
878 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

Mortar-FP8: Morphing the Existing FP32
Infrastructure for High-Performance

Deep Learning Acceleration
Hongyan Li , Hang Lu , and Xiaowei Li , Senior Member, IEEE

Abstract—Vanilla deep neural networks (DNNs) after training
are represented with native floating-point 32 (fp32) weights.
We observe that the bit-level sparsity of these weights is very
abundant in the mantissa and the distribution of exponent is
aggregated, which can all be directly exploited to speed up model
inference. In this article, we propose Mortar and Mortar-FP8, the
offline/online software and hardware collaborative approaches
for fp32 DNN acceleration. The proposed methods include the
software algorithms to morph the mantissa and convert fp32
weights to fp8 format, as well as associated hardware accelerator
architecture to accelerate general-purpose deep learning through
optimized algorithm and specialized hardware. We highlight
the following results by evaluating various deep learning tasks,
including image classification, object detection, video under-
standing, video, and image super-resolution: 1) Mortar increase
mantissa sparsity up to 1.58×–2.09× with only a negligible
∼0.2% accuracy loss; 2) Mortar-FP8 morph the fp32 weights to
fp8 format with a minimal accuracy loss of ∼0.3%; and 3) the
corresponding hardware accelerator significantly outperforms
baselines, achieving up to 6.032× and 6.99× performance
improvements. The area and power of Mortar are 0.031 mm2

and 68.58 mW. Those metrics are 0.0505 mm2 and 25.16 mW
for Mortar-FP8.

Index Terms—Deep learning accelerator, deep neural network
(DNN), fp8 format.

I. INTRODUCTION

DEEP learning has made significant progress in the past
few years, bringing about a paradigm shift in numerous

domains, such as computer vision, natural language process-
ing, and speech recognition. Artificial neural networks have
demonstrated remarkable success in solving complex problems
and performing a variety of tasks with high accuracy.

As deep learning models become larger and more com-
plex, accelerating their computations has become crucial to

Manuscript received 1 May 2023; revised 28 July 2023 and 8 October 2023;
accepted 28 October 2023. Date of publication 6 November 2023; date of
current version 21 February 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 62172387, and
in part by the Youth Innovation Promotion Association of Chinese Academy
of Sciences (CAS) under Grant 2021098. An earlier version of this article
was presented in part at the 28th Asia and South Pacific Design Automation
Conference [DOI: 10.1145/3566097.3567868]. This article was recommended
by Associate Editor M. Shafique. (Corresponding author: Hang Lu.)

Hongyan Li and Xiaowei Li are with the State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China.

Hang Lu is with the State Key Laboratory of Computer Architecture,
Institute of Computing Technology, the Zhongguancun Laboratory, and the
Shanghai Innovation Center for Processor Technologies, Chinese Academy of
Sciences, Beijing 100190, China (e-mail: luhang@ict.ac.cn).

Digital Object Identifier 10.1109/TCAD.2023.3329778

making them practical for real-world applications. Typically,
deep neural networks (DNNs) are represented in floating-
point 32 (fp32) precision because they exhibit high native
model accuracy. However, typical fp32 DNNs are slow during
computation compared to lower precision models such as fp16
or int8. Ideally, developers require a method that accurately
represents vanilla models and obtains a fast inference speed
that is on par with low-precision models.

From an architectural standpoint, certain existing DNN
accelerators fail to optimize their designs specifically for
fp32 precision, thereby disregarding the unique attributes of
fp32 operands. General-purpose accelerators like TPU [4],
KunLun [6], Enflame DTU [7], and MLU290 [8] predominantly
employ conventional fp32 multiply-and-accumulation (MAC)
operations as the fundamental micro-operation for conducting
convolutions and matrix multiplications. However, this cum-
bersome floating-point arithmetic inevitably hampers the speed
of inference. It is worth highlighting that these mentioned
accelerators have gradually started supporting various reduced
precision formats, such as INT8, for computational purposes.
Furthermore, some accelerators even provide support for
formats like FP8 and BF16. Leveraging these reduced precision
formats allows accelerators to optimize the speed of inference.

The utilization of reduced precision techniques in deep
learning has gained significant attention due to their potential
to mitigate memory requirements, computational complexity,
and energy consumption. With the exponential growth of
DNNs and the increasing need for efficient deployment on
resource-constrained devices, researchers have been motivated
to explore lower-bit precision formats in both algorithm design
and hardware implementation.

One such format is fp8, which employs 8-bit floating-point
numbers to represent parameters in neural networks. This
approach offers a means of conserving energy consumption
of by reducing the storage resources by up to 75% when
compared to the traditional fp32 representation [9]. However,
the reduction in bit width of floating point in the fp8 format
poses a significant challenge as it impacts the precision and
range of floating-point digits. Notably, techniques, such as
S2FP8 [10], hybrid fp8 [11], and loss scaling [12], have
been introduced to address this issue. Micikevicius et al. [13]
suggested two encodings: E4M3 and E5M2, for fp8 formats.
These techniques aim to mitigate the impact of reduced bit
width and ensure the network performance during computation
in the fp8 format.

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8819-904X
https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0002-0874-814X

LI et al.: MORTAR-FP8: MORPHING THE EXISTING FP32 INFRASTRUCTURE 879

Overall, these approaches show the potential benefits of
fp8 computing in accelerating deep learning computations.
However, most of the proposed methods do not consider the
ease of implementation in hardware design. Some existing
methods require complex tricks such as loss scaling [12] or log
computation [10] to fit the representation range of fp8 into the
representation range of fp32, which is not easy to implement
on hardware.

To address the issue, in this article, we propose the soft-
ware and hardware co-design method for representing fp32
representation into fp8 format. By using simple and hardware-
friendly operations, fp32 weights can be represented as fp8,
accelerating the computation of neural networks without com-
promising network performance, and reducing the storage size
of neural networks.

This article introduces Mortar and Mortar-FP8 as novel
DNN acceleration methodologies for faster and higher-
performing inference during deep learning.

Aiming to reduce the mantissa length, Mortar reorganizes
the mantissa of floating-point numbers by eliminating less
important bit 1s. This technique complements accuracy loss
and shortens the valid mantissa bit length. Building upon
the principles of Mortar, Mortar-FP8 extends its scope by
not only reducing the mantissa length but also narrowing
the exponent width. As a result, Mortar-FP8 processes fp32
weights to only 8 bits. By processing fp32 weights to only
8 bits, Mortar-FP8 achieves a substantial reduction in bit
width, leading to a significant decrease in computational cost
and memory requirements for floating-point operations. It is
worth noting that Mortar-FP8 employs the straightforward
optimization techniques to manipulate the target representation
efficiently. And the proposed accelerator utilizes low-cost
hardware architectures, making it efficient and practical for
resource-constrained environments.

The proposed approaches offer the practical solutions for
implementing model accelerating techniques and low bit
precision in hardware design, which is essential for the
efficient deployment of neural networks. Overall, Mortar
and Mortar-FP8 provide innovative solutions for accelerating
DNN inference while maintaining accuracy and minimiz-
ing the use of resources. This article makes the following
contributions.

1) We propose Mortar and Mortar-FP8, two novel soft-
ware and hardware collaborative approaches for efficient
general-purpose deep learning acceleration. The asso-
ciated hardware accelerator architecture is as well as
designed. Our method targets the abundant mantissa
redundancy and aggregated distribution of exponent
presented in fp32 weights in neural networks, allowing
for parameter reduction to an 8-bit length, creating
more efficient methodologies and hardware-friendly
accelerator.

2) To evaluate the proposed approach, we conducted a thor-
ough comparison with several state-of-the-art (SOTA)
baselines, The following results are highlighted.

Mortar achieves 1.58×–2.09× sparsity improvement with
negligible model accuracy loss of 0.2%. Compared with
baseline BitX [14], Mortar can achieve higher accuracy while
improving average 1.30× bit-sparsity than BitX. Mortar-FP8

achieves even greater reductions in computational costs, with
a drastic reduction of the mantissa bit width from 23 to an
average of 2.25 bits, resulting in a total bit width decrease to
just 8 bits. The accuracy loss is minimal and barely noticeable.

