
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015 3053

RISO: Enforce Noninterfered Performance With
Relaxed Network-on-Chip Isolation in

Many-Core Cloud Processors
Hang Lu, Binzhang Fu, Member, IEEE, Ying Wang, Student Member, IEEE, Yinhe Han, Member, IEEE,

Guihai Yan, Member, IEEE, and Xiaowei Li, Senior Member, IEEE

Abstract— Workload consolidation is widely used in modern
cloud processors to reduce total cost of ownership. Performance
isolation has to be enforced between consolidated workloads to
achieve controllable quality of service. Networks-on-chip (NoCs),
as a major shared resource, often incur traffic interference and
violate performance isolation criteria. Previous work resorts to
strict isolation strategy that partitions NoC into independent
regions to isolate core-to-core communication traffic. However,
strict isolation either results in low consolidation density or
degrades network performance, and more importantly, cannot be
applied to memory access traffic. To address these weaknesses,
we propose a novel performance isolation strategy in NoC,
called relaxed isolation (RISO). It permits underutilized routers
and links to be shared by multiple applications, and, at the
same time, it keeps the aggregated traffic in check to enforce
performance isolation. Experimental results show that RISO
could effectively improve consolidation density and network
performance in synergy.

Index Terms— Cloud processor, networks-on-chip (NoCs),
performance isolation, relaxed isolation (RISO), workload
consolidation.

I. INTRODUCTION

MORE than 60% cloud computing services are handled
in data centers. Total cost of ownership (TCO) is

believed to be a major limitation for cloud service providers
to deploy scalable online services [1], i.e., web searching and
social networks. In a TCO-limited data center, performance
per TCO dollar can be boosted by building more efficient
hardware architectures to resolve request-level parallelism [2].
Processor with tens even hundreds of cores is hence believed
to play a critical role in the coming cloud computing era,
or simply called many-core cloud processors. Intel’s 48-core

Manuscript received June 6, 2014; revised October 12, 2014; accepted
December 15, 2014. Date of publication January 21, 2015; date of current
version November 20, 2015. This work was supported in part by the National
Basic Research Program (973) of China under Grant 2011CB302503 and
in part by the National Natural Science Foundation of China (NSFC) under
Grant 61100016, Grant 61202056, Grant 61221062, and Grant 61376043.

H. Lu is with the University of Chinese Academy of Sciences, Beijing
100049, China (e-mail: luhang@ict.ac.cn).

B. Fu, Y. Wang, Y. Han, G. Yan, and X. Li are with the Institute of
Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: fubinzhang@ict.ac.cn; wangying2009@ict.ac.cn; yinhes@ict.ac.cn;
yan_guihai@ict.ac.cn; lxw@ict.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2387351

Single-chip Cloud (SCC) Computer [3] and AMDs Opteron
6000+ Series [4] are two representatives.

For such cloud computing platform, one key optimization to
reduce TCO is to avoid low hardware utilization by aggressive
workload consolidation technique [5], [6]. Multiple server
applications are deployed onto respective virtual machines,
which then run simultaneously on the same many-core cloud
processor. Many workload consolidation techniques have been
proposed in order to increase the execution efficiency,
i.e., domain partitioning and dynamic resource
reassignment [6]. More importantly, performance isolation
must be enforced as well provide controllable quality of
service (QoS) and priority-based services.

From workload consolidation point of view, concurrent
workloads will most likely interfere with each other in various
shared resources, i.e., networks-on-chip (NoCs), and violate
performance isolation constraint. When different workloads
are injecting traffic for cache coherence or memory access,
multiple flows are very likely to collide in the same on-chip
router and associate links. Therefore, it is necessary that
the traffic of different workloads should be safely isolated
from each other, to avoid the performance impact to the
latency-sensitive applications [7], [8].

Such communication isolation involves two types of
on-chip traffic: 1) core-to-core, including cache coherence [9]
or intercore operand transmission [10] and 2) memory
access, used to fetch instructions and data from DRAM.
Core-to-core isolation incorporates making tradeoffs between
the regularity of network topology and complexity of routing
mechanism. Usually, a regular topology, i.e., rectangular-
shaped network, has more efficient routing algorithm, but
lower consolidation density, hence less hardware utilization.
In contrast, enabling the communication isolation to support
more flexible topologies, thereby achieving high consolidation
density, will inevitably complicate the routing mechanism.
This tradeoff can be further explained with the following
example. Fig. 1(a) shows the workload consolidation process
over time. The cloud processor is a TILE64 [11] alike many-
core with four memory controllers (MCs) at each corner of
a 8 × 8 mesh. In this example, App1–App5 have already
been mapped at their time stamp. The remaining free cores
constitute a contiguous but irregular region. Suppose a 10-core
workload, App6, is waiting to be served. However, the

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

3054 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Fig. 1. Two traditional schemes following strict isolation and the proposed RISO. (a) Regularity oriented. (b) Density oriented. (c) RISO.

