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Abstract—With the development of the important solution for
privacy computing—fully homomorphic encryption (FHE), the
explosion of data size, and computing intensity in FHE applica-
tions brings enormous challenges to the hardware design. In this
article, we propose a novel co-design scheme for FHE acceleration
named “Poseidon-NDP,” which focuses on improving the effi-
ciency of the hardware resource and the bandwidth. Specifically,
we investigate the special implications of the hardware imposed
by the FHE applications. It empirically shows that the FHE
performance is suffered from both the intractable data movement
and the computation bottleneck. Besides, we also introduce the
opportunity and the challenges of accelerating FHE on near data
processing (NDP) architecture. Based on such analysis, we pro-
pose an optimized technique called “NTT-fusion” to simplify
the FHE operator and reduce its hardware overhead. Then,
we design the accelerator based on the simplified operator to
achieve maximized data and computation parallelism with lim-
ited hardware resources. Additionally, we evaluate Poseidon-NDP
with 4 domain-specific FHE applications on the SmartSSD, which
is a practical NDP device. The empirical studies show that the
efficient co-design enables Poseidon-NDP vastly superior to the
state-of-the-art FHE acceleration techniques: 1) up to 217×/84×
speedup over CPU and high-performance GPUs for the number
theoretic transform; 2) up to 3.7×/29× higher-speedup/energy
delay product (EDP) over the SOTA FPGA accelerator for the
FHE applications; and 3) up to 4.9× higher-bandwidth utilization
over CPU due to the NDP-based architecture.

Index Terms—FPGA accelerator, fully homomorphic encryp-
tion (FHE), near data processing (NDP), privacy computing.

I. INTRODUCTION

AS THE need for privacy protection grows, the technology
of privacy computing is significant for scenarios involv-

ing sensitive data, i.e., personal credit records, medical history,
financial records, and so on. Fully homomorphic encryption
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Fig. 1. General concept of FHE.

(FHE), as one of the mainstream privacy-preserving schemes,
can guarantee data security without the trusted third party and
compute on the encrypted data. Fig. 1 shows the concept of
FHE, the client encrypts their data locally using the secret
key and sent to the server providing the computing power.
After computing, the server returns the encrypted result and
the client decrypts it to obtain the actual value. There is no
private data leakage in the whole computing process.

With the rapid development of FHE in recent years, there
are several FHE schemes are proposed by researchers. The first
FHE scheme is brought forward by Gentry in 2009 [22], which
proposed a generic method for constructing FHE. It supports
any number of homomorphic additions and multiplications
with higher-computational overhead. To improve Gentry’s
work, several FHE schemes subsequently emerged, such as
BGV [8], BFV [21], TFHE [15], and CKKS [14]. BGV
and BFV aim to accurately evaluate arithmetic circuits, while
CKKS is dedicated to approximate calculations. Unlike the
BFV, BGV, and CKKS, TFHE is an implementation based
on the boolean circuit and specializes in encrypted bitwise
operations. Therefore, different FHE schemes are available for
different scenarios.

Although a collection of FHE algorithms have been
proposed, it is still difficult to apply them in practical scenar-
ios. For the proposed FHE solutions, there is a big execution
efficiency gap between plaintext and ciphertext computation.
The main reason is that FHE will hugely expand the data size
and increase the computation complexity. As will be proved in
Section II, the length of the ciphertext can be expanded tens
of thousands of times relative to the plaintext, and the runtime
of the ciphertext increases to even thousands of times relative
to the plaintext.
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Landscape of Prior Work: In order to alleviate the
formidable burden imposed on the existing CPU platforms,
recent works devoted to designing specialized FHE accelera-
tor architectures to offload the FHE computations from CPU,
which can be categorized into two main aspects:

1) accelerating a particular FHE scheme but cannot support
other FHE schemes well (i.e., HEAX [39] for CKKS,
Hepcloud [40], [41] for BFV);

2) accelerating a series of key operators in FHE, such as
number theoretic transform (NTT), inverse NTT (INTT),
modular multiplication (ModMult), and modular addi-
tion (ModAdd), and thus supports a wide range of FHE
schemes [10], [11], [19], [49].

Prior works have theoretically achieved the speedup from
tens to even hundreds of times compared with CPU. However,
the memory access bandwidth is always ignored or imprac-
tically assumed constant in these works. For example,
HEAX [39] reports 76× speedup to GPU for NTT while
ignoring the actual bandwidth requirement that could exceed
450 GB/s in theory. Kim et al. [33], [34] achieved the
118× speedup excluding the slowdown caused by the band-
width limitation. Other works focus on accelerating the FHE
key operators in hardware but achieve limited performance
improvement. For example, Roy et al. [40], [41] designed the
BFV accelerator based on the Barrett Reduction algorithm [24]
and achieved 1.3× speedup over CPU. Cao et al. [9] applied
the algorithm in [24] to accelerate ModMult on large num-
bers but it is not suitable for the widely used residual number
system (RNS)-based FHE [7], [13], [23]. Doröz et al. [20]
aimed at the fast decryption/encryption operation and achieved
20% acceleration compared with the software decryption. In
addition, some works also resort to GPUs for the FHE accel-
eration [5], [6], [29], [47], [48]. Multiple FHE schemes are
tested on different GPU platforms to explore the most matched
GPU architecture in these works. There are also some ASIC-
based FHE accelerator works [30], [32], [43], [44]. They
achieve a remarkable acceleration ratio for the overall FHE
applications. However, they rely on expensive large-capacity
on-chip SRAM buffers, even up to 512 MB. Some open-source
software libraries [16], [37], [46] are also developed for accel-
erating FHE on GPUs. However, compared with the FPGA
platform, GPU exhibits relatively higher-power consumption.

In this article, we propose a practical FHE accelerator -
Poseidon-NDP, which is based on the near data processing
(NDP) architecture. Poseidon-NDP fully tackles the cipher-
text flood spawned by the plaintext encryption, and suffi-
ciently utilizes the abundant bandwidth brought by NDP to
accommodate the frequent and large-volume data movement.
As the key operator, the computation pattern of NTT fol-
lows the uniform and recursive “multiply-and-accumulation,”
providing the opportunity to fuse multiple NTT operations
together to alleviate the computation burden from the soft-
ware side. The contributions of this article are listed as
follows.

1) We analyze the FHE acceleration challenges and the
possible opportunities. Such analysis proves that the
software/hardware co-design is imperative for the FHE
acceleration.

2) From the software perspective, we propose an algo-
rithm optimization scheme called NTT-fusion to reduce
the computation intensity of FHE. It collaborates
with the accelerator hardware to maximize the overall
performance on the power-constrained NDP platform.

3) We propose an NDP-based homomorphic encryption
accelerator—Poseidon-NDP. It focus on the common
operators of the FHE schemes and leverages the broad
bandwidth naturally provided by NDP to tackle the
ciphertext flood and support different FHE applications.

