  = 0.1 is a relatively 

general threshold applicable for most models. For certain model such 

as D3DNet, the turning point have not been reached even when & 

reaches 0.5; thus, we can increase the pruning effort to further improve 

sparsity. This also demonstrates that we can adjust the value of & 

appropriately for each model to align the data closer to the inflection 

point when accelerating different models. 

5.6 Visual Comparison 
To qualitatively analyze Mortar, we apply our approach on multiple 

image processing tasks to visually display Mortar’s effect on image 

outputs. In Figure 8, we apply Mortar on both 4x Super Resolution 

with LapSRN [22] and CartoonGAN [23], showing results for both 

original and enhanced models.  

Discussion: Our results show that Mortar’s effect on the original model 

is not only quantitatively minimal, but also qualitatively imperceptible 

to the end-user. Mortar maintains a high-level quality of its outputs. 

6  Conclusion  
In this paper, we propose a novel off-line/on-line collaborated approach 

for general purpose deep learning acceleration — the software 

optimization “mantissa morphing,” and the associating hardware 

accelerator design “Mortar accelerator”. Mortar leverages the concept 

of bit compensation when optimizing bit-level operation, significantly 

increasing the bit-level sparsity for accelerating while maintaining high 

inference accuracy with models based on fp32. Moreover, the 

performance of the algorithm has strong generalization capabilities in 

different model tasks and datasets, concurrently outperforming existing 

hardware pruning accelerators. To further cater for specific needs, the 

parameter “&” can be adjusted automatically to search for optimal 

accuracy-speed tradeoff. We hope this work will encourage future 

accelerator designs to become more efficient and more all-purposed. 
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(a) visual comparison for LapSRN (b) visual comparison for CartoonGAN  
Figure 8: visual demonstrations of (a) 4x super resolution inference via Mortar, (b) cartoon style transfer via Mortar. 

Table 4: Design space exploration of key design parameter ‘P’ on various models and P=0.1 is the turning-point for most models. 
Model Baseline P=0.0001 P=0.0005 P=0.001 P= 0.005 P=0.01 P=0.05 P=0.1 P=0.3 P=0.5 

DenseNet161 75.28 75.28 75.28 75.28 75.28 75.27 75.29 75.31 75.37 75.06 

ResNext101 78.24 78.24 78.24 78.25 78.25 78.27 78.29 78.26 77.93 77.41 

ResNet18 67.28 67.29 67.29 67.29 67.29 67.28 67.28 67.22 67.13 66.92 

YoloV3 52.73 52.75 52.75 52.75 52.73 52.73 52.69 52.50 51.72 51.38 

FCOS 0.382 0.382 0.382 0.382 0.382 0.382 0.382 0.378 0.318 0.258 

ViT 83.89 83.89 83.89 83.88 83.88 83.88 83.76 83.66 83.33 82.91 

D3DNet 
36.05 36.05 36.05 36.05 36.05 36.05 36.05 36.05 36.02 35.97 

0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 
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