dimensional order routing (DOR) topology constraint renders
this application fail to be mapped because a regular rectangle
shape cannot be found, although there are still 16 free cores
which is more than App6 required. Furthermore, the blocking
of App6 probably prevents the subsequent applications, for
example, App7, from execution, which further degrades the
consolidation density. To resolve this limitation, a viable
solution is to enable the communication isolation to support
irregular shapes by implementing flexible routing mechanisms
such as Up*/Down* [12] or table-based routing [13], as shown
in Fig. 1(b). App6 and App7 could then be consolidated into
two irregular-shaped regions. However, the cost of employing
those complex routing can hardly be justified for cloud
processors, given the prohibitive TCO and sporadic perfor-
mance variations.

Previous work fails to resolve the regularity-complexity
tradeoff for core-to-core traffic isolation. The reason is
that those schemes follow the concept of strict isolation,
i.e., resorting to strict region isolation to enforce performance
isolation. This philosophy, though straightforward, is quite
conservative and often leads to over-design. The on-chip
routers and links are often heavily underutilized, especially
those on the application region boundaries.

To make things worse, enforcing such strict rule still cannot
guarantee the memory access isolation. For commercial
many-cores, such as TILE64 [11] or Intel SCC [3], MCs
usually locate at fixed chip positions, as shown in Fig. 1.
A memory access request must traverse unexpected hops from
the source node, i.e., an L2 cache bumping into a READ/WRITE

miss, to the destination, i.e., one of the MCs in the corner. The
traffic generated from central area of the mesh, i.e., App2 or
App6 in Fig. 1(b), will inevitably intrude on other workloads’
territory, in order to reach the desired MC, and performance
isolation is very likely to be violated if such flows are taken
carelessly.

Prior work following strict isolation assumes that MCs are
distributed across each tile of the cloud processor [14], [15].
Memory access latency is hence regarded as constant, scratch-
ing out the fraction from local last level cache to the desired
MC in the corner, which is unpractical in real-world cloud
processors.

To address these issues, this paper proposes relaxed
NoC isolation (RISO) in workload consolidation. By judi-
ciously sharing some routers and links for different workloads,
we can still fulfill performance isolation without nailing down
to strict isolation. In particular, this paper makes the following
contributions.

1) We propose RISO in NoC to enforce workload perfor-
mance isolation, which involves two types of on-chip
traffic.

a) Core-to-Core: We find that traditional strict
isolation is conservative when enforcing perfor-
mance isolation, which either impairs the con-
solidation density or complicates the routing.
RISO tackles this tradeoff by sharing network
resources conditionally, so cost-effective routing
could be used without degrading consolidation
density.

b) Memory Access: Memory access traffic, for which
strict isolation fails to apply, can also fit in RISO
framework. A workload is allowed to be mapped
closest to the MC it visits most, based on its
historical memory access distribution. Such near-
MC mapping effectively reduces the end-to-end
memory access latency and hence improves the
overall network performance.

2) We propose an application mapping algorithm to exploit
the maximum potential of the RISO. This algorithm
fulfills performance isolation by preventing overlaid traf-
fic exceeding a safety threshold. In addition, irregular-
shaped regions, which are wasted in previous work to
compromise with routing complexity, are also taken
into consideration to further improve consolidation
density.

The rest of this paper is organized as follows. Section II
describes the motivation of the RISO by further elaborating
the limitation of traditional strict isolation schemes. Section III
presents the key algorithms to implement RISO. Section IV
specifies the experimental platform, metrics, and baselines
used for evaluation. Section V shows the results and analysis.
Section VI presents the related work. Finally, the conclusion
is drawn in Section VII.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

LU et al.: RISO: ENFORCE NONINTERFERED PERFORMANCE 3055

Fig. 2. Interworkload interference, depicted by the height difference of two
latency bars.

II. MOTIVATION

A. Interworkload Interference

For consolidated workloads, interference will happen in
NoC if network traffic is not regulated properly. This interfer-
ence will degrade the performance of the executing workloads.
For example, Fig. 2 shows the network latencies of eight
Parsec [16] and five Cloudsuite [1] benchmark programs, each
of which requires eight cores (detailed evaluation framework
is shown in Section IV). We study two scenarios: 1) each
workload runs alone on a 8 × 8 mesh-connected NoC and
2) under workload consolidation that a set of workloads are
randomly mapped to 64 free cores. For the second scenario,
we only calculate the latency of the target workload. Two bars
in the figure represent latency results and are normalized to
the first scenario. We observe that the interference, which
can be illustrated by the height difference of two bars,
could be as high as 41% on average for Parsec and even
92.3% for Cloudsuite benchmarks. Even for some computation
intensive workloads, i.e., blackscholes, the interference
would exceed 20%. Such severe interference in server systems
may yield consequences in terms of TCO for cloud service
providers and QoS commitment for cloud service users.