4) We use the commercial NDP platform—SmartSSD to
evaluate Poseidon-NDP. Although the programmable
logic in SmartSSD is less powerful, according to
our evaluations, Poseidon-NDP still outperforms CPU,
GPU and the state-of-the-art FPGA-based accelerator
by 72× ∼ 158×, 35× ∼ 87×, and 2.5× ∼ 3.7×,
respectively.

II. BACKGROUND AND MOTIVATION

A. Homomorphic Encryption Preliminaries

As mentioned in the previous section, the classic FHE algo-
rithms include CKKS, BGV, BFV, and TFHE. These schemes
are all based on the ring-based learning with errors (RLWE)
problem [34]—an augmented version of learning with errors
(LWE) by introducing the “polynomial rings.” The hardness
of RLWE can be regarded as a traditional NP-hard lattice
problem: given randomly generated polynomials a ∈ Rq,
where Rq = Zq/f (x) and f (x) is an irreducible polynomial
with degree n; let s ∈ Rq and e ∈ Rq abiding by the χ distri-
bution; define bi = ais + ei ∈ Rq, so solving this problem is
to compute s from several (ai, bi) groups, which is regarded
as NP-hard. The ai and bi could be regarded as the plaintext
and ciphertext, expressed by polynomials. The s indicates the
secret key, which is very difficult to be deduced from the given
ai and bi.

The key operators of FHE can be summarized as follows.
① ModAdd(ct0,0, ct0,1): For two ciphertext ct0 =

(ct0,0, ct0,1) and ct1 = (ct1,0, ct1,1), their addition will return a
ciphertext ct = (ct0,0+ ct1,0, ct0,1+ ct1,1), where the operator
“+” represents the elementwise addition of the two polyno-
mials. Since FHE is performed on the “polynomial ring,” the
result of the ciphertext addition equals to the modular addition
(“ModAdd” for clarity). For example, a+b = (ai+bi) mod q,
(a, b ∈ Rq), where q is the modulus.

② ModMult (ct0, ct1): Compared with ModAdd, ModMult
of two ciphertext polynomials is more complicated. Taking
CKKS [42] as an example, computing ModMult (ct0, ct1)
requires c̃t = (d0, d1, d2) mod q = (ct0,0 · ct1,0, ct0,0 ·
ct1,1 + ct0,1 · ct1,0, ct0,1 · ct1,1) mod q. The final result is
ct = (d0, d1)+p−1 ·d2 · rlk). rlk is the relinearization key rep-
resented as rlk = (b, a) ∈ R

2
pq = (−a·s+e+p·s2, a) mod p·q,

where s is the secrete key and p is a special integer that relies
on the rlk setting. The corresponding p−1 is the inverse of p
in the modulus pq, represented as p−1 · p ≡ 1(mod pq). From
these deductions, we can see that the ciphertext multiplication
involves both multiplication and addition of the polynomi-
als. The addition is identical to the elementwise ModAdd
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TABLE I
FHE BENCHMARKS WE USE FOR EVALUATION. WE COLLECT FOUR FHE APPLICATIONS RANGING FROM THE ENCRYPTED

LOGISTIC REGRESSION TRAIN/TEST, DNN INFERENCE TO THE MATRIXMULT, AND SO ON. THE FHE ALGORITHMS

INCLUDE CKKS AND BFV WHICH ARE THE MOST WIDELY USED ALGORITHMS IN PRACTICE

TABLE II
RUNTIME AND BANDWIDTH DEMAND ANALYSIS. WE USE INTEL V-TUNE TOOL [26] TO PROFILE THE ENCRYPTED APPLICATION

EXECUTION ON THE OFF-THE-SHELF X86 SERVER PRODUCT. THE CONCRETE SPECS: 10-CORE/20-THREAD,
2.2-GHZ XEON SILVER E4114 CPU×2; DDR4, 2666 MHZ DRAM; AND 4-TB SATA III HARD DRIVE

TABLE III
ANALYSIS OF THE BENCHMARK RUNTIME ON DIFFERENT HARDWARE PLATFORMS. WE USE THE DATA DIRECTLY REPORTED IN THE LITERATURE

TO ESTIMATE THE PERFORMANCE OF HEAX [39]. OUR METHODOLOGY—POSEIDON-NDP, EMPLOYS THE PRACTICAL NDP-BASED PLATFORM

AND THE FULL-SYSTEM PERFORMANCE IS REPORTED. CONCRETE EXPERIMENTAL SETUP IS SPECIFIED IN SECTION V-A

operation, and the multiplication is the convolution of the
respective coefficient vectors of the two polynomials.

③ NTT/INTT: NTT uses the “primitive roots” from a finite
ring Zq to operate on integer-coefficient polynomials. Given
two polynomials a and b, the basic principle of NTT-based
polynomial multiplication is to transform the “coefficient
representation” of the polynomial into the “point-value repre-
sentation”: antt = NTT(a), bntt = NTT(b), also termed as the
NTT domain. The polynomial multiplication and addition are
equivalent to the elementwise multiplying or adding of the vec-
tors in the NTT domain: resultntt = antt�bntt or antt+bntt. Such
operation significantly reduces the complexity of the polyno-
mial arithmetic. The result is then converted back to the coef-
ficient representation by INTT: resultcoeff = INTT(resultntt).
The FHE algorithm ensures decrypting resultcoeff is identical
to the plaintext result.

B. Acceleration Challenges

1) Intractable Data Movement: Table I lists the FHE
benchmarks used for the analysis of the algorithm features and
the evaluations of Poseidon-NDP. The four applications range
from the simple matrix multiplication to the more complicated
deep learning training/testing, all of which take the encrypted
data as input and perform homomorphic arithmetic stipulated
by several classic FHE algorithms—CKKS and BFV.

First, despite the large size of the coefficient modulus and
the secret key, the encryption increases the size of the “input

data” remarkably, because the plaintext must be hidden in
a very large-scale ciphertext polynomial to ensure the secu-
rity and homomorphism. Compared with unencrypted input
data, the expansion ratio reaches up to 50 thousand times.
The explosion of the input ciphertext inevitably leads to
the explosion of the intermediate data during the application
execution. Table II clearly shows the significant variation of
the architectural metrics before and after the encryption. For
example, the “theoretical” bandwidth demand for the cipher-
text computation attains up to 3 TB/s; the total memory
accesses increase from tens of megabytes to tens of thou-
sands of gigabytes. We can conclude that the FHE benchmark
is highly “memory intensive.” Unfortunately, previous works
either regard the computation acceleration as the first prior-
ity [12], [38] or directly ignore the critical impact of the
intractable data movement [33], [34], [39]. If taking the
memory access into consideration however, the acceleration
performance will degrade severely. As evidence, Table III
estimates the gap between the “theoretical” and “practical”
runtime of HEAX [39]. The data in the literature only reports
the computational speed—the theoretical case excluding the
data movement between the computational cores and the
memory system. If we use the peak bandwidth provided by
the DDR4 of its Stratix FPGA to estimate the practical-case
performance, it exhibits 4.2× runtime degradation.