Compared with other SOTA accelerators, Mortar achieves
4.607× and 6.032× performance improvement over
Pragmatic [15] as the baseline. Mortar-FP8 achieves greater
efficiency with 6.99× and 6.5× performance enhancement.
The area and power consumption of Mortar-FP8 are 0.0505
mm2 and 25.16 mW, respectively. And the area and power of
Mortar are 0.031 mm2 and 68.58 mW.

This article presents the journal extension version of our
work at the Asia and South Pacific Design Automation
Conference (ASP-DAC) 2023 [16]. In this version, we have
significantly expanded our research, with particular focus
on enhancing the offline Mortar method for the Mortar-FP8
converting algorithm. By employing this algorithm, we are
able to effectively reduce the fp32 weights to an fp8 width,
resulting in a narrower mantissa targeted in Mortar and a
more efficient exponent width. Consequently, we achieve a
highly efficient algorithm for accelerating neural network com-
putation. Moreover, our study includes an in-depth analysis
of the performance implications associated with the Mortar-
FP8 conversion technique. As part of our contribution, we
introduce an updated accelerator that effectively utilizes the
Mortar-FP8. Based on the comprehensive evaluation results,
we demonstrate the remarkable effectiveness and efficiency of
our proposed approach.

This article is structured as follows. Section II provides the
related work. Section III outlines the potential of our proposed
method. Section IV presents the methodology employed in this
study. Section V describes the hardware architecture developed
for the implementation. In Section VI, we present the exper-
imental results of both Mortar and Mortar-FP8, accompanied
by thorough analyses. Finally, Section VII summarizes the
work and provides the conclusion.

II. RELATED WORK

A. Reduced Precision in Neural Networks

In recent years, reduced precision techniques have received
considerable attention as effective means of improving the
efficiency and computational performance of neural networks.
Various floating-point formats are predominantly used in deep
learning, such as fp32 and bfloat16. Additionally, researchers
have explored extreme bit-reduction approaches in their work.
For example, [17] proposed BinaryConnect, which trains
networks with binary weights, achieving impressive results
with only 1-bit weight precision. Similarly, [18] introduced
the XNOR-Net model, which utilizes binary weights and
activations. However, these approaches often suffer from
accuracy degradation due to the highly limited representation
capacity. Other formats, such as int8 [19] and log format [20],
have also been proposed in quantization research studies, but
some of them may encounter challenges in terms of accuracy
or hardware deployment. Additionally, some neural network
quantization methods require additional steps for target data
mapping and cannot be directly quantized through online
processing on hardware.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

880 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

Fig. 1. Bit-level mantissa sparsity of fp32 weights for different DNNs
pretrained with ImageNet.

B. FP8 Format

The FP8 format has gained growing interest in exploring
lower-precision floating-point formats, aiming to strike a bal-
ance between accuracy and computational efficiency. It offers
advantages compared to previously proposed formats [13].
Chunk-based accumulation and stochastic rounding were
introduced in [9] to mitigate the problem of swamping [10].
Additionally, [11] put forth a hybrid 8-bit floating-point
approach for training DNNs. S2FP8 [12] presented a novel
method involving the storage of N fp8 values accompanied by
two factors (squeeze and shift). Furthermore, [13] proposed
a technique called loss scaling to ensure weights fit within
the fp8 range. In pursuit of the tradeoff between accuracy
and data representation, [9] put forward multilevel scaling.
While these approaches contribute valuable insights, it is
noteworthy that some of them may not thoroughly consider
the ease of hardware implementation. To bridge this gap,
this article introduces Mortar-FP8, a technique specifically
designed to facilitate the conversion of weights into fp8
formats by ensuring hardware-friendliness.

III. OPPORTUNITY OF DIRECT CONVERSION

FROM FP32 TO FP8

A. Mantissa Redundancy

Without loss of generality, a floating-point operand follow-
ing IEEE-754 [21] standards consists of three parts: 1) signed
bit (S); 2) mantissa (M); and 3) exponent (E). Bit sparsity
is present when not all bits in the representation are 1. The
mantissa, which is 23 bits long, exhibits unique features
that can be used for general-purpose acceleration due to its
redundant bit sparsity. Fig. 1 displays the bit sparsity distri-
bution of mantissa in vanilla DNN weights, with the x-axis
representing the mantissa bit positions, the y-axis representing
sequential layers, and the z-axis displaying the bit sparsity
proportion calculated as the percentage of “1” bits over the
total number of binary bits. The figure demonstrates that the
sparsity distribution is uniform (∼50%) throughout all bit
positions because each bit has an equal probability of being 0
or 1, resulting in abundant mantissa bit sparsity.

Targeting the bit-level sparsity for DNN acceleration is not
a new idea. Many schemes in the literature have directly
leveraged in-situ zero-bit skipping mechanisms to avoid inef-
fectual computations [15], [22], or special encoding methods
to create more bit sparsity headroom [23], [24]. However,
these approaches mostly focus on the fixed-point or integer
operands. Very few works try to accelerate MACs by targeting
the bit sparsity in the fp32 operands.

Fig. 2. Exponent distribution of fp32 weights in various networks.

Due to the nature of floating-point numbers, the significance
of bits decreases from higher to lower positions in the man-
tissa. However, previous works rarely utilize the characteristic.
From the figure above, lower significant bit positions have a
similar bit sparsity, while playing only a negligible role in the
final product. This observation implies a potential opportunity
to compute fewer bit 1s while still maintaining target accuracy.
By reorganizing the mantissa bits with each bit’s significance,
we can safely cut off several rear bit 1 s (setting rear bit 1 s to
0 s) to compensate for the change of the front bits. Utilizing
bit sparsity helps to reduce the bit width of mantissa, resulting
in a reduction in computational overheads of the DNN.

Therefore, reorganizing all layers in a DNN in this manner
allows the accelerator only to compute the narrow essential
bits, effectively reducing computational overhead. However,
achieving this objective is complicated, involving an accuracy
constraint and the associated hardware design. In Section IV,
we will elaborate on how Mortar and Mortar-FP8 are designed
for these purposes.

B. Aggregated Distribution of Exponent

The redundant bit sparsity characteristic of the mantissa in
weights presents an opportunity to reduce the bit width of
the weights. However, solely reducing the bit width of the
mantissa cannot represent a 32-bit floating-point number using
only 8 bits. Consequently, reducing the exponent’s bit width
is also necessary.

Since a small change in the exponent can result in a
significant impact in the value of the weight, reducing the bit
width of the exponent can be more challenging than reducing
that of the mantissa. This is because decreasing the exponent’s
bit width may cause a significant loss of range, which can
have a greater impact on the accuracy of the result compared
to reducing the mantissa’s bit width. To address this issue, we
analyzed weight exponent numerical characteristics in neural
networks.

Fig. 2 visualizes exponent distribution in neural networks,
with layers on the x-axis, and the layer’s weight exponent on
the y-axis. As depicted in the Fig. 2, typically, the smallest

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: MORTAR-FP8: MORPHING THE EXISTING FP32 INFRASTRUCTURE 881

Fig. 3. Exponent gap of kernels in different networks, the gap refers to the
subtraction between maximum and minimum of exponent in a kernel.

exponent in these networks is smaller than −30, and in
YoLov3, the minimum weight is approximately −50. Since the
exponent ranges from −50 to 0, using an 8-bit representation
for the exponent would be inefficient. On the other hand, a
4 or 5-bit representation for exponents is insufficient. Finding
a unified method mapping exponents to 4 or 5 bits while
maintaining the accuracy of different layers is almost impossi-
ble, due to significant differences in the exponent distributions
between different layers. Therefore, further optimization is
required to successfully reduce the exponent’s bit width while
preserving model accuracy.

The number of bits allocated to the exponent determines the
number of accurately represented exponents, rather than the
exponent range. In our research, we examined the gap between
maximum and minimum exponents, as it reflects the number of
different exponents within the given range, consistent with the
meaning of exponent bit width. Since different layers exhibit
varying exponent distributions. Our study focused on a smaller
granularity—convolution kernels.

Fig. 3 presents the boxplot of the distribution of kernel
exponent gaps, where the x-axis represents the randomly
selected 20 layers in the network and the y-axis denotes the
exponent gap of kernels in each layer. The boxplot being closer
to the bottom indicates that smaller gaps are more prevalent.
The boxplot whiskers are mostly below 10, which means that
most gaps are widely distributed around 10, and the majority
of outliers are also below 15. Only a small portion of the
outliers exceed 20.