B. Tackling Regularity/Complexity Tradeoff—RISO

Traditional isolation strategies resort to strict isolation for
all consolidated workloads as introduced in Fig. 1(a) and (b).
As an alternative, we propose the RISO to address the tradeoff
between the region regularity and the routing complexity.
Since our ultimate goal is performance isolation, the App6 can
be mapped into the irregular regions as long as the aggregated
traffic on the overlapped routers and links would not degrade
the latency of each other. As shown in Fig. 1(c), by permitting
the router and link sharing—RISO, both App6 and subsequent
App7 can be served without delay. This operation has two
benefits in terms of communication isolation: 1) improving
the consolidation density, due to the employment of irregular
shapes and 2) DOR can be applied. For the irregular region
that the App6 has been mapped in, the routers and the links
shared from App4 serve as a patch to transform the previous

Fig. 3. Two proofs of the feasibility of RISO. (a) Router throughput.
(b) Link utilization ranking

irregular shape into a rectangular mesh. DOR, thereby, could
be used in the newly generated mesh by the support of the
shared region.

The rationale behind the RISO is to exploit underutilized
routers and links. Through exploration, we find that low
resource utilization is very common in reality, which further
justifies the concept of RISO. For example, Fig. 3(a) shows
the unified throughput of all routers in the network. It can be
seen that nearly 70% routers remain underutilized (throughput
never exceeds 15%). Only a small fraction could reach 30%
throughput. It provides a unique opportunity that sharing these
underutilized routers, rather than monopolizing them may not
increase the contention delay of relevant workload packets.

As another evidence, we evaluate link bandwidth usage
under the same experimental platform and the result is
shown in Fig. 3(b). We use link utilization as the represen-
tative [17] shown by histogram. As can be seen in the figure,
link utilization is divided into four ranks: 1) 0%–25%;
2) 25%–50%; 3) 50%–75%; and 4) 75%–100%. The result
shows that the lowest rank, 0%–25%, dominates in all
applications. Very few links can reach up to the second rank,
without mentioning the third and fourth ranks. Therefore, by
moderately sharing the abundant link bandwidth to multiple
workloads, relevant packet latency will not be degraded either.

To formalize the metrics of such resource sharing, we need
to evaluate when congestion will happen in NoC, hence vio-
lating communication isolation of the sharers. Since runtime
link utilization can serve as the representative of bandwidth
usage, we thus explore its relationship with congestion, as
shown in Fig. 4. We use average packet latency as the
representative of congestion. Clearly, it starts to increase
steeply only when the link utilization increases beyond a
certain threshold, namely, congestion point in the figure. It
gives the maximum bandwidth that mixed workload traffic
can occupy without causing congestion. Experimental study
also shows that the congestion point is application independent
and at the link utilization around 65%–70% for the employed
NoC configuration, which agrees with [18]. Given that the link
utilization is usually much less than 25% in reality, we can
safely conclude that the minority of router and link sharing
in RISO would not cause obvious latency increase, therefore
keeping the performance isolation intact. We thus use the
congestion point as the upper limit of such resource sharing.

C. Memory Access Isolation

Memory access interference is another main factor that may
cause workload performance loss. Long end-to-end access

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

3056 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Fig. 4. Congestion point under various traffic patterns, indicating the upper
limit of resource sharing in RISO.

latency impacts core execution efficiency. It must wait until
the requested instructions and data are fetched from DRAM.
Intuitively, memory access traffic is more vulnerable to be
blocked because it must cross over other workloads’ region
to reach the desired MC. This unpredictable traveling results
in the uncertainty of memory access latency and may violate
performance isolation severely. For example, Fig. 1(c) shows
that two traffic flows (marked in yellow), issued by Core A
and Core B, respectively, are targeting different MCs.1 Under
DOR, Core A will follow the path Core A → App2 →
App1 → MC0. If App2 happens to impose a high network
demand, the memory access request will be inevitably blocked
in App2. Same situation also happens for the other flow
in App4.

To avoid such interference, we cannot resort to strict iso-
lation any more because the memory traffic cannot always
be forced to stay within a specific workload region compared
with core-to-core traffic. It must be allowed to share data paths
with other workload traffic, which makes performance isola-
tion difficult to be enforced. Fortunately, RISO just employs
conditional resource sharing, which provides two opportunities
for memory access isolation: 1) it enables memory traffic to
use shared routers and links heading to the desired MC, while
in harmony with other workload traffic and 2) by mapping
a workload close to its favorable MC, the possibilities of
interference are further reduced. For example, in Fig. 5(a),
we can trace the memory access of App6 and identify its most
visited MC, i.e., MC0. Based on this historical memory access
information, App6 could be mapped to a new region, adjacent
to MC0, as shown in Fig. 5(b). This near-MC mapping makes
most of the memory requests no longer need to traverse
other workload regions, and hence avoids memory access
interference with other consolidated workloads. Besides, it
shortens the physical distance to reach MC0 for App6 so the
memory access latency is also diminished.