2) Computation Bottleneck: It is widely adopted that the
application after FHE is also computationally intensive. Also
proved by Table II, the increment of the computation intensity
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Fig. 2. Time breakdown of the key operators in FHE. NTT occupies the
primary portion of the benchmark runtime.

Fig. 3. Intrinsic time breakdown of NTT. Modular arithmetic is the most time-
consuming operation globally. Note that each percentage datum is normalized
to the total runtime of the benchmark.

attains thousands of times under the assumption of the in-situ
memory access (the rightmost column). Two factors induce
such a huge magnitude. The first one is the explosion of the
ciphertext as mentioned in Table I. The degree of the cipher-
text polynomial is generally around 212–216. CPU is burdened
by the lengthy polynomial arithmetic to accomplish FHE. The
second factor stems from plenty of extra special operations in
FHE, i.e., the encryption or decryption, which are not involved
in the plaintext computation.

Fig. 2 illustrates the time breakdown of the FHE key oper-
ators. Although the benchmarks employ different types of
FHE schemes, the basic operations are the same: NTT/INTT,
ModMult, ModAdd, keyswitch, and other miscellaneous oper-
ations. “Keyswitch” includes two main operations: 1) “rescal-
ing,” which divides the plaintext by a constant value and
2) “rotation,” which circularly rotates the ciphertext. The fig-
ure proves that the overwhelming computation bottleneck is
NTT/INTT. All the benchmarks exhibit more than 58% frac-
tion of the total runtime. Such NTT domination stems from
tackling high-degree polynomials, and the frequent transform-
ing of these polynomials from the coefficient representation to
the vectorized representation which is very time consuming.

To make things worse, single NTT/INTT is time-consuming
as well. It incurs numerous expensive modular arithmetic,
which monopolizes the runtime of each execution as proved
by Fig. 3. The fraction of “Mod” exceeds 37% of the total
runtime, followed by the integer multiplications (∼12%) and

additions (∼9%). We can conclude that the modular arithmetic
is the key reason causing the FHE computation bottleneck.
However, it also exposes a unique opportunity to accelerate
FHE, if we could successfully reduce the expensive modular
operations through specific algorithm optimization techniques.
That is what Poseidon-NDP targets at the software level.

C. Potential Opportunities

1) Near Data Processing: From the above analysis, the
architectural characteristics of FHE are twofold: 1) compu-
tation and 2) memory intensive. In Poseidon-NDP, we first
seek to leverage novel memory-access-friendly architecture to
alleviate the formidable data movement overhead. The affinity
to the vast imposition of the ciphertext is possibly benefi-
cial to the performance improvement of the FHE accelerator.
In Table III, we evaluate the benchmarks on four types of
hardware platforms, including CPU, GPU, non-NDP FPGA,
and NDP-based FPGA. Comparing with conventional DRAM
memory which suffers the limited bandwidth and power bud-
get, NDP is a proper architectural choice for its targeting the
data-centric computation scenario. However, when consider-
ing the FPGA board with HBM, the limited HBM memory
capacity will become the main bottleneck (i.e., the state-of-
the-art Xilinx U280 FPGA board only supports 8 GB for
HBM memory). Fortunately, the SmartSSD [50], a Xilinx
commercial product, provides the FPGA device with DRAM
and neighboring the vast-capacity SSD. Such architecture
enables the accelerator to access the large capacity storage
with high bandwidth. Therefore, in this article, we employ the
SmartSSD to implement our Poseidon-NDP accelerator. It is
worth mentioning that our proposed Poseidon-NDP structure
does not only focus on the FPGA, it can provide much higher
performance with ASIC-based NDP devices.

The runtime result clearly shows an overwhelming advan-
tage of the FPGA-based FHE accelerator. Stratix10 FPGA is
used in the prior state-of-the-art work—HEAX [39]. However,
this work only focuses on the computation acceleration and
impractically assumes the in-situ memory access. In other
words, the costly data movement overhead is simply ignored,
so the runtime reported can only be regarded as “theoret-
ical.” In order to obtain the real-world FHE performance,
we deploy the benchmarks on the SmartSSD to run the
“practical” full-system experiment and obtain more than 41×
improvement (the second column from the right-hand side)
relative to the CPU. It proves the NDP architecture actu-
ally takes effect to alleviate the intractable data movement
overhead.

2) Operator Fusion: Although NDP has great advantages
in the FHE acceleration, only leveraging NDP is also subopti-
mal. The large-capacity SSD equipped in the NDP-based SoC
always consumes significant area and power. As the victim,
the associate FPGA device has to be compromised to obey
the tight thermal design power budget of the SoC. A direct
consequence is that the FPGA device cannot be equipped as
powerful as the non-NDP platform. As evidence, the FPGA
in SmartSSD only belongs to the Xilinx K series to balance
the power and performance.
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This tradeoff makes us reconsider the solution of the compu-
tation bottleneck in FHE, that is, leveraging the less powerful
FPGA device to also achieve high-performance computing. As
proved before in Figs. 2 and 3, the modular arithmetic is the
most expensive operation in NTT/INTT and even the whole
FHE. If we could reduce its amount in NTT/INTT, the FPGA
computation burden might be effectively alleviated as well.

In NTT/INTT, one of the important operands - the “twid-
dle factor” has the exponential characteristics and satisfies the
exponential operation rules, expressed as wi ·wj = wi+j, where
wi, wj, and wi+j are the twiddle factors. It means the con-
tinuous multiplication of the twiddle factors can be finally
transformed into only one twiddle factor wi+j as the result.
This feature provides an unique optimization opportunity that
we could take advantage of to simplify the NTT computation.
By combining multiple iterative basic operations into one sin-
gle operation, the number of the expensive modular operations
could be reduced. For example, let x1 = (a1 + a2 ·w1) mod q
and x2 = x1 ·w2 mod q, then x2 = (a1 ·w2+a2 ·w3) mod q.
This procedure is called “NTT-fusion” in Poseidon-NDP—the
algorithm optimization method we propose to accelerate FHE
from the software level. The last column in Table III proves
its efficacy on top of NDP—up to 28× runtime reduction, and
the results are practical. We will detail this NTT-fusion method
in Section III and the collaborative Poseidon-NDP accelerator
design in Section IV.

III. METHODOLOGY

A. Theorem

The basic computation pattern in NTT is a series of recur-
sive “twiddle, accumulation and modulo (TAM hereafter)”
operations. For example, a1 and a2 are two coefficients of a
high-degree polynomial, and the phase 1 twiddle factor is w1.
TAM means(a1 + a2 · w1) mod q, where q is the modulus.
If we group 8 such input coefficients (a1 ∼ a8) for the NTT
or INTT, it will experience the 3-phase TAM with 24 modulo
operations (please see Fig. 6). Although these tedious modulo
operations are necessary and very expensive, the good news
is that TAM is “recursive.” Each recursion will absorb the
previous TAM result as the input of this time, so it creates
a unique opportunity to fuse multiple TAMs to reduce the
twiddling and modulo operations simultaneously. We have the
following lemma.