Based on the boxplot, we can infer that the kernel exponent
gap of varying networks all falls within the range of 0 to 15.
Given that 4 bits can accurately represent 16 exponents, narrow
bit widths such as 4 bits can be used to represent exponents
by covering the gap range of every kernel. This provides an
opportunity to shorten the bit width of the exponent. We will
elaborate on how to achieve this in Section III.

However, in the boxplot of DenseNet121, there is a notable
dissimilarity in the distribution of kernel gaps for last layer.
The gaps of the last layer are distributed beyond 20 and
can reach up to 35 at the highest. Our analysis revealed
the layer is the fully connected layer. This gap exceeds the

representation capacity using only four bits. Hence, for certain
image recognition models, abstaining from processing the fully
connected layer to fp8 may be necessary. This measure can
safeguard against information loss and ensure model accuracy
maintenance. Further about this will be found in Section VI.

C. General Concept

Regarding the floating point formats during computation, we
consider a series of fp32 MACs in computing the partial sum
of convolutions, and the expression [25] can be transformed
from

N−1∑

i=0

Ai × Wi =
N−1∑

i=0

[
(−1)Swi Ai × MWi × 2Ewi

]

=
N−1∑

i=0

Ei−Emax−23∑

b=Ei−Emax

[
(−1)Swi⊕SAi ·

(
MAi × Mb

Wi

)]

× 2Emax+b. (1)

Hence, we can deduce that floating-point MAC operations
can be decomposed into a sequence of bit-level operations on
the corresponding mantissa and exponent components.

Our observations reveal that the presence of redundant
mantissa bits and aggregated exponent can be effectively
utilized to enhance the efficiency of DNN computations.
By leveraging bit-level manipulation techniques, it becomes
possible to achieve faster and more efficient computations by
reducing the number of bits involved in the operations.

However, it is crucial to strike a balance when reducing
the number of bits, as an excessive reduction can lead to
compromised accuracy and restricted numerical range. This
can ultimately result in a decline in network performance.
Therefore, the carefully designed approach is needed to
achieve an optimal tradeoff between computational speed and
accuracy preservation. Subsequently, in the subsequent section,
we shall delve into a detailed elaboration on how this objective
is effectively accomplished.

IV. METHODOLOGY

Based on the analysis of the computational characteristics
of floating-point numbers and the characteristics of neu-
ral network floating-point weights, we propose Mortar and
Mortar-FP8.

Mortar uses a simple method to increase the bit sparsity
of the mantissa, effectively reducing the width of the man-
tissa bits. Furthermore, Mortar-FP8 proposes a method for
converting fp32 data into any floating-point representation
and representing fp32 format as fp8. We further propose the
corresponding accelerator that shortens the neural network
weight representation without significantly affecting network
performance, thus reducing the computational complexity and
storage requirements of the network.

In the following sections, we will provide detailed expla-
nations of both methods and the corresponding accelerator
design.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

882 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

(a)

(b)

Fig. 4. Example of mantissa morphing. (a) and (b) depicts the original
weight and morphed weight respectively. The sparsity of weight’s mantissa
has been significantly improved: The bit-level sparsity of (a) is five times that
of (b) with a negligible error of merely 0.22 (11%).

A. Mortar

The first proposed solution, Mortar, focuses on reducing the
bit width of the mantissa component. Mortar is a compre-
hensive hardware and software co-designed approach aiming
at accelerating the inference process. To achieve this, Mortar
employs a specialized technique called “mantissa morphing”
that effectively sparsifies the bits at the mantissa level, thereby
maximizing bit-level sparsity in the model. This sparsity
optimization technique significantly enhances the efficiency of
DNN acceleration at the software level.

To enhance clarity and facilitate understanding of the
concept of mantissa morphing, we have included Fig. 4, which
provides a graphical illustration of the core concept behind this
approach. The initial weight is shown in Fig. 4(a). Through
analyzing the bit significance, we infer that the overall value
represented by multiple valid bits of figure (a) is very similar
to the single valid bit located in figure (b). This leads us to
design an algorithm locating the most significant “1” bit that
can be optimized, i.e., a “1” bit preceded by a “0.” We turn
the preceding “0” into a “1” bit and clear all succeeding bits.

Intuitively, the original weight is only transformed to the
new weight if their difference falls within an acceptable
range. Consequently, deciding which bit to compensate into a
“1” is essential to mantissa morphing. A precision algorithm
is introduced to establish the error range P to control the
difference between the morphing weight W ′ and the initial
weight W. Below is the precise formula for Precision

Precision =
(∣∣∣∣

W ′
i − Wi

Wi

∣∣∣∣ =
∣∣∣∣

εi

Wi

∣∣∣∣ < P

)
? 1 : 0. (2)

The hyperparameter P plays a crucial role in the mantissa
morphing process as it determines the tradeoff between sparsity
and accuracy. For each optimizing “1” bit, the precision function
is called, and if the result is smaller than P, then mantissa
morphing is applied at that position, replacing the original
weight W with the morphed weight W ′. However, if the error is
greater than P, the compensation effect exceeds the appropriate
range, and the search for the next valid bit is necessary.
This approach avoids over and under-compensation, allowing
for flexibility in adjusting the tradeoff between accuracy and
compensation. If P is set to a large value, the morphing
conditions are looser, and the algorithm will delete more bit 1s,
increasing sparsity at the cost of model accuracy. Conversely,
a lower value of P will be more restrictive when selecting
morphing bits, preserving more information for accuracy.

At the offline level, Mortar processes the trained
fp32 weights using mantissa morphing, which establishes
a hardware-friendly approach to utilizing the abundant

Algorithm 1 Mantissa Morphing
Input: Original fp32 weight, Wi

Output: New weight after mantissa morphing, Wi
′,

1: Interpret the n-bit exponent E = [e1, . . . , en] and
mantissa

2: M = [m1, . . . mn], the actual position of E is
determined.

3: Set the value for parameter ‘P’ in Precision function
4: foreach column j in W:
5: if Wj = 1 and Wj−1 = 0:
6: W ′

j−1 = 1
7: foreach column k in W [j : c] :
8: W ′

k = 0
9: if (Precision

(
W, W ′, P

)
) # precision judge

10: Return W ′, j + 1
11: else W ′ = W;
12: continue

*Loop 7 can be parallelized for speedups

insignificant bits while preserving the original accuracy. The
detailed technique of Mortar’s offline algorithm is elaborated
below.

1) Preprocessing: Consider the example of the mantissa of
six fp32 weights in Fig. 5(a). We obtain a bit matrix displaying
the binary mantissa stored in memory. The example shows 23
bit-width mantissas with the leftmost bit having the largest
significance and the rightmost having the smallest significance
that corresponds to values 2−1 to 2−23. Each row represents
a particular weight and is marked with a different color.
According to IEEE 754, a hidden “1” is inserted into the
mantissa’s leftmost bit. The triangle mark represents the true
relevance of weight by the value of the exponent.

2) Mantissa Morphing: Fig. 5(b) describes the core opera-
tion for mantissa morphing, and the pseudocode is provided in
Algorithm 1. The initial weights are adjusted offline, and the
parameter P is the threshold for morphing. For each weight
Wi, the conditioned search begins from the most significant
bit and progresses to the least important bit, and Mortar finds
a j such that Wi,j is valued “1” (lines 4 and 5). Then, the
preceding Wi,j−1 bit is converted to “1” and all subsequent bits
to “0,” which we declare as the new weight Wi

′ (lines 6–8).
Finally, Wi, Wi

′, and P are input into the Precision function. In
Fig. 5(b), “0” bits with green backgrounds represent positions
satisfying the morphing requirements. Finally, the new Wi is
returned along with the morphing bit’s location. Contrarily,
0 bits in red are positions failing the precision function test
and where the weight is preserved until the next suitable bit
(lines 9–12).