In Section III, we will elaborate how the core-to-core
and memory access isolations are achieved by deploying

1We assume that the continuous data blocks of different workloads are
interleaved across multiple memory channels, so that a core is poised to initiate
the memory access traffic to any MC. Whereas, other studies [19] that assume
channel partitioning” instead of interleaving-based data mapping also fit in
RISO framework, because the phenomenon of differential MC affinity is even
more evident for mixed workloads.

Fig. 5. Near-MC mapping of App6. (a) Initial mapping. (b) Remapped close
to the most visited MC0.

Fig. 6. Preferred topologies supported by RISO.

dedicated application mapping algorithms based on the con-
cept of RISO.

III. APPLICATION MAPPING ALGORITHM

SUPPORTING RISO

As we know, application mapping methodologies could be
classified as design-time and run-time [20] for static and
dynamic workload scenarios, respectively. RISO assumes that
the target many-core cloud processor employs run-time
mapping, and workloads can be scheduled after a fixed exe-
cution interval. Each workload hence has the opportunity to
be remapped to a new region according to its runtime charac-
teristics and corresponding communication isolation criteria.
In this section, we firstly specify that application mapping is
actually an optimization problem and then show the details of
the proposed mapping algorithm.

A. Problem Formulation

The mapping process involves allocating a specified number
of physical cores whose network is organized to the
routing-allowed topology. For some applications with intensive
intra-application communications, the performance and power
consumption can be topology specific [21], [22]. We there-
fore assume each application to be mapped has a preferred
topology, which serves as an input to our mapping algorithm.
An application’s preferred topology incorporates two unique
characteristics: 1) physical shape and 2) threads organization.
The proposed algorithm firstly searches for the candidate
regions in NoC that is identical to the preferred physical shape.
Then, to maximize the consolidation density, the mapping
algorithm should be capable to handle not only regular shape,
i.e., rectangle, but also various irregular shapes ignored in [15].
We abstract those irregular shapes into the following three
basic types: 1) L; 2) �; and 3) �, as shown in Fig. 6, with
various rotations and mirrors.

To describe the preferred topologies in Fig. 6, we firstly
define parameter: 1) horizontal vector: H [h1, h2, h3, . . . , hn]

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

LU et al.: RISO: ENFORCE NONINTERFERED PERFORMANCE 3057

Fig. 7. < t, p > tuples are organized in preferred topologies, which could be represented by the horizontal (H) or vertical vector (V). (a) Topologies denoted
by a horizontal vector. (b) Topologies denoted by a vertical vector.

and 2) vertical vector: V [v1, v2, v3, . . . , vn], where hn and vn

are the number of cores in the nth row and column,
respectively, in the preferred topology. H applies to shapes
that exhibit complete contiguity in horizontal dimension. For
instance, Fig. 7(a) shows an L shape: the first and second row
each requires four cores; the third and fourth row each requires
two cores and every row is contiguous; hence, this shape is
represented by the horizontal vector H [4, 4, 2, 2]. However,
for the shape that is noncontiguous horizontally but contiguous
vertically, we use a vertical vector as shown in Fig. 7(b).
Its corresponding vertical vector is V [4, 4, 2, 2, 2, 4, 4]. The
other irregular shapes both H and V cannot describe are
beyond the scope of this paper. In addition, to fix the pre-
ferred topology in the mesh, we use a second parameter base
point BP(x, y) defined as the top-left corner of the preferred
topology, as shown in Fig. 7(a). Its coordinates pinpoint the
preferred topology on x-/y-axis in a mesh-connected
many-core after mapping.

For the forthcoming application threads, we use the 〈ti , p j 〉
tuple to represent each thread and its corresponding position
in the preferred topology. In particular, parameters ti and p j

mean that the i th thread resides in the j th position, as shown
in Fig. 7. We use set S = {〈ti , p j 〉} to contain all thread-
position tuples in the preferred topology.

Based on the above parameter definitions, the application
mapping problem can be formulated as follows:

1) Given:
a) NoC topology T (dimx , dimy), which indicates that

the target NoC is a dimx × dimy mesh;
b) Node sets N(F, B), where F and B indicates the

set of free and busy cores, respectively;
c) Traffic matrix Mrunning, which stores historical data

used for the prediction of communication volume
in the next interval;

d) MC vector MC = 〈mc1, mc2, mc3, mc4〉. We ass-
ume four MCs, 〈mci 〉 is the memory requests
received by controller i ;

e) Preferred topology H or V , and tuple set S;
f) Link utilization threshold Ucongest, under which

performance isolation can be enforced.
2) Determine:

a) Base point coordinates BP(x, y);
b) The mapping of every 〈ti , p j 〉 tuple from S to F ,

〈ti , p j 〉: S → F . After mapping, relevant position

of threads remains the same as in preferred
topology;

c) The shared link set L and link utilization U of
every shared link l ∈ L.