Lemma: Let X1 = a1+ a2 ·w1, X2 = a3+ a4 ·w2, X3 = [X1
mod q+(X2 mod q)·w3] mod q where a, w, and q are integers.
Then, X3 = (X1 + X2·w3) mod q.

Proof: Given a positive integer q and any integer n, there
is an equation: n = k · q + s, where k, s are integers and
0 ≤ s < q. We have X1 = k1 · q + s1 and X2 = k2 · q + s2.
Thus, substitute X1 and X2 into X3, we have X3 = (k1 ·q+ s1)

mod q+ [(k2 · q+ s2) mod q]· mod q = (s1 + s2 ·w3) mod q.
Let X′3 = (X1+X2·w3) mod q = [(k1 ·q+s1+(k2 ·q+s2) ·w3]
mod q = [(k1+k2 ·w3) ·q+ s1+ s2 ·w3] mod q = (s1+ s2 ·w3)

mod q. Thus, we have X3 = X′3. QED.
Let a1, a2, a3, and a4 be the 4 NTT inputs, and w1, w2

be the twiddle factors. Let A1, A2, A3, and A4 be the 4 NTT

Algorithm 1: NTT Fusion Procedure
Input : Polynomial a ∈ Rq of degree n-1, nth primitive

roots ωn ∈ Zq of unity, the degree of fusion FD,
2 ≤ FD ≤ log2 n

Output: Polynomial antt = NTT(a) ∈ Rq

1 begin

2 for m← 1 to
logn

2
FD do

3 Set(ω); ωm ← ω
n/m
n ;

4 for l← 0 to n/2FD do
5 u2FD ← a[l · 2FD, (l+ 1) · 2FD − 1];
6 v2FD ← NTTCore2FD (u2FD

, ω);

7 a[l · 2FD, (l+ 1) · 2FD − 1]← v2FD
;

8 ω← update(ω);
9 end

10 reorder(a);
11 end
12 return antt;
13 end

outputs. Then, the 4-input NTT has 2-phase TAMs. Thus, we
have the following theorem.

Theorem: A1 = [a1 + a2 · w1 + (a3 + a4 · w1) · w1] mod
q, A2 = [a1 − a2 · w1 + (a3 − a4 · w1) · w2] mod q, A3 =
[a1+ a2 ·w1− (a3+ a4 ·w1) ·w1] mod q, and A4 = [a1− a2 ·
w1 − (a3 − a4 · w1) · w2] mod q.

Proof: Let the output of the first-phase TAM be t1, t2, t3
and t4, where t1 = (a1 + a2 · w1) mod q, t2 = (a1 − a2 · w1)

mod q, t3 = (a3 + a4 · w1) mod q, and t4 = (a3 − a4 · w1)

mod q. Thus, the 2nd-phase TAM: A1 = (t1 + t3 · w1) mod
q, A2 = (t2 + t4 · w2) mod q, A3 = (t1 − t3 · w1) mod q, and
A4 = (t2 − t4 · w2) mod q. For A1, substitute t1 and t3 into
A1, we have A1 = (a1 + a2 · w1) mod q + [(a3 + a4 · w1)

mod q] ·w1 mod q. Referring to the previous lemma, we have
A1 = [a1 + a2 · w1 + (a3 + a4 · w1) · w1] mod q. A2, A3 and
A4 can be proved in analogy to A1. QED.

The theorem illustrates that a 2-phase recursive TAMs could
be fused into a 1-phase TAM without changing the NTT result.
Therefore, we can fuse a 3-phase or even n-phase TAMs
together to significantly reduce the modulo operations. For
example, A1 only requires 1 modulo operation after fusion
instead of 3 before fusion.

B. NTT-Fusion—Optimizing NTT Computation for FHE

Based on the above theorem, we formally propose NTT-
fusion. It aims to reduce the expensive modulo operations
by fusing the recursive TAMs. Depending on the polynomial
degree, the TAM phases usually attain 12 (212 coefficients)
∼16 (216 coefficients) or more. Fusing more TAMs will result
in much less modular operations, but it will also introduce
more twiddles and accumulations. The appropriate number
of fused TAMs is instantiated as a design parameter in
NTT-fusion—the fusion degree (FD) for short.

The concrete NTT-fusion procedure is shown in
Algorithm 1. For a polynomial a ∈ Rq with degree n,

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 23,2023 at 02:11:45 UTC from IEEE Xplore.  Restrictions apply. 



4754 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 12, DECEMBER 2023

Fig. 4. Poseidon-NDP overall architecture. The NDP platform communicates
with the host DDR through a triple-port PCIe switch. Three key operators are
implemented as the vectorized computation cores with 128 lanes.

conventional NTT requires the logn
2 phases. After NTT-fusion,

the number of phases reduces to logn
2 /FD (line 2), and each

phase involves (n/2FD) fused-TAM computations. Each fused
TAM is then computed by the “for loop” in line 4∼9 of
Algorithm 1. Finally, due to the NTT-specific characteristics,
the result of each iteration needs to be reordered for the next
iteration (line 10). Compared with the conventional NTT
procedure, NTT-fusion reduces the number of iteration loops
by fusing TAMs. From the hardware acceleration perspective,
each fused-TAM computation is also parallelizable. We could
instantiate (n/2FD) NTT cores in the accelerator to compute
all the fused TAMs in parallel. Note that, the NTT-fusion
is based on directly formula derivation, which achieves the
same accuracy when comparing to the other approaches (i.e.,
CPU, GPU, and HEAX).

Comparing to the similar formula derivation in the recent
previous works [27], [28], [31], [51], NTT-fusion allows to
merge more NTT-operations before the modular, which fur-
ther reduces the number of modular operations. In the next
section, we will detail how our proposed accelerator, namely,
Poseidon-NDP, is designed to enforce the NTT-fusion.

IV. FHE ACCELERATOR—POSEIDON-NDP

A. Overall Architecture

The overall architecture of Poseidon-NDP is shown in
Fig. 4. In addition to the DDR, Poseidon-NDP has its own
large-capacity SSD memory, which can avoid frequent data
handling between the accelerator and host. The computa-
tion cores, including MA(ModAdd), MM(ModMult), and
NTT/INTT, are vectorized and communicate with the build-in
DDR through the corresponding register cluster.