3) Mortar Encoding: Fig. 5(c) shows the mortar encoding
process. Due to the mechanism of the mortar algorithm, we
can automatically spot the specific location j − 1 of the
last valid bit in each weight, followed by continuous “0”
bits. Since the first valid bit is always the hidden “1” of
each weight, the computing interval of each weight can be
readily obtained from these data. This interval determines

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: MORTAR-FP8: MORPHING THE EXISTING FP32 INFRASTRUCTURE 883

(a) (b) (c)

Fig. 5. Offline procedure of Mortar. Bit matrix for preprocessing is shown in (a). (b) demonstrates the process of selecting the bits to apply mantissa
morphing with P = 0.1. And Mortar encoding, as shown in (c) to infer the data interval for each weight.

the specific computation range for the associating online
accelerator design, substantially reducing the computational
cycles and avoiding invalid operations to nontrivially improve
the computation’s efficiency.

B. Mortar-FP8

Mortar, as a technique, employs a morphing approach to
effectively reduce the bit width of the mantissa. Building upon
the established foundations of Mortar, our methodology further
explores techniques to decrease the mantissa bit width, thereby
transforming the process of bit width reduction from a morph
compensation mechanism into a unified optimization problem.
This advancement results in achieving shorter mantissa bit
widths.

Furthermore, based on previous analyses, we propose a
novel mechanism for reducing the exponent. Leveraging this
mechanism, the study presents a converting algorithm and a
detailed process for processing fp32 weights to E4M3 format,
which serves as a specific case of this method. This conversion
provides an efficient solution for accelerating DNN inference
while preserving high accuracy. The refined and extended
technique, aptly named Mortar-FP8, not only facilitates faster
computations but also possesses highly desirable hardware-
friendly characteristics.

1) Mantissa Processing: Manipulating the mantissa of a
weight within a specific range has minimal impact on the
actual value of the weight. It can consequently result in
insignificant changes to both the MAC results and neural
network performance. In the Mortar method, a suitable zero bit
in the mantissa is searched for from front to back in a single
weight, then converted to one and the subsequent bits truncated
to shorten the bit width of the mantissa. This technique helps
accelerate the calculation. However, if all weights are to be
converted to the unified fp8 format, the number of bits in the
mantissa must be fixed. Thus, the Mortar-FP8 method proposes
a novel approach to this problem.

To achieve shorter and a fixed bit width of the mantissa,
(3) is applied to the processing of the weight mantissa,
ultimately leading to improved hardware design performance

min
∣∣Mfpn

− Mfp32

∣∣. (3)

In (3), Mfp32
and Mfpn

, respectively, represent the mantissa
bit of original fp32 and processed fpn. The n represents the

Fig. 6. Illustration of mantissa processing of Mortar-FP8. The mantissa bit
width of converted floating-point format is l.

processed weight’s bit width. To clearly illustrate how to
minimize the difference between the Mfp32

and Mfpn
, Fig. 6 is

illustrated.
According to Fig. 6, (3) can be expressed as the sum of

�a and �b. The mantissa length of fpn’s is denoted by l.
The value of �b is obtained by taking the minus sum of the
original fp32 bit mantissa ranging from the (l+1)th to the 23rd
position. Conversely, the value of �a can be determined by
computing the difference between the first l original mantissa
bits of fp32 and the corresponding first l mantissa bits of fpn.
Equation (3) is rewritten as

min|�a + �b|. (4)

�b is 0 or a negative number. To minimize the difference
between fpn and fp32, the value of �a is set to either 0 or a
positive number. Furthermore, for a fixed length of mantissa,
the value of �a is always a multiple of 2−l. Therefore, the
value of �a can be expressed as x ∗ 2−l, where x is a non-
negative integer. The equation is written as

min
∣∣∣x ∗ 2−l + �b

∣∣∣. (5)

In the original fp32 weight, if all bits ranging from the
(l+1)th to the 23rd of the mantissa are zero, then the variable
�b is equal to zero. Conversely, if all these bits are one, the �b
becomes −(2−l − 2−24). Consequently, the magnitude of �b
lies in the range between −(2−l−2−24) and 0, which is always
less than 2−l. Therefore, the value of x can take only the 0
or 1.

When the solution of x in (5) is zero, it implies that (5) is
minimized when x equals zero rather than one. In this situation,
(5) represents the absolute value of �b is less than 2−(l+1)

|2−l + �b| > |�b|
2−l − |�b| > |�b|
�b < 2−(l+1).

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

884 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

Based on the properties of binary bits, if the (l+1)th bit of
the mantissa in the original fp32 weight is equal to zero, then
the magnitude of |�b| is definitely less than 2−(l+1); otherwise,
if this bit is one, then the magnitude of |�b| is greater than
2−(l+1), and the solution for x will be one. As a result, the
value of x can be either zero or one, depending on whether
the (l + 1)th bit is 0 or 1, respectively. In the special case
where the solution for x is equal to one, which occurs when
the first l mantissa bits of the original number are all ones,
setting x to one would result in an overflow of fpn’s mantissa
representation. Therefore, in this scenario, the mantissa bits of
fpn would remain the same as the first l mantissa bits of fp32.
Therefore, the solution to (3) can be written as

⎧
⎨

⎩

Mfpn
= Mfp32

[0:l], Mfp32
i = 1 and i ⊂ (0, l + 1)

Mfpn
= Mfp32

[0:l], Mfp32
l = 0

Mfpn
= Mfp32

[0:l] + 1, Mfp32
l = 1.

(6)

Formula (6) determines how the mantissa of fpn is pro-
cessed, which considers both the length of the mantissa and
the first l + 1 bits of the mantissa in the original fp32
representation. If the initial l bits of the mantissa in the original
fp32 representation are all 1 s, then the mantissa of fpn will
also be all 1 s. On the other hand, if the first l bits are not all
ones, then the mantissa of fpn is processed based on the value
of the (l +1)th bit in the original fp32 formats. If the (l +1)th
bit is 1, the mantissa of fpn is derived by adding one to the
first l bits of the mantissa in the original fp32. However, if
the (l + 1)th bit is 0, the mantissa of fpn will be identical to
the first l bits of the mantissa in the original fp32.

2) Dynamic Bias Mechanism: Lower precision in the
floating-point format not only shortens the mantissa bits but
also leads to a shorter exponent representation. Limited bit
width in exponents results in decreased precision due to over-
flow or underflow errors. Conversely, too many exponent bits
lead to accurate representation at the expense of slow speed
in network computation and increased hardware overheads.
Therefore, it is crucial to determine the appropriate exponent
bit width for the data of the neural network.

The analysis in previous indicates that the distribution range
of neural network weight exponents is significant, while their
distribution gap within convolution kernels is relatively smaller
and consistent. By denoting the gap between the maximum and
minimum exponent as G, logG

2 bits are sufficient to accurately
represent each exponent within the given kernel. Therefore,
exponent bit width can be reduced while maintaining precise
representation, accelerating network operations without affect-
ing neural network’s performance.

However, the exponent distribution ranges of different
convolution kernels are varied, requiring a method that short-
ens bit width while representing various exponent ranges.
In floating-point representation, bias provides an additional
degree of freedom to address this issue. By subtracting a
fixed bias value from the exponent, the exponent representation
range can be shifted along with the offset. In the fp32
representation, 8-bit exponent representation ranges from 0 to
255, and by subtracting a fixed bias of 127, the range can
be shifted to −127 to 128. Unlike bias in fp32, our proposed
method does not use a fixed bias. Instead, we set different

Algorithm 2 FP8 Converting
Input: The n × n kernel original fp32 weights Wk

Output: New fp8 converted weight Wk
′, dynamic bias Bk

of Wk
′

1: Interpret the n2 sign bits Sk = [s1, . . . , sn2],
exponents bits Ek = [e1, . . . , en2] and mantissa bits
Mk = [

m1, . . . mn2

]
.

2: Bk = min(Ek)

3: for ei in Ek:
4: e′

i = ei − Bk

5: If e′
i > 15:

6: e′
i = 15 # The maximum mantissa under E4M3 is 15.

7: E′
k = [e1

′, . . . , en2
′]

8: for mj in Mk:
9: if mj[3] = 1

10: if mi[0] and mi[1] and mi[2]:
11: m′

j = mj[:3]
12: else:
13: m′

j = mj[:3] + 1
14: else:
15: m′

j = mj[:3]
16: M′

k = [m1
′, . . . , mn2

′]
17: Wk

′ = concat(Sk, E′
k, M′

k)

biases for different kernels, which is called the dynamic
bias mechanism. This approach achieves the consistent gap
distribution within kernels of different ranges using the same
lower bit-width.