3) Minimize:

a) max BP.y +
{

length(H) horizontal vector

max(V) vertical vector
b)

∑
(i, j)∈S D(< ti , p j >, MCk), where MCk =

max(MC), D is the Manhattan distance from
each < ti , p j > to MCk .

[2-DSP]: Application mapping is analogous to packing
series of irregular-shaped objects (2-D) into a container with
fixed length on x-/y-axis and pack as many objects as possible.
We thereby abstract it as a 2-D strip packing (2-DSP) problem.
The optimization goal of 2-DSP is to minimize the length on
y-axis after packing. Similarly, in RISO, we aim at two goals.
First, we need to minimize the maximum length of busy
cores on y-axis. BP.y is the y-coordinate in the mesh after
a preferred topology is mapped. If we use horizontal vector as
the preferred topology representative, BP.y + length(H) hence
denotes the maximum length on y-axis. The same concept
also applies to vertical vector, except that max(V) is used to
calculate y length. Second, we need to map this workload close
to the MC it visits most. Manhattan distance is then used to
indicate the aggregate distances from each 〈ti , p j 〉 to MCk .

For the constraints, 2-DSP does not require a fixed length on
y-axis, whereas RISO is more conservative because a
mesh-connected many-core has fixed length on both
dimensions. Therefore, the constraints of our application
mapping algorithm are formulated as follows.

1) BP · x +
{

max(H) horizontal vector

length(V) vertical vector
∈ (0, T .dimx]

2) BP · y +
{

length(H) horizontal vector

max(V) vertical vector
∈ (0, T .dimy]

3) ∀l ∈ L, Ul < Ucongest.

B. Proposed Application Mapping Algorithm

2-DSP is one of the combinatorial optimization problems.
We thus do not intend to find its exact polynomial-time
solution. Hence, efficient heuristics are introduced in this
section.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

3058 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Algorithm 1 Topology Searching

Once a set of workloads are waiting to be mapped in the
operating system task queue, the mapping procedure can be
broken into three related steps: 1 search for the region candi-
dates that meet the topology requirement within the context of
RISO; 2) for each region candidate, verify the communication
isolation criteria; and 3) select the final candidate close to the
target MC.

Step 1 (Topology Searching): The algorithm will firstly
search the NoC for proper candidates to serve the incoming
workload. As explained in Section III-A, topology vector H ,
V of each workload are already attached by the OS. It informs
the mapping algorithm the preferred topology and internal
thread organization. If the number of free cores in F is fewer
than that the application requires (number of 〈ti , p j 〉 tuples
in S), the searching process returns directly with a failure.
Otherwise, it tries to find all possible candidates in the mesh.
The detail of topology searching is described in Algorithm 1.
For simplicity, it only shows the case that the shape is a
reversed L and depicted by H . For other cases, the searching
procedure is similar.

Lines 3–15 are responsible for searching the target shape
denoted by H (horizontal vector in this example). The
algorithm starts searching T row-by-row (line 4) to satisfy
every element in H . If it finds a busy node (line 8), the
algorithm starts searching from another node in F . As long as
every element in H is satisfied, a target topology candidate is
found (lines 4–13). Otherwise, if the algorithm has traversed
all nodes in set F but still does not find shape identical
to H (line 15), the algorithm returns with a failure. Note that
Algorithm 1 is not limited to searching L shape, and to further
boost consolidation density, it is also applicable to other shapes
shown in Fig. 6.

Step 2 (Performance Verification): After successfully
finding the target topology, we need to verify the performance
isolation criteria, represented by the constraint that the
aggregated link utilization of every shared link Ul will not
exceed Ucongest. First, we need to figure out the shared link
set L under DOR routing mechanism. A link is regarded
as a shared link if it bears the traffic of two different
workloads. The aggregate traffic may be either core-to-
core or memory access. Performance isolation must be
strictly guaranteed for each shared link. As an example,
Fig. 8 shows the hypothetical scenario after mapping

Fig. 8. Performance verification for a region candidate.

Fig. 9. Shared link set identification.

Fig. 7(a). Every node is assigned by a < t, p > tuple.
Links can also be represented by tuple pairs as
(< tfrom, pfrom >,< tto, pto >). For example, we select three
shared links under DOR routing mechanism in Fig. 8, and they
can be presented as: (< t∗0 , p∗

0 >,< t∗1 , p∗
1 >), (< t∗4 , p∗

4 >,
< t∗1 , p∗

1 >), and (< t∗4 , p∗
4 >,< t∗5 , p∗

5 >), respectively.
Second, to calculate the shared link utilization, we must

identify the nodes by which the injected traffic will use this
shared link. Therefore, we divide the associate nodes into two
sets: 1) lower_set and 2) upper_set, defined by (1). Obviously,
a shared link will only carry the traffic generated from nodes
in lower_set and terminated at nodes in upper_set, under
DOR. Fig. 9 gives these node sets of the three shared links.
In particular, Fig. 9 also regard MC as a destination or source,
in order to bring memory request or response traffic into
performance isolation verification. By looking up the traffic
matrix Mrunning, we can obtain the overall flits that use a
particular shared link{

lowerset : {Node < t, p > | t = tfrom p ≤ pfrom}
upperset : {Node < t, p > | t ≤ tto p = pto}. (1)