In Poseidon-NDP, the register buffer, which is directly con-
nected to the computation cores, obtains the input data from
the DDR by the AXI interface, and each core (i.e., MA, MM
and NTT) parallelly processes the data in a pipelined manner.
In our design, each computation core has its own input/output
buffer and there is no data conflict in the pipeline. In Poseidon-
NDP, the data-level parallelism is set to 128. In theory, thus,

Fig. 5. MA/MM core architecture in Poseidon-NDP. We implement fine-
grained decomposition to reduce the resource consumption of ModMult,
following the Barrett Reduction algorithm and due to the nature of addition
results we implement a subtractor to perform the ModAdd.

the throughput is 128 per clock. When FD is set to 3, for
example, each NTT core processes 8 operands per cycle, and
all 16 cores enable the 128◦ of parallelism in NTT calculation.
Differing from the NTT core, MA and MM core process two
operands in each cycle, so the number of MA/MM cores is
more than that of the NTT core. Besides the register cluster, we
also use multiple BRAMs to read or write the required data
in parallel for each computational core in our FPGA-based
evaluations.

Memory System: To fully utilize the NDP characteristics,
Poseidon-NDP also leverages the abundant off-FPGA band-
width provided by NDP to accelerate the data movement. As
shown in Fig. 4, the NDP architecture involves a triple-port
PCIe switch connecting the upstream PCIe link to DDR4 and
the downstream PCIe link to the NVMe SSD controller. It
enables transparent NVMe SSD access with minimal add-
on latency from the FPGA. In Section V-A, we employ
SmartSSD [50] to provide the NDP support for Poseidon-
NDP and implement the FHE accelerator in its built-in FPGA
device.

B. Computational Cores

1) MA/MM: The ModAdd operation in FHE aims to add
two integer vectors under the modulus q. Taking the modulo
operation following the addition is the common computation
process of ModAdd. However, because the operand is already
less than the modulus q, there are only two possible results.
As described in (1), if a + b ≥ q, the result of ModAdd is
a + b − q; otherwise, a + b is the final result. The hardware
circuit logic is shown in Fig. 5, it consists only of the adder,
comparator and selector

(a+ b) mod q =
{

a+ b, a+ b < q
a+ b− q, a+ b ≥ q.

(1)

Similar to ModAdd, ModMult is also a vectorized operation.
It is more complex than ModAdd because of the multiplication
before the modulo operation. Multiplication will expand the
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Fig. 6. NTT core architecture in Poseidon-NDP. It has two instances: LBHR
and HBLR. LBHR entails all the multipliers in the figure; and HBLR only
needs the multipliers marked in blue.

intermediate result to the magnitude of q2 and thus cannot be
processed in a similar way to ModAdd. The traditional mod-
ulo operation requires division and is not hardware-friendly, so
we employ Barrett Reduction [24] to finish the computation.
The method replaces the original division operation with mul-
tiplication by an approximate calculation and eliminates the
error by a finite number of comparisons to obtain the exact
modulo result at the end. The detailed hardware implementa-
tion of ModMult is shown in Fig. 5. The smaller number of
multiplier requirements and the simple circuit logic allow the
MM core to optimize hardware resource utilization and the
efficiency of pipelined execution.

2) NTT/INTT: As is proved in Section II, NTT accounts
for the largest proportion of the overall FHE applications
execution time. Thus, the computation efficiency of NTT
is significant for FHE acceleration. The complex computa-
tion and access patterns of the NTT pose challenges for the
high-performance NTT acceleration unit design. Fortunately,
benefiting from the NTT-fusion, Poseidon-NDP eliminates
the large number of vanilla TAMs as in the conventional
NTT procedure. On the contrary, it focuses on the effi-
ciency of the “fused-TAM” computation, which distinguishes
Poseidon-NDP from the prior FHE accelerators.

Fig. 6 shows the 8-fused NTT core architecture at FD = 3,
there are eight polynomial coefficients and the associate twid-
dle factors as the input and eight results as the output. Different
from conventional NTT, the Poseidon-NDP NTT core only
requires one phase with eight fused TAMs instead of log8

2 =
3 phases with 24 unfused TAMs (eight for each phase). From
the figure, we can see that only one modulo operation is
required because of the only one phase after NTT fusion.
Therefore, chunking the complete NTT computation and map-
ping it to the 8-fused NTT core can significantly reduce the
number of iterations and modulo operations. We hard-code the
circuit in RTL to optimize the 8-fused-TAM computations.

Tradeoffs: According to the NTT-fusion theorem in
Section III-A, each output Ai entails the unfixed multiplication
of the twiddle factors. For example, A2 and A4 incorporates

Fig. 7. Iterative fusion calculation rules. The fusion-based NTT algorithm
can reduce the size of the twiddle factor after fusion by the exponential
characteristic of the twiddle factor that can simplify the calculation.

w1 · w2, while A1 and A3 incorporates w1 · w1. Twiddle fac-
tor is essentially the exponential expression of the primitive
root, which has the following characteristic: wi · wj = wi+j.
Therefore, the multiplication of two twiddle factors equals
twiddling the primitive root on the unit circle (i.e., w1·w2 = w3
and w1 · w1 = w2). FD determines the terms of the twiddle-
factor multiplication. Usually, a larger FD setting denotes
more twiddle factors that will be multiplied together after
NTT fusion. Therefore, this operation will inevitably intro-
duce extra computations that could undermine the accelerator
performance, so a proper FD setting is critical for balancing
the impacts of fusing TAMs and multiplying twiddle factors.
Section V-F will evaluate the design space of FD and illustrate
that FD = 3 performs the best.

The second tradeoff regards the architectural design of the
NTT core in Poseidon-NDP. Since the twiddle factors must
be multiplied after fusion when implementing the multiplica-
tion also has two conditions: 1) premultiply several twiddle
factors before the NTT-core input and 2) multiplying on the
spot inside the NTT core. The first condition is conducive
to reducing the computation burden on the NTT core but
has to increase the storage and data movement for the gen-
erated new twiddle factors (i.e., w1+1, w1+3). However, the
second condition performs the opposite: less data movement
but more computations in the NTT core. This tradeoff triggers
two instances of Poseidon-NDP [as shown in Fig. 7(b)].

1) Low Bandwidth and High Resources (LBHR): LBHR
only takes the original twiddle factors as input (i.e.,
w1 ∼ w4 in Fig. 6). Multiplying these twiddle fac-
tors is performed inside the NTT core. Therefore, more
hardware multipliers must be instantiated. For example,
in Fig. 6, all of the multipliers are involved. Hence, it
must consume more FPGA resources to implement the
NTT core. However, the strength of LBHR is the low-
bandwidth-and-storage consumption, because it does not
generate new twiddle factors.

2) High Bandwidth and Low Resources (HBLR): HBLR is
the counterpart of LBHR. It takes the newly generated
twiddle factors as input (i.e., w5 ∼ w8 in Fig. 6). They
are precomputed before the NTT input, so it costs fewer
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Fig. 8. Poseidon-NDP on-FPGA data access pattern.