Suppose the gap between weight exponent distributions
within a convolution kernel is G, and the corresponding
exponent value’s maximum width is W (W ≤ logG

2). The
range for W bit representation is 0 to 2W − 1, and the bias
for this kernel is the minimum of its exponent values. By
subtracting the bias from all exponents, the kernel’s exponent
representation range can be shifted to 0 to 2W − 1. If the bit
width W is less than logG

2 , any data beyond 2W − 1 will be
truncated to 2W − 1. In the actual calculation, the exponents
within the kernel are the bit values plus the corresponding
bias. Therefore, the exponent values for a given kernel can be
represented using only W bit with this approach.

3) fp8 Converting: We propose to apply the exponent and
mantissa compression described above to the fp8 format. The
first bit represents the sign in fp8 presentation. By setting the
exponent bit-width to 4 and the mantissa bit-width to 3, we
achieve the E4M3 fp8 format, which leverages the fact that
most of the gap distribution in kernels’ exponents is within
16, as shown in Fig. 3.

Algorithm 2 outlines the procedure for converting fp32
weights into the fp8 format. In line 2, we determine the bias
for a given n × n size convolution kernel Wk as the minimum
exponent of the n2 weights. Lines 3–7 describe how exponents
are processed when converting weights to fp8. The algorithm
subtracts the bias in line 2 from the original exponent to
obtain the converted fp8 exponent. If the converted exponent
is greater than 15 (the maximum exponent representation for
E4M3), it is set to 15.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: MORTAR-FP8: MORPHING THE EXISTING FP32 INFRASTRUCTURE 885

(a) (b)

Fig. 7. Example of converting a 3×3 kernel fp32 weights to fp8 formats. (a) Original kernel weights and its fp32 bits representation. (b) Converted E4M3
fp8 formats of the kernel weights.

Lines 8–16 describe how to shorten the 23-bit mantissa to 3
bits in the fp8 format. If the fourth bit of the original mantissa
is 1, and the first three bits are all 1 s, then the converted
fp8 mantissa should be set as all 1 s. For other cases where
the first three bits are not all 1 s, the converted fp8 mantissa
should be calculated by adding one to the first three bits of
the original mantissa. Otherwise, the converted fp8 mantissa
should be consistent with the first three bits of the original
mantissa. Additionally, we need to save the dynamic bias of
the corresponding kernel during the conversion process.

By following this approach, we can convert fp32 weights
to fp8 while optimizing the exponent and mantissa bit-widths.
This will effectively accelerate neural network computation
without compromising performance quality.

To intuitively illustrate our proposed method, an example
of processing a 3×3 kernel weight into fp8 formats is given
in Fig. 7. Fig. 7(a) displays the original weights and their
corresponding fp32 representation. The yellow-colored portion
represents the exponent part, while the green-colored segment
denotes the mantissa of each weight. The first three bits of
the mantissa that are equal to 1 are represented by a dark red
color, while the fourth bit that is equal to 1 is represented by
a bright red color.

For this kernel, the minimum value of the exponent is
–4. Thus, in Fig. 7(b), the dynamic bias is –4. To obtain
the converted fp8 exponent for each weight, we subtract the
dynamic bias from the original exponents. If the converted
exponent is greater than 15, it is set as 15 in line with the
maximum exponent representation for E4M3.

In the mantissa part, we observe that the first and ninth
weights have the first three bits equal to 1, indicated in dark
red. Consequently, the mantissa of the converted fp8 weight is
also all equal to 1. For weights where the fourth bit is equal
to 1 (e.g., the fifth and sixth weights), we add 1 to the first
three bits of the original bit when converting it to fp8. For
other weights, the tails are consistent with the first three bits
of the original weight.

Fig. 7 illustrates that the numerical difference between
the original kernel and converted kernel is minor, but the
representation for each weight has significantly decreased from
32 bits to 8 bits. This has clear benefits for both computing and
storing neural networks, making our proposed method highly
advantageous.

V. MORTAR ACCELERATOR

This section describes our accelerator design that supports
both fp32 and fp8 modes, based on our proposed methods. For
fp32 mode, the model weights must be processed online with
mantissa morphing. However, this requirement is unnecessary
for fp8 mode because Mortar-FP8 conversion is easy and
efficient to deploy on our accelerator. The user can configure
the accelerator to select between the two modes based on
different scenarios.

As shown in Section VI, 32-bit mode has slightly higher
accuracy with Mortar acceleration method, while Mortar-
FP8 processing requires lower computational and storage
requirements. Therefore, users can choose the fp32 mode
for tasks such as medical image diagnosis and autonomous
driving, where accuracy is critical. Alternatively, fp8 mode can
be selected for tasks such as some image processing to achieve
high-efficiency calculation with low storage demand.

A. Fp32 Mode for Offline Mortar

The fp32 mode in the accelerator is designed to speed up
fp-32 inference using the mantissa morphing algorithm. Fig. 8
shows the overall architecture of Mortar accelerator, while
Table V provides an area and energy breakdown.

In our accelerator, memory access is through DMA, and
data fetched from memory is stored in a local buffer. The
accelerator integrates a memory of 2 GB. To facilitate efficient
computation, registers are specifically allocated for storing
the weights and activations within the architecture. Likewise,
registers are also utilized for holding the intermediate values
generated during the preprocess stage and within the compute
unit (CU) component. The Mortar processing element (PE)
consists of an array of Mortar CUs, which receives input
activations A0 ∼ AN−1 and weights W0 ∼ WN−1. Within
each CU, a serial architecture is used to perform ib × ib
MAC operations per cycle, where i represents the ith input of
A and W.

Once the weights have been processed offline by the
Mortar accelerator, the preprocessing module separates the
weights into two parts: the 2–9 bits and the 10–32 bits.
These bits are then stored in registers. This separation enables
the division of each weight into its mantissa and exponent
components. Subsequently, these preprocessed weights are

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

886 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

Fig. 8. Overview of Mortar accelerator architecture and the microarchitecture of mortar CU.

then fed into the CU. Simultaneously, the mantissa bits of
the activations, denoted as MA0∼N−1 are serially inputted into
the CU alongside the weight mantissa bits MW0∼N−1. Each
selector receiving the weight mantissa is governed by the
“mortar encoding” signal, which ensures that only the relevant
data interval for each weight is selected. Any data falling
outside this interval is automatically assigned a value of 0.
This mechanism aids in accurately choosing the appropriate
bits while discarding unnecessary information.

By utilizing a serial computation of MWi and MAi (i =
0, 1 . . . , N − 1), Mortar can output the multiplication value
using simple combinational logic in each cycle, reducing hard-
ware design overhead. The shifter then shifts the output value
of each cycle with the corresponding bit significance to ensure
the correctness of the result. For floating point numbers, the
shifting operation is performed by the exponent accumulation
in A, not introducing much overhead. The corresponding shift
for MACs is EW ′

i
+ EAi , representing the multiplication of

activation and weight bits in the cycle. Lastly, the adder tree
performs final partial-sum accumulation.

Overall, Mortar provides a high-performance hardware
accelerator for fp-32 inference, leveraging the benefits of the
mantissa morphing algorithm.

B. FP8 Mode for Online Mortar-FP8

Due to the simplicity and effectiveness of the
Mortar-FP8 methodology, the accelerator incorporates the
online components, denoted as “fp8 only” in Fig. 8, to convert
weights from fp32 to fp8, and perform computations with
these components.

The preprocessing unit responsible for handling 32-bit
weights in the Mortar-FP8 method consists of multiple mod-
ules aimed at performing mantissa reduction and dynamic
exponent adjustment online. In addition to just interpreting
fp32 weights to mantissa and exponent in Mortar, this unit
employs simple 2-way selectors to process the exponent
mantissa online, ultimately transforming them into the E4M3
format.

Regarding the exponent processing of the weight, the
accelerator utilizes a 2-way selector. It compares the result
obtained by subtracting the dynamic bias from the exponent
with 15 and outputs the converted fp8 exponent accordingly.