Algorithm 2 shows in detail the verification process. Lines
4–8 determine the aggregated traffic volume on each shared
link. U is calculated in line 9. line 11 indicates that if the U
of any shared link exceeds Ucongest, this candidate topology is
not valid and must search another candidate from Step 1. It is
valid only if all shared links are satisfied, as line 14 describes.

Step 3 (Near MC Mapping): The valid region candidates
returned by Step 2 all guarantee communication isolation.
RISO further reduces end-to-end memory access latency by
adding Step 3. It will select the final candidate based on work-
load memory access distribution. In memory access vector
MC, the item with the maximum value (line 1 in Algorithm 3)
is regarded as the most visited MC.

To calculate the distance from a region candidate to this
chosen MC, we use region distance as the metric. It is defined

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

LU et al.: RISO: ENFORCE NONINTERFERED PERFORMANCE 3059

Algorithm 2 Performance Verification

Algorithm 3 Near-MC Mapping

as the average distance from each node in the region to the
MC (lines 4–6). The final candidate is hence selected with the
minimum region distance. Lines 8–9 show such procedure.

C. Traffic Prediction

As many prior NoC flow control techniques, RISO relies
on accurate traffic prediction as an important guide to the
application mapping. Before a preferred topology is mapped
into the cloud processor, RISO predicts communication traffic
and thereby identifies sharable links, based on historical values
stored in (Mrunning).

Most prior work uses liner predictor to fulfill this purpose.
We find that although liner predictor is capable for gradually
changed traffic patterns, it is highly unreliable to cope with
bursty traffic patterns which, if fail to predict, can jeopardize
the performance isolation.

Therefore, we take a conservative approach in traffic
prediction: for bursty traffic, since the traffic volume changes
sharply, we just exclude the associated links from sharing.
This may slightly degrade the consolidation density, but the
performance isolation is well guaranteed. In particular, we
modified last value predictor (LVP) [23], [24] to handle both
bursty and nonbursty scenarios. The prediction function is
defined as

Tprediction =
{

h2 | (h2−h1)
h1

|< �

+∞ Otherwise.
(2)

The predictor stores two most recent traffic volumes as h1,
h2 for every source–destination pair. If the two values differ

TABLE I

PARAMETERS OF SYSTEM UTILIZATION EVALUATION

sharply (larger than a predefined threshold �), we exclude the
associate links from sharable links by assigning a +∞ to the
final prediction value; otherwise, we still follow the LVP.

IV. EXPERIMENTAL SETUP

We intend to evaluate RISO in two aspects: 1) system
level, which evaluates the consolidation density from the
whole system point of view and 2) network performance,
which explores the benefit of RISO to network performance
by tackling the routing-density tradeoff. First, we introduce
the various metrics used in the experiments, and then, the
performance evaluation setup and state-of-the-art baselines are
specified.

A. Consolidation Density Metric

We use system utilization (Usystem) [15] as one of the
metrics for consolidation density evaluation. It represents
the busy-cycle proportion of all cores in a cloud processor.
A higher system utilization means more workloads have been
mapped into the processor, and thus indicates a higher consol-
idation density. In particular, for a N-node system during T
period of time, Usystem is defined by

Usystem =
∑N

i=1 Ti

N × T
(3)

where Ti is the busy time of node i over T period of time.
A high system utilization means high consolidation density.

System utilization depends on the load condition [15], which
is defined by

Load = R × S

N × I
(4)

where R is average requested resources (i.e., cores in this
paper) of all applications, I is average interarrival time
between consecutive applications, and S is average application
running time. Load below 1 means application arrival rate
is lower than departure rate; otherwise, the system will be
overloaded and improving system utilization will be critical.
The values of these parameters used in the experiment are
listed in Table I.

B. Performance Simulation Setup

We modified Booksim2.0 [25] to evaluate network
performance. We select 13 benchmark programs from
Parsec [16] and Cloudsuite [1], each of which acts as a
workload. We run their traces obtained from two full system
simulators, GEMS [26] for Parsec and Flexus [27] plus Simics

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

3060 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

TABLE II

FULL SYSTEM SIMULATOR CONFIGURATION

for Cloudsuite. The detailed configuration is shown in Table II.
We collected both core-to-core and memory access traffic
generated from all cores of each workload.