Fig. 9. System overview. Poseidon-NDP is implemented in the built-in FPGA of SmartSSD.

multipliers than LBLR; only the blue ones in the figure
are involved. Fewer hardware resources are required to
enable more NTT cores in the Poseidon-NDP PE, but
it also causes more data movements between PE and
DRAM. Fig. 7(c) quantitatively illustrates the difference
scaled with FD. In Section V, we will fully evaluate the
pros and cons of LBHR and HBLR.

C. Data Access Pattern and Architecture

The method of fusion simplifies the computational com-
plexity of NTT while changing the way of memory access.
There are logn

2 iterations in traditional NTT, where n is the
polynomial degree, and the offset between two inputs of a
TAM is 2iter−1, where iter represents the current number of
iterations. In Poseidon-NDP, the iteration number of NTT is
reduced effectively. Taking n = 4096 and FD = 3 as an
example, the number of required iterations is reduced from
12 (log4096

2 ) to 4 (log4096
2 /FD). In addition, as multiple itera-

tions are merged into one, the index offset between the input
data of the “fused-TAMs” becomes accordingly 2(iter−1)∗3.

In Poseidon-NDP, the NTT cores are fully parallelized and
pipelined. Thus, the NTT cores require sufficient on-chip data
bandwidth to achieve the best performance. We allocate the
BRAM blocks for each NTT core that matches the amount of
input/output data and supports the paralleled read/write. Fig. 8
illustrates the data access pattern of Poseidon-NDP taking 4-
cores NTT under FD = 3 as the example. For each NTT
core, there is an input and output BRAM buffer to cache

the intermediate result of each iteration and support ping-
pang operation to cover the delay of reading after writing.
The left and middle parts of Fig. 8 present an instance of
the data path, which takes the 2nd and 3rd iterations as an
example. The data offset of iter2 and iter3 is 8 (2(2−1)∗3) and
64 (2(3−1)∗3). To enable the intermediate result can directly
as the input of the third iteration for the fully pipelined exe-
cution, we divide the result of iter2 into multiple columns
in groups of 8 (64/8) and map them into the corresponding
BRAM blocks of 4 NTT cores. Excepting for the first column,
all the other column of data is cyclically shifted by one data
position to the adjacent BRAM block based on the previous
column, thus distributing the data spaced at 64 intervals into
different BRAM blocks (i.e., index 0, 64, 128, 192, 256, 320,
384, and 448 marked in red). With such a storage method,
NTT cores can read the required data simultaneously per cycle
in the third iteration. The access pattern enables NTT cores
directly load the operands without any delay at the beginning
of each phase. Poseidon-NDP achieves a promising overall
performance by collaborating with the support of NDP-based
off-FPGA memory channels.

V. EVALUATION

A. Experimental Setup

Platform: Poseidon-NDP is a practical FHE accelerator, so
we build a real-world experimental environment based on the
x86 CPU system. As shown in Fig. 9, the Poseidon-NDP
accelerator is implemented in the SmartSSD plugged into the
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TABLE IV
PERFORMANCE COMPARISON BASED ON THE METRIC OF KEY OPERATIONS NUMBER PER SECOND. TAKING CPU AS THE BASELINE

PCIe slot of the mainboard. We installed Xilinx off-the-shelf
developing toolkit Vivado [2] and Vitis [1] version 2021.1 on
the host side. These tools will be working in conjunction with
the Xilinx Runtime [3] environment and OpenCL framework
to interact with the SmartSSD through PCIe. As an NDP plat-
form, SmartSSD owns a self-contained memory system. The
intermediate data of the FHE application are transferred among
the SSD, the DRAM and the FPGA device. Only the results
are sent back to the host. It eliminates the inefficiency caused
by the fuzzy communication between the accelerator and the
host storage. Detailed environmental configuration is shown in
Fig. 9.

Baseline: In our experiments, the CPU running the
Microsoft SEAL library [45] is selected as the baseline.
Besides, we also compare Poseidon-NDP with the GPU [6]
and four state-of-the-art FHE accelerator designs [4], [35],
[39], [41]. Note that, to make a fair comparison, we uniformly
use 212 as the polynomial size in the performance comparison
of key operations in our experiments.

Benchmark: We use four applications as benchmarks (as
shown in Table I) for the evaluation. The Enc. LR(Train)
and Enc. LR (Test) [18] refer the logistic regression
models for training and testing-based encrypted heart dis-
ease data in respective. Each sample in the dataset owns nine
dimensions, while we use 780 samples for the training and
334 samples for the testing. The benchmark is performed for
five epochs, and the final accuracy obtained is 0.7. The MNIST
Evaluation [17] refers the entire inference process of a
simple convolutional neural network (CNN) with one convo-
lutional layer and two linear layers on the encrypted official
MNIST test dataset, which includes 10000 samples. The con-
volutional layer includes four kernels with the shape of 7×7,
and the strides is 3×3; the number of hidden neurons of two
fully connected layers are 64 and 10, respectively; the acti-
vation function employed in the model is square activation.
Notably, there is no padding operation and batch norm (BN)
layer before and after the convolution layer, and both the
convolution and full-connected layers have the bias param-
eter, which is involved in the computation in the plaintext
form. The MatrixMult [25] refers the multiplication of two
encrypted matrices, each matrix is 100 × 100. These bench-
marks use batching techniques to boost computation efficiency.
In the LR, the 9 data of each item are batched into a sin-
gle ciphertext; in the MNIST Evaluation, the feature map
matrix of 28×28 is fully expanded into a 1-D vector and
encoded for the efficient convolution; similarly, the rows and
columns of the matrix in the MatrixMult are also batch
encrypted. Using batching technique allows the computation
of batches of data through a single ciphertext operation, e.g.,

convolution in CNN and vector inner-product in matrix mul-
tiplication, thus significantly improving the efficiency of FHE
applications.

B. Acceleration Performance

1) Key Operator Computation: The computation of the
key operators in FHE, i.e., NTT /INTT, ModMult, and so
on, directly determines the performance of the accelera-
tor. The accelerator architectural design in return determines
the performance of the operator computation. In Poseidon-
NDP, we instantiate two instances—LBHR and HBLR, and
as mentioned in the previous section, the two instances
tackle the tradeoff specialized in the NTT-fusion. In this
experiment, we compare the pure operator computation
performance of Poseidon-NDP with the CPU and GPU base-
line. Here, we use the “executed key operation number per
second” as the performance metric. The results are listed in
Table IV. Poseidon-NDP outperforms CPU by 88× at least
for LBHR and up to 217× for HBLR, respectively. The GPU
performance lies between the CPU and Poseidon-NDP, nearly
∼50× to ∼100× inferior to LBHR and HBLR.