When it comes to the mantissa processing, the preprocessing
unit employs a series of 2-way selectors. If the fourth bit of
the original weight mantissa is not equal to 1, the first 2-way
selector generates the original first three bits of the mantissa.
However, if the fourth bit is 1, the next 2-way selector comes
into play. This selector compares the value obtained by adding
1 to the first three bits of the mantissa with 7 before outputting
the processed mantissa value. The selectors in the Mortar-
FP8 accelerator have a minimal impact on overhead, as they
are designed to be simple. This can be observed in Table VI,
which presents the overhead of the preprocessing unit of both
the Mortar and the Mortar-FP8 accelerators.

With the steps in the preprocessing unit, the Mortar accel-
erator performs online processing of 32-bit weights into 8-bit
weights, which are then sent to the CU component for
computation. When fed into the CU, the mantissa bits are
compressed into 3 bits, which is different from the 23 bits in
fp32 mode. The compressed bits are colored with dark pink
in Fig. 8. The encoder component, which is unnecessary in
the fp8 mode CU design, is depicted as “fp32 only.” Since all
weight exponents subtract the shared bias, the corresponding
shift for MACs in the part-sum calculation is EW ′

i
+EAi +bias.

Overall, the Mortar accelerator with fp8 mode employs the
simple components to swiftly convert fp32 weights to fp8
format online, resulting in accelerated neural network compu-
tation at a relatively low cost. The reduction in bit-width of the
weights significantly alleviates the memory requirements and
computational complexities, ultimately accelerating inference
in neural networks.

VI. EVALUATION AND DISCUSSION

A. Benchmark and Hardware Implementation

The deep learning models and the pretrained parameters on
ImageNet [26] dataset are directly obtained from PyTorch [27].
The benchmark models are shown in Table I to demonstrate
the ability of Mortar and Mortar-FP8 for general-purpose
DNN task acceleration. We choose the tasks from different
domains including Image Classification, Object Detection,
Video Understanding, Video and Image Super Resolution,
and style transfer. The benchmarks cover “large” models
with the parameter size, such as 88.79M (ResNext101 [28]),
86.61M (ViT [29]), as well as “small” models with the

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: MORTAR-FP8: MORPHING THE EXISTING FP32 INFRASTRUCTURE 887

TABLE I
BENCHMARK DNNS AND THEIR ORIGINAL SPECS FOR EVALUATING MORTAR’S AND MORTAR-FP8’S PERFORMANCE

TABLE II
ACCURACY OF MORTAR UNDER P = 0.1

parameter size of 2.58M (D3DNet [30]). To further demon-
strate the generalization capability of Mortar and Mortar-FP8,
Yolov3 [31] is trained on the COCO [32] dataset. Our exper-
iments extensively evaluate Mortar’s and Mortar-FP8’s effect
on model accuracy and bit width decrease, and we compare the
performance with SOTA hardware pruning accelerator BitX.

At the RTL, we utilize Vivado HLS (v2018.2) for post-
synthesis simulation on Xilinx Virtex-7 FPGA. Our design
consists of 16 CUs within PEs, operating at a clock frequency
of 200 MHz. To evaluate the runtime memory access data
and estimate the energy consumption associated with memory
accesses, we record the data and utilize the DRAMsys
tool [33]. To measure power and area during RTL synthesis,
we employ Synopsys Design Compiler (v2016). The design
is synthesized using the TSMC 28nm technology library, with
the frequency set at 1 GHz.

B. Accuracy

Mortar (fp32): To validate the effectiveness of the Mortar
method, many experiments are conducted on a large number
of neural network models. As discussed in the methodology
section, the parameter P plays a crucial role in striking a
balance between the precision of the neural network model
and the acceleration achieved through Mortar. By increas-
ing P, more sparsity is introduced, which in turn leads
to faster inference speed. To determine the optimal value
for P that maximizes network performance, we conducted
thorough space exploration. Although only some of the
results are presented in Fig. 9 due to space limitations,
more comprehensive findings can be found in the conference
version, further demonstrating the rationale behind our choice
of P.

From Fig. 9, it can be observed that, for the majority of
models, maintaining a range of 0.0001 < P < 0.05 yields
near-identical performance. However, as P exceeds 0.1, a
notable decline in accuracy is observed. Moreover, when P

TABLE III
ACCURACY OF MORTA-FP8

surpasses 0.5, there is a significant decrease in accuracy.
To strike a balance between acceleration effects and neural
network performance, we set the value of P to 0.1 without
compromising the overall performance of the neural network
model.

Table II presents the accuracy of various models with P set
to 0.1. It is evident from the table that the majority of models
maintain the same level of accuracy as the original model, with
only minor accuracy degradation in some instances. Notably,
DenseNet161 and ResNext101_32x8d demonstrate improved
accuracy when the Mortar method is applied. This surprising
result suggests that Mortar not only preserves the performance
of neural networks but can even enhance accuracy in certain
cases.

Mortar-FP8: Massive experiments are also conducted to
evaluate the effectiveness of Mortar-FP8 and investigate the
contributions of each component of the proposed method.
Specifically, we analyzed the impact of separately processing
only the mantissa to 3 bits and converting the entire weights
to fp8. The comprehensive results are reported in Table III. As
highlighted in Section III, the weights’ exponent gap surpasses
the range of 4 bits. Hence, we refrain from processing the
weights of the fully connected layer of the image recognition
models to fp8.

Based on an analysis of the results presented in Table III, it
is evident that reducing the mantissa to 3 bits for all models
leads to an average decrease in accuracy of less than 0.4%.
In comparison with Mortar, when employing the Mortar-FP8
approach, which further reduces the mantissa bits, a slightly
higher reduction in accuracy is observed cause more bits are
eliminated. Nevertheless, this reduction in accuracy is minimal
considering the significant reduction in bit width from 23 to
3 bits.

Furthermore, when converting all weights to fp8 using
the proposed method, there is no significant reduction in
network performance. Similarly, the increased accuracy is also

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

888 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

(a) (b)

(c) (d)

Fig. 9. Design space exploration of key design parameter P on various models and P = 0.1 is the turning point for most models. (a) Design space exploration
of P in ResNet18. (b) Design space exploration of P in D3DNet. (c) Design space exploration of P in YoLoV3. (d) Design space exploration of P in FCOS.

TABLE IV
ACCURACY/SPARSITY COMPARISON BETWEEN MORTAR AND BITX

seen in YoLov3. The improved accuracy observed in these
cases can be primarily attributed to the benefits offered by
the low-precision representation formats employed in both
Mortar-FP8 and Mortar. Specifically, the decreased mantissa
bit length and the utilization of a reduced precision format
(FP8) for representing weights may introduce some level of
noise. In certain cases, this noise can act as a regularizer to
prevent overfitting. Consequently, the models exhibit improved
accuracy compared to the baselines.

Taken together, these experimental findings provide clear
evidence that the dynamic bias mechanism employed in the
method is both effective and accurate in handling floating-
point values with the exponent processed to 4 bits. And the
Mortar-FP8 acceleration method demonstrates effectiveness.
The results highlight its potential to be widely applied in
various real-world applications where the reduction in bit
width has minimal impact on network performance.

Comparison With Relevant SOTA Design: As a method that
reduces the bit width of the mantissa based on mantissa spar-
sity, we present the effectiveness of Mortar by analyzing the
bit-level sparsity of the neural network model after applying
the Mortar method. Additionally, we compared Mortar with
BitX [14], a novel DNN accelerator using hardware pruning
to increase bit-level sparsity for inference acceleration.

Table IV shows the accuracy and sparsity changes for
different types of datasets that apply mantissa morphing using
the threshold P = 0.1. The results show that in general cases,
the sparsity improvement of a model can reach 2× with
negligible accuracy degradation.

We selected several models, including DenseNet161 [34],
ResNext101, and ResNet18 [35], for the image classification
task. Table IV shows that Mortar maintains improved sparsity
while achieving better accuracy in all three models. When

(a)

(b)

Fig. 10. Mantissa bit width of (a) ResNext101_32x8d and (b) DenseNet161.

comparing the other data reported in BitX, Mortar outperforms
BitX in accuracy while maintaining a slightly improved spar-
sity at similar levels of sparsity improvement. The difference
in model accuracy is remarkably significant, with a nontrivial
5% improvement for ResNext101 and ResNet18.