The NoC topology for our trace-driven simulation is
a 8 × 8 mesh. The router is configured with a two-stage
pipeline plus one cycle for link traversal. We use two virtual
channels (VCs) and each has an 8-flit buffer. For different
NoC configurations, the congestion threshold (Ucongest) might
be different. Therefore, we choose the most conservative
value, 65%, in accordance with the results shown in Fig. 4.
We also set the burstiness detection threshold [� in (2)]
to 10% for the performance evaluation, which ensures the
performance isolation under bursty scenarios. However, other
design choices are also applicable, and Section V-C will give
a thorough evaluation of � and its impact on performance
isolation.

C. Baselines Compared

We compare RISO with three previously proposed schemes.
The first one employs efficient routing but at the expense
of lower consolidation density [28], denoted by regularity-
oriented scheme [Fig. 1(a)]. The second scheme takes the
opposite, i.e., emphasizing the density, but paying for more
complex routing mechanisms [15], denoted by density-
oriented scheme [Fig. 1(b)]. Besides, VCs could also be used
to isolate traffic of different workloads, as shown in some
state-of-the-arts [29]. Such scheme does not require a
workload to be consolidated into a region with specific shapes,
so it could obtain a near optimal system utilization. However,
the application traffic shares the on-chip routers and physical
links, so the interference still exists. We denote such scheme
as VC oriented. In Section V, we compare RISO with these
baselines to represent its efficacy in workload consolidation.

V. RESULTS AND ANALYSIS

A. Consolidation Density

Fig. 10 shows the system utilization from underload
(x-axis before 1) to overload (x-axis after 1). The result
shows that RISO improves the system utilization by up
to 12% (16 × 16 mesh) higher than regularity-oriented
scheme in the overload condition. Surprisingly, RISO performs
almost equally well to density-oriented scheme (within 0.1%
in 32 × 32 mesh). Even though RISO cannot exploit all
irregular regions due to the link utilization constraint, it can

Fig. 10. System utilization for (a) 16 × 16 and (b) 32 × 32 mesh.

deal with some unique regions such as �, which cannot
be supported in density-oriented scheme, and enables our
scheme to match density-oriented scheme in consolidation
density. Compared to the VC-oriented approach, RISO has a
15% less consolidation density, because VC-oriented approach
distributes the workload threads to cores randomly, which
maximumly diminishes the fragmentation and makes it more
possible to approach the theoretical upper bound of the system
utilization.

B. Network Performance

Besides consolidation density, network-related parameters
also impact the efficiency of workload consolidation. In this
section, we elaborate in detail the benefits of RISO to net-
work performance. First, we prove that RISO complies with
performance isolation; then, using network latency as the
performance metric, we show that RISO can significantly
improve the overall NoC performance as well.

1) Performance Isolation Analysis: As described in
Section II, regularity-oriented approach, though only applica-
ble to core-to-core traffic, are regarded for ideal performance
isolation by enforcing strict isolation. Hence, we compare
VC-oriented and RISO with regularity-oriented scheme to
verify their capability of performance isolation, and the results
are shown in Table III. The three columns in the center show
the actual latency values of various benchmarks under three
schemes. The last two columns show the latency variation
normalized to results of regularity-oriented approach. As can
be seen, RISO exhibits an average latency variation
within 1.8×10−4 compared with regularity-oriented approach;
in contrast, VC-oriented approach shows a 31.7% and 33.5%
latency degradation for Parsec and Cloudsuite, respectively,
because of its interworkload interference. This experiment
proves that for VC-oriented approach, performance isolation
cannot be preserved under limited VCs. However, RISO could
completely guarantee the performance isolation.

2) Core-to-Core Communication: Density-oriented scheme
is notorious for its network performance, although it can
enforce performance isolation and provide high consolidation
density. Hence, we show how much latency improvements
can be achieved by RISO. We compare RISO to density-
and VC-oriented approach in this experiment. Note that RISO
and VC-oriented approach use efficient DOR, while density-
oriented scheme uses the most favorable Up*/Down* [12]
routing mechanism.

To clearly illustrate the routing influence to network
performance, we evaluate the network latency using workload

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

LU et al.: RISO: ENFORCE NONINTERFERED PERFORMANCE 3061

TABLE III

PERFORMANCE ISOLATION RESULTS (CORE-TO-CORE TRAFFIC ONLY)

Fig. 11. Average core-to-core latency comparison using Parsec and Cloudsuite workload mixes.

mixes, and each mix only consists of two workloads randomly
selected from Parsec and Cloudsuite (not 13 workloads as
a whole). Fig. 11 shows the results of three schemes for
49 workload mixes. We categorize these mixes into three
classes. Clearly, RISO wins for all. Generally speaking,
VC-oriented approach, even if using DOR, exhibits more
severe latency degradation than density-oriented approach,
which means that the contention delay is the major factor
compared with the routing delay. However, for some mixes,
i.e., black_bodytrack and swaptions_bodytrack,
routing delay is the chief dictator. RISO uses efficient routing
and simultaneously eliminates interference, thus providing
40.2% and 73.2% latency improvements averaged by the three
classes.