Besides, we also compare Poseidon-NDP architecture
to the state-of-the-art FPGA-based FHE accelerators, i.e.,
HEAX [39], Medha [35], and FAB [4]. As shown in Table IV,
although HEAX achieves up to 17× improvement for the
ModMult operation on the CPU, our proposed LBHR and
HBLR still perform 8× better than it. Medha has a lower
parallelism of 32 and the accelerator runs at 200 MHz, so its
speedup of NTT, ModAdd, and ModMult is slightly lower than
that of HEAX. Compared to Medha and HEAX, FAB has no
algorithmic optimization in the design of the NTT unit but has
the advantage of a higher parallelism of 512, so it achieves
a much higher speedup than HEAX and Medha. Poseidon-
NDP is designed with a highly optimized NTT unit, making
its performance on NTT close to that of FAB at a parallelism
of only 128. We cannot achieve the same parallelism as FAB
because the FPGA resource in our experimental platform is
much less than that in FAB. However, at the same parallelism,
the performance of Poseidon-NDP will be 3× more than that
of FAB.

Discussion: The evaluation has proved the efficacy of the
NTT-fusion and the architectural design of Poseidon-NDP. It
could execute much more key operators like NTT/INTT per
second because the number of modular arithmetic, having
been proved as the most critical computation bottleneck, is
reduced significantly by the fusion. Such optimization seeks to
offload the FHE computation burden from the software level
and is proved to be effective. The fine performance of the
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TABLE V
OVERALL FHE PERFORMANCE COMPARISON WITH CPU. IN HERE, WE CARRY OUT THE FULL SYSTEM EVALUATION. THE IMPROVEMENT IS

CONVEYED BY NOT ONLY THE COMPUTATION OPTIMIZATION BUT ALSO THE NDP-BASED MEMORY ACCESS. NOTE THAT IN THE

BENCHMARK OF MNIST EVALUATION, WE USE THE OFFICIAL MNIST TEST DATASET OF 10000 SAMPLES FOR SYSTEM EVALUATION

key operators also paves the road to a satisfying full-system
performance, which will be specified next.

2) Full-System Performance: Table V exhibits the full-
system performance result. Apart from Table IV targeting
the “pure” operator computation performance, this experiment
evaluates the computation, data movement, and their impact
on the full-system performance.

For the CPU, we use Microsoft SEAL library to deploy
the selected applications and report the overall runtime data.
For HEAX, the data are all “theoretical,” because the litera-
ture does not elaborate on the memory access methodology.
All the data are reported assuming the in-situ data fetching,
which is unpractical. However, to compare the theoretical and
actual performance gap, we also let Poseidon-NDP work under
the same in-situ situation and report the ideal-case result.
As shown in the table, the “theoretical” Poseidon-NDP per-
forms way better than HEAX and the CPU or GPU. Just
report the least improvement: 107× and 2× faster than CPU
and HEAX for the application Encrypted LR-Train. The
“practical” NDP-enabled Poseidon-NDP behaves a little less
optimal than the theoretical; for example, 11.75-s runtime
compared with the theoretical 9.33 s for the MatrixMult,
but still outweighs 72× and 1.4× relative to the CPU and
HEAX. Similarly, benefiting from the optimized design and
parallelism, Poseidon-NDP achieves a 4× to 9× performance
improvement compared to the Medha. The performance of our
accelerator is 2× to 4× slower than that of the FAB, mainly
because the FAB is based on a high-end FPGA develop-
ment board, which has much higher-hardware resources than
the SmartSSD. However, our optimized micro-architecture
design and efficient bandwidth usage will further improve
performance on a high-resource platform.

Discussion: A worth mentioning observation is that the the-
oretical and practical Poseidon-NDP does not exhibit a very
large performance gap. In other words, the intractable data
movement challenge is well dealt with in Poseidon-NDP. The
intrinsic reason stems from the effective NDP architecture. The
abundant bandwidth is fully utilized by LBHR and HBLR.
Especially for the HBLR, trading fewer FPGA resources with
more data movements in NDP is profitable. The inevitably
increased memory accesses are well accommodated by NDP,
which diminishes the negative influence brought by the vast
data movements.

C. Bootstrapping Support

Poseidon-NDP also supports the bootstrapping operation,
which consists of basic FHE operators, and our optimization

TABLE VI
PERFORMANCE OF BOOTSTRAPPING. WE ALSO EVALUATE THE IMPACT

OF THE NTT-FUSION IN TWO INSTANCES OF POSEIDON-NDP

TABLE VII
IMPACT OF NTT-FUSION ON THE NUMBER OF

MODULO OPERATIONS IN EACH BENCHMARK. (109)

TABLE VIII
BENEFIT BREAKDOWN OF THE NTT-FUSION.

TAKING MNIST AS AN EXAMPLE

of the operators also benefits it. We evaluate the performance
of Poseidon-NDP using the most advanced fully packed
bootstrapping algorithm [36] under two different settings.

1) Set-A: The polynomial degree is 215 and the high-noise-
level ciphertext with the multiplication depth L = 4 will
be refreshed to the low-noise-level ciphertext with the
multiplication depth L = 15;

2) Set-B: The polynomial degree is 216 and the mul-
tiplication depth before and after bootstrapping is 4
and 47.

We explore the impact of NTT-fusion on the performance of
bootstrapping under the two settings. As shown in Table VI,
NTT-fusion benefits the performance in the both instances, i.e.,
LBHR and HBLR, and achieves more than 10× performance
improvement compared to the CPU, which proves the effi-
ciency of the Poseidon-NDP in the FHE bootstrapping.

D. Poseidon-NDP Specifics

1) NTT-Fusion: NTT-fusion in Poseidon-NDP plays a vital
role in boosting the accelerator performance. This experiment
aims to quantify the runtime reduction after NTT-fusion. The
runtime reduction is actually achieved by fusing the twiddle
factors to further cut down the modulo operations, a.k.a. the
most time-consuming bottleneck. As reported in Table VII,
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Fig. 10. Bandwidth utilization analysis. The benchmarks demonstrates the
uniform behavior of enjoying the broadened bandwidth provided by NDP.

NTT-fusion helps to reduce the modulo operations, the reduc-
tion rate ranges from 61.7% to 66.7%. The optimization at the
software level is finally reflected on the overall performance
improvement.

We also explore the breakdown of the NTT-Fusion benefits.
As shown in Table VIII, we can see that, as the FD increase,
the impact of parallelism on performance improvement is
reduced. This indicates that the reduction of time-costly
operations has more significant impact on the performance
improving.

2) Near Data Processing: The affinity to the NDP archi-
tecture in Poseidon-NDP also contributes to the more efficient
data movement, especially for the huge ciphertext flood in
FHE. By quantifying the bandwidth utilization in Fig. 10,
we can explore the actual contributions of NDP. The CPU
system employed in this experiment coincides with Fig. 9. We
profile the bandwidth utilization of the CPU communicating
with its associate DDR4 DRAM in the host. The Poseidon-
NDP bandwidth utilization is directly obtained by profiling
the FPGA communicating with the storage system inside the
SmartSSD. The peak bandwidth that DDR4 DRAM can pro-
vide is 19.2 GB/s. Benefit from NDP, LBHR enjoys 10.33
GB/s bandwidth (LR_Train) and HBLR even enjoys a
slightly higher bandwidth—13.43 GB/s, due to the increased
twiddle factors after NTT fusion. MNIST_Evaluation has
a relatively much larger dataset and model size after the
encryption, so it needs to frequently interact with the vast
storage - the SSD in SmartSSD, for the data movement. The
overall bandwidth utilization is 2.44 and 2.58 GB/s, but it still
outperforms the CPU (0.53 GB/s) by 4.6× and 4.9×.