Although BitX effectively improves the sparsity of model
weights, it fails to consider the difference of each weight
in the model. Its fixed-position pruning leads to over/under-
pruning. However, Mortar accounts for the different sparsity
proportions of each weight in mantissa morphing. It com-
presses the weights based on bit significance and uses
bitwise compensation to achieve fine-grained compression
that preserves high accuracy. Therefore, Mortar addresses
sparsification more precisely by utilizing bit-level sparsity
and significantly extending the cost-benefit tradeoff between
accuracy and compression. By utilizing these techniques,
Mortar achieves superior performance compared to BitX,
highlighting its potential as an effective and efficient solution
for compression in neural networks.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: MORTAR-FP8: MORPHING THE EXISTING FP32 INFRASTRUCTURE 889

(a) (b)

Fig. 11. Visual demonstrations of (a) 4× super resolution inference via Mortar and Mortar-FP8 and (b) cartoon style transfer via Mortar and Mortar-FP8.
The results are extremely identical to the style transfer for the original image. The visual demonstrations support the effectiveness of Mortar and Mortar-FP8
as powerful solutions for fast and efficient inference with preserved quality.

C. Mortar-FP8 Specifics

Regarding Mortar-FP8 specifically, the mantissa processing
proposed in Section IV reduces the bit width of the mantissa
to a maximum of 3 bits, which provides a more obvious
indication of the actual computation cycle compared to bit
sparsity. Fig. 10 illustrates the layer-wise bit-width of the
mantissa for DenseNet161 and ResNext101 applied with
Mortar-FP8. The bit-width of a weight is represented by the
position of last bit one in the mantissa. Notably, Mortar-FP8
achieved an outstanding reduction in the average layer bit-
width of the mantissa, from 23 bits to approximately 2.25
bits. The largest bit width in ResNext101 is just about 2.3.
Furthermore, this reduction does not result in a significant
decrease in accuracy of DenseNet161 and ResNext101, with
only a negligible decrease observed.

This figure indicates the effectiveness of our proposed
approach in shortening the bit-width of floating-point numbers.
The lower bit-width implies fewer computations, leading to
faster neural network performance. Mortar-FP8 significantly
reduces the bit-width of floating-point numbers without affect-
ing the performance of neural networks. This demonstrates the
effectiveness of Mortar-fp8 as a powerful solution for reducing
computation costs while preserving high-level model accuracy.

D. Visual Comparison

To qualitatively analyze Mortar and Mortar-FP8, we apply
our approaches on multiple image processing tasks to visually
display their effect on image outputs. In Fig. 11, we apply
Mortar and Mortar-FP8 on both 4× Super Resolution with
LapSRN [36] and CartoonGAN [37], showing results for both
original and enhanced models.

The results show that Mortar’s and Mortar-FP8’s effect
on the original model is both quantitatively minimal and
qualitatively imperceptible to the end user. Mortar maintained
a high-level quality of its outputs, indicating its effectiveness
in reducing bit-width while maintaining high accuracy and
quality.

E. Accelerator Performance

To evaluate the performance of Mortar and Mortar-
FP8 hardware accelerator against other accelerators, we
conducted a concrete analysis in Fig. 12. Specifically, we
selected Pragmatic [15] and Stripes [38] as representa-
tives for bit-serial accelerators, along with ResNet50 and
SqueezeNet1_1 [39] as inference models for the comparison.

(a) (b)

Fig. 12. Speedup comparison of Mortar and Mortar-FP8 with other SOTA
accelerators in (a) for ResNet50 and (b) for SqueezeNet1_1.

While Stripes implements MAC computation using bit-
level arithmetic, it does not consider bit sparsity. Pragmatic
builds on stripes by dynamically skipping zero bits, thereby
exploiting bit sparsity. However, they are not designed to fully
exploit bit sparsity or to shorten the bit-width of floating point.
In contrast, Mortar and Mortar-FP8 focus on these issues to
achieve superior performance.

Through our proposed methods and accelerator, we address
these challenges by mitigating mantissa sparsity and short-
ening the bit-width of floating-point numbers. Overall, our
experimental results demonstrate that Mortar and Mortar-FP8
outperform the other architectures, highlighting their potential
as powerful solutions for efficient inference in neural networks.

Speedup: Fig. 12 demonstrates the speedup achieved by
Mortar and Mortar-FP8 over Pragmatic (the normalized
baseline) and Stripes.

Mortar achieves a speedup of 4.467× over Pragmatic for
ResNet50, while Mortar-FP8 achieves a speedup of 6.99×. For
SqueezeNet1_1, Mortar achieves a speedup of 6.302× over
Pragmatic, while Mortar-FP8 achieves a speedup of 6.5×. Our
methods also outperform BitX in terms of inference speedup.
As the experiment does not consider the factor of bandwidth
reduction, the acceleration effect of our approach would be
even better in reality.

This superior performance can be attributed to the
effective utilization of bit sparsity in the mantissa by
the proposed accelerator. Specifically, Mortar’s encoding
mechanism reduces cycles that do not significantly contribute

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

890 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 3, MARCH 2024

(a)

(b)

Fig. 13. (a) Full-system energy breakdown and (b) PE-only energy
breakdown.

TABLE V
PE AREA AND POWER BREAKDOWN @TSMC 28NM

to model performance by focusing solely on the encoded
intervals, while the bit width of the exponent in Mortar-
FP8 is drastically reduced. These approaches result in a
significant reduction of computation complexity, leading to
faster inference times. Moreover, since the bandwidth required
for data transfer and storage is significantly reduced when
weights are morphed from fp32 to fp8 format, the actual
acceleration should be even greater.

Energy Breakdown: Our Xilinx V7 FPGA platform involves
the DDR3 memory. We use DRAMsys to estimate the
runtime memory access energy. As shown in Fig. 13, the
energy breakdown can be analyzed from two aspects. First,
Fig. 13(a) shows the full-system energy breakdown, revealing
that memory accesses dominate the energy consumption. For
example, the memory access energy of Mortar-FP8 makes up
92.95%, while the PE energy only occupies about 2%. Second,
in Fig. 13(b), we decompose the PE-only energy. In Mortar,
CU energy dominates at 78.32%, as we have 16 CUs with
a large number of buffers to store the bit-pruned weights.
However, for Mortar-FP8, the preprocess dominates because
the conversion from fp32 to fp8 occurs online during the
process.

Area and Power Breakdown: Under TSMC’s 28 nm tech-
nology node, the area of Mortar and Mortar-FP8 is 0.031
mm2 and 0.0505 mm2 respectively. According to Table V
the preprocess phase accounts for the majority of the area,

TABLE VI
COMPARISON WITH OTHER FLOATING-POINT ACCELERATORS

representing 54.84% of Mortar and a staggering 77.23% of
Mortar-FP8. As the weight processing phase in Mortar is
performed offline, it consumes less area and power compared
to Mortar-FP8. It is worth noting that the CU used in the
design of Mortar-FP8 has been significantly reduced due
to the decreased bit length of the weights (8 bit) when
compared to Mortar (32 bit). This reduction in CU size
has contributed to an impressive decrease in overall power
consumption, resulting in a mere 25.16 mW. Additionally,
we have considered other floating-point accelerators for com-
parison under TSMC’s 28 nm technology node in Table VI,
such as BitX [14], ReDCIM [40], and VLSI’21 [41]. BitX
proposed a hardware pruning accelerator specifically targeting
fp32, while ReDCIM and VLSI’21 support FP32, FP16, and
BF16 formats separately. The proposed Mortar-FP8 supports
shorter floating-point formats and achieves smaller power
consumption.

VII. CONCLUSION

This article introduces novel offline/online collaborative
approaches for accelerating general-purpose deep learning—
software optimization called mantissa morphing and an
fp8 conversion algorithm, along with hardware accelerator
design. Our approach, Mortar, employs bit compensation
when optimizing bit-level operations, significantly increasing
the mantissa’s sparsity to accelerate deep learning mod-
els based on fp32. Mortar-FP8 successfully converts fp32
weights to fp8 representation, reducing computation and
memory requirements while maintaining high inference accu-
racy. Furthermore, our methods exhibit robust generalization
capabilities across different model tasks and datasets, outper-
forming existing hardware accelerators. We hope this work
will inspire future accelerator designs to become more efficient
and versatile.