3) Memory Access: Memory access traffic cannot be
isolated by any previously proposed approaches, because the
memory traffic will inevitably traverse into other workload’s

territory to reach the desired MC. However, the numerous
shared links along the path to the MC could be uniquely
exploited by RISO. RISO relies on the verification of shared
link utilization that provides the opportunity for memory
access traffic to proceed in harmony with other interworkload
traffic, avoiding the interference. Fig. 12 justifies this concept.
We run Parsec and Cloudsuite benchmark programs under
RISO and regularity-oriented approach. Obviously, it confirms
that the regularity-oriented approach cannot isolate memory
access traffic. Even if we augment it with near-MC mapping
as implemented in the RISO (denoted as regularity-oriented
+ near-MC in the figure), the interference still exists, because
the shared link utilization may also exceed the safety threshold
that is ignored by these approaches. In contrast, RISO is
utilization aware, and the mapping is only applicable if link
sharing allows, which conduces a 7.1% and 15.9% average
latency improvement for Parsec, and 14.7%, 28.2%

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

3062 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

Fig. 12. Average memory access latency comparison. Regularity-oriented
approach cannot isolate memory access traffic even if near-MC mapping is
integrated, and the memory traffic could also be blocked by other workload’s
traffic.

Fig. 13. CDF of RISO memory access latency with/without near-MC
mapping implemented.

for Cloudsuite. This experiment proves that the sole
employment of near-MC mapping is not enough to isolate
memory access traffic. Shared link utilization is the utmost
consideration that needs to be enforced.

4) Near-MC Mapping Analysis: To quantify the benefits
of near-MC mapping, we study the memory access latency
within the context of RISO under two scenarios: 1) with near-
MC mapping implemented and 2) without near-MC mapping
implemented. In this set of experiment, we trace 256 memory
access packets for each MC. The latency of each packet
is recorded and plotted using cumulated distribution func-
tion (cdf), as shown in Fig. 13. Two vertical lines represent the
latency median (50% point at y-axis) of the recorded packets
under RISO and RISO without near-MC, respectively. For all
the four MCs, the near-MC mapping reduces memory access
latency substantially, i.e., 10.3% for MC1 as the maximum and
7.6% for MC3 as the minimum, due to a shortened physical
distance between a workload and its favorable MC.

C. Predictor Robustness

RISO relies on the LVP to guarantee the performance
isolation requirement, which involves two aspects: 1) traffic

Fig. 14. Prediction accuracy of last level prediction for Parsec and Cloudsuite
benchmarks. The calculation is issued under 1-ms interval and runs through
the whole execution.

value prediction and 2) the detection of traffic burstiness.
At the worst case scenario, the traffic pattern of a workload
cannot be acquired in advance, so the robustness of RISO
must be evaluated to explore the least time that must be
spent to achieve the correct prediction. We vary the prediction
interval as 0.5, 1, and 2 ms, and calculate the precision
that is defined as the differentiation of the predicted value
and real value. Fig. 14 shows the precision under the three
scenarios, which is categorized into four ranks. Taking the
rank 0%–2% at 1 ms as an example, the precision can attain
98.2% for Parsec and 86.3% for Cloudsuite. Compared to
0.5-ms scenario, the average precision improvement is 2.6%.
However, the precision is almost the same under 1- and
2-ms interval (<0.5% difference). It means that even if we
do not have any knowledge in terms of workload traffic
pattern, 1–2 ms interval would be enough for RISO to make
correct predictions. Moreover, modern operating system kernel
issues process scheduling at <100-ms magnitude [30], which
indicates that RISO is able to finish all of its computation and
prediction procedure at optimally 1% of OS scheduling time,
and is also tiny enough to be deployed in modern operating
systems.

For the mispredictions, i.e., rank ±10%, it indicates that
the traffic is bursty and must be carefully handled to preserve
performance isolation, especially for Cloudsuite benchmarks
that the user incoming requests are stochastic. In RISO,
predefined threshold � is used to filter out the bursty traffic
from shared links. Fig. 15 shows the shared link utilization
tuned by the value of �, under 1-ms prediction interval.
As shown in the figure, � could be scaled larger without
violating the 65% link utilization threshold for most of the
benchmarks. Larger � indicates a larger consolidation density,
with performance isolation well guaranteed at the same time.
However, setting � naively large is not always beneficial.
For example, benchmarks, such as graphic_analytics
and data_analytics, will be interfered if � is set larger
than 12%. Generally speaking, 10% is a safe value that brings
both high consolidation density and guaranteed performance,

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

LU et al.: RISO: ENFORCE NONINTERFERED PERFORMANCE 3063

Fig. 15. Traffic burstiness threshold impact on performance isolation
criterion.

and that is also why we use this value for network performance
evaluation in Section V-B.

VI. RELATED WORK

First, it was introduced by Flich et al. [14] that the perfor-
mance isolation technique is imperative to achieve controllable
QoS in