E. Energy

1) Energy Consumption and Breakdown: Fig. 11 shows the
total energy consumption of Poseidon-NDP. HBLR consumes
slightly more energy than LBHR. This is in line with the intu-
itive expectation, because HBLR handles more twiddle factors
than LBHR. Reflected in the hardware activities, it generates
more DDR4 accesses and consumes more BRAM resources.
Although its NTT core is much faster than LBHR, the short-
ened runtime does not adequately compensate for the increased
power consumption.

The energy breakdown further proves the off-FPGA DDR4
access is the largest energy consumer, and HBLR exhibits
∼15% more memory access energy than LBHR, which
explains the reason for the increased “total” energy of HBLR.
This experiment demonstrates the power and performance

Fig. 11. Energy consumption and breakdown. The DDR4 access takes the
major proportion, as expected. HBLR consumes minor extra energy than
LBHR.

TABLE IX
EFFICIENCY ANALYSIS. WE USE EDP AS THE METRIC (ENERGY ×

TIME). LOWER IS BETTER

tradeoff in Poseidon-NDP. If a faster FHE computation is the
priority, HBLR is possibly the best choice. However, if the
thermal design power is a tight constraint, LBHR consumes
less energy but also provides a sensible acceleration.

2) Energy Efficiency: We use energy delay product (EDP
hereafter) as the efficiency metric. Table IX lists the efficiency
after deploying the FHE applications on the baseline platforms
and Poseidon-NDP. Poseidon-NDP exhibits the shortest run-
time and the lowest-energy consumption, so it outperforms all
the baselines in efficiency.

F. Design Space Exploration

1) Key Design Parameter—Fusion Degree: FD denotes
how many TAMs will be fused at a time in LBHR or HBLR.
This parameter directly affects the NTT computations in that
higher FD indicates fewer modulo operations. However, a
higher-FD setting also spawns new twiddle factors that will
burden the computation for LBHR or the memory access for
HBLR, and thus harms the accelerator performance in return.
In order to explore the finest setting so as to harness this trade-
off, we evaluate several hardware metrics and one operator
performance metric (execution time perfused NTTs) scaling
with FD. Fig. 12 illustrates the results. The 4 metrics uni-
formly denote an inflection at nearly FD = 3, marked as bold.
For the hardware metrics like number of Register (Reg), dig-
ital signal processor (DSP), and look-up-table (LUT), the FD
= 3 inflection denotes the most optimized resource and area
in FPGA, while for the performance metric it denotes a rel-
atively shorter execution time. This setting is also chosen in
the previous evaluations in this section.
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Fig. 12. Key design parameter—FD. We evaluated the FPGA resource usage
of a TAM on average (in actual #) as well as the average execution time
per NTT (right-bottom figure) scaled by FD. The optimal point emerges at
FD = 3, where it consumes the lowest resources but performs relatively faster
NTT.

Fig. 13. NTT core scaling analysis. We use the logarithm scale on the y-axis,
so the negative value denotes the actual value is below 1.

Fig. 14. Sensitivity of the matrix size.

2) NTT Core Scaling: As the faster representative in
Poseidon-NDP, HBLR is selected to explore the performance
scaling with the NTT cores. Intuitively, more NTT cores will
lead to a faster FHE performance, and Fig. 13 proves this
notion. The y-axis indicates the runtime perfused NTT in log-
arithm. For each benchmark, the more the NTT cores, the
shorter the runtime. Note that for LR_Test, all the runtime
is below 1 so the logarithmic result is below 1. In Poseidon-
NDP, we choose eight cores for LBHR and 16 cores for HBLR
to attain the highest performance according to the equipped
FPGA resources in SmartSSD.

3) MatrixMult Size Scaling: We also analyze the com-
putation and memory access overhead of encrypted matrix
multiplication at different sizes. Fig. 14 shows the matrix size
scaling from 25, 50, 75, and 100 to 125, with respect to

TABLE X
COMPARISON OF FPGA RESOURCE CONSUMPTION. COMPARED TO THE

OTHER SOLUTIONS, POSEIDON-NDP ACHIEVES BETTER PERFORMANCE

EVEN BASED ON THE LESS POWERFUL FPGA

the computational time and memory bound time. We can see
that the computational time increases in accordance with the
matrix size. This is reasonable because intuitively the over-
head of the computation should upgrade with the increased
matrix size. Meanwhile, the growth becomes progressively
larger due to the matrix size increasing bringing the nonlin-
early growing number of ciphertext additions and keyswitches.
In addition, the memory overhead is consistently linear than
the computational time. Therefore, the design of efficient soft-
ware computation algorithms is also significant for improving
the execution efficiency of FHE applications.

G. FPGA Resource Utilization

As mentioned before, an NDP-based platform is more likely
to consume a larger power because of its vast storage in the
platform SoC. Therefore, the headroom between the normal
power consumption and its preset TDP is very little. According
to the experience from our real-world experimental platform
(Fig. 9), the SmartSSD is very prone to generate heat and
it must instrument the active cooling device to emit away
from the mass of heat. For this reason, the associate pro-
grammable logic cannot own the most powerful FPGA device.
SmartSSD is only equipped with the Xilinx xcku15p device.
Table X compares the resource utilization. The consumption of
several resources like #BRAMs and #Regs in Poseidon-NDP
is on par with the prior baselines, i.e., HEAX, Medha, and
FAB. Although they own the more powerful FPGA devices,
Poseidon-NDP still provides the better performance compared
to Medha and HEAX.

VI. CONCLUSION

In this article, we present a co-design solution for FHE
acceleration. We investigate the execution of FHE and observe
that the FHE performance suffers from the intractable data
movement and high-computation intensity. Based on such
analysis, we propose a novel optimization technique for
the FHE algorithm named “NTT-fusion,” which significantly
reduces the computational complexity of the key operator
in FHE. Based on the NTT-fusion, we proposed an NDP-
based FHE accelerator named “Poseidon-NDP.” Poseidon-
NDP includes abundant configuration choices and provides
flexible scalability, which allows the Poseidon-NDP structure
to explore the best-performance/power/bandwidth tradeoff and
meet the various requirements in different platforms. In this
work, we evaluate the Poseidon-NDP design on SmartSSD,
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which is a practical NDP device, and prove the effectiveness
of Poseidon-NDP. We hope this work can inspire new ideas
for future FHE accelerator designs, by adjusting the FHE algo-
rithm in combination with hardware characteristics, digging
out the deep optimization space to design hardware-oriented
FHE accelerators efficiently.
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