REFERENCES

[1] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional
one-stage object detection,” in Proc. ICCV, 2019, pp. 9627–9636.

[2] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video
enhancement with task-oriented flow,” Int. J. Comput. Vision, vol. 127,
pp. 1106–1125, Feb. 2019.

[3] R. Zeyde, M. Elad, and M. Protter, “On Single image scale-up using
sparse-representations,” in Proc. Int. Conf. Curves Surfaces, 2010,
pp. 711–730.

[4] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ISCA, 2017, pp. 1–12.

[5] “Flickr image dataset.” Accessed: Apr. 16, 2023. [Online]. Available:
https://www.kaggle.com/hsankesara/flickr-image-dataset

[6] J. Ouyang, X. Du, Y. Ma, and J. Liu, “3.3 Kunlun: A 14nm high-
performance AI processor for diversified workloads,” in Proc. ISSCC,
2021, pp. 50–51.

[7] E. Technology. “Enflame DTU.” Accessed: Apr. 16, 2023. [Online].
Available: https://www.servethehome.com/enflame-dtu-1-0-ai-compute-
chip-at-hot-chips-33/

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: MORTAR-FP8: MORPHING THE EXISTING FP32 INFRASTRUCTURE 891

[8] Cambricon. “CambriconMLU290.” Accessed: Apr. 19, 2023.
[Online]. Available: https://www.cambricon.com/index.php?
m=content&c=index&a=lists&catid=340

[9] K. Zhong et al., “Exploring the potential of low-bit training of convo-
lutional neural networks,” 2020, arXiv:2006.02804.

[10] L. Cambier, A. Bhiwandiwalla, T. Gong, M. Nekuii, O. H. Elibol, and
H. Tang, “Shifted and squeezed 8-bit floating point format for low-
precision training of deep neural networks,” in Proc. ICLR, 2020,
pp. 1–12.

[11] X. Sun et al., “Hybrid 8-bit floating point (HFP8) training and inference
for deep neural networks,” in Proc. NIPS, 2019, pp. 1–10.

[12] N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, “Mixed precision
training with 8-bit floating point,” in Proc. ICLR, 2019, pp. 1–10.

[13] P. Micikevicius et al., “FP8 formats for deep learning,” 2022,
arXiv:2209.05433.

[14] H. Li et al., “BitX: Empower versatile inference with hardware runtime
pruning,” in Proc. ICPP, 2021, pp. 1–12.

[15] J. Albericio, P. Judd, A. Delmas, S. Sharify, and A. Moshovos, “Bit-
pragmatic deep neural network computing,” in Proc. MICRO, 2017,
pp. 382–394.

[16] Y. Gao, H. Li, K. Zhang, X. Yu, and H. Lu, “Mortar: Morphing the bit
level sparsity for general purpose deep learning acceleration,” in Proc.
ASP-DAC, 2023, pp. 739–744.

[17] M. Courbariaux, Y. Bengio, and J. P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Proc.
NIPS, 2015, pp. 1–9.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. ECCV, 2016, pp. 525–542.

[19] B. Jacob et al., “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proc. CVPR, 2017,
pp. 2704–2713.

[20] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional
neural networks using logarithmic data representation,” 2016,
arXiv:1603.01025.

[21] IEEE. “IEEE standard for floating-point arithmetic (754-2019).” 2019.
[Online]. Available: https://standards.ieee.org/standard/754-2019.html

[22] H. Lu, X. Wei, N. Lin, G. Yan, and X. Li, “Tetris: Re-architecting convo-
lutional neural network computation for machine learning accelerators,”
in Proc. ICCAD, 2018, pp. 1–8.

[23] S. Sharify et al., “Laconic deep learning inference acceleration,” in Proc.
ISCA, 2019, pp. 304–317.

[24] F. Tu et al., “A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8
reconfigurable digital CIM processor with unified FP/INT pipeline
and bitwise in-memory booth multiplication for cloud deep learning
acceleration,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
2022, pp. 1–3.

[25] H. Lu et al., “Distilling bit-level sparsity parallelism for general purpose
deep learning acceleration,” in Proc. MICRO, 2021, pp. 963–976.

[26] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in Proc. CVPR, 2009, pp. 248–255.

[27] Facebook. “Pytorch.” Accessed: Apr. 13, 2023. [Online]. Available:
https://pytorch.org/

[28] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. CVPR, 2017,
pp. 1492–1500.

[29] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in Proc. ICLR, 2020, pp. 1–21.

[30] X. Ying, L. Wang, Y. Wang, W. Sheng, W. An, and Y. Guo, “Deformable
3D convolution for video super-resolution,” 2020, arXiv:2004.02803.

[31] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
in Proc. CVPR, 2018, pp. 1–6.

[32] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. ECCV, 2014, pp. 740–755.

[33] C. W. M. Jung and N. Wehn, “DRAMSys: A flexible DRAM subsys-
tem design space exploration framework,” IPSJ Trans. Syst. LSI Des.
Methodol., vol. 8, pp. 63–74, Feb. 2015.

[34] G. Huang, Z. Liu, V. Laurens, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proc. CVPR, 2017, pp. 4700–4708.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[36] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. CVPR,
2017, pp. 5835–5843.

[37] Y. Chen, Y.-K. Lai, and Y.-J. Liu, “CartoonGAN: Generative adver-
sarial networks for photo cartoonization,” in Proc. CVPR, 2018,
pp. 9465–9474.

[38] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Proc. MICRO,
2016, pp. 1–12.

[39] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” in Proc. ICLR, 2017, pp. 1–13.

[40] F. Tu et al., “ReDCIM: Reconfigurable digital computing-in-memory
processor with unified FP/INT pipeline for cloud AI acceleration,” IEEE
J. Solid-State Circuits, vol. 58, no. 1, pp. 243–255, Jan. 2023.

[41] J. Lee et al., “A 13.7 TFLOPS/W floating-point DNN processor
using heterogeneous computing architecture with exponent-computing-
in-memory,” in Proc. Symp. VLSI Circuits, 2021, pp. 1–2.

Hongyan Li is currently pursuing the Ph.D.
degree with the State Key Laboratory of Computer
Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China.

Her research interests include software–hardware
co-design acceleration of neural networks, deep
learning network pruning, video understanding, and
dynamic inference.

Hang Lu received the B.S. and M.S. degrees
in electronic and information engineering from
Beihang University, Beijing, China, in 2008 and
2011, respectively, and the Ph.D. degree in com-
puter architecture from the University of Chinese
Acedemy of Sciences, Beijing, in 2015.

He is currently an Associate Professor and
a Master Tutor with the State Key Laboratory
of Computer Architecture, Institute of Computing
Technology (ICT), Chinese Academy of Sciences
(CAS), Beijing. He is also a Research Scientist with

the Shanghai Innovation Center for Processor Technologies, CAS. He is a
member of the Youth Innovation Promotion Association of CAS, and the New
Best Star of ICT. His research interests include power-efficient computing
platforms, AI chip design, and deep learning algorithm optimization.

Xiaowei Li (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees in computer science
from the Hefei University of Technology, Hefei,
China, in 1985 and 1988, respectively, and the Ph.D.
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing, China, in 1991.

He was an Associate Professor with the
Department of Computer Science and Technology,
Peking University, Beijing, from 1991 to 2000. In
2000, he joined ICT, CAS, as a Professor, where he

is currently the Deputy Director of the State Key Laboratory of Computer
Architecture. He has coauthored over 280 papers in journals and international
conferences, and he holds 60 patents and 30 software copyrights. His
current research interests include VLSI testing, design for testability, design
verification, dependable computing, and wireless sensor networks.

Prof. Li has been the Vice Chair of the IEEE Asia and Pacific Regional Test
Technology Technical Council since 2004. He was the Chair of the Technical
Committee on Fault-Tolerant Computing, China Computer Federation from
2008 to 2012, and the Steering Committee Chair of IEEE Asian Test
Symposium from 2011 to 2013. He was the Steering Committee Chair of
IEEE Workshop on RTL and High Level Testing from 2007 to 2010. He serves
as an Associate Editor for the Journal of Computer Science and Technology,
the Journal of Low Power Electronics, the Journal of Electronic Testing:
Theory and Applications, and the IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on February 22,2024 at 02:11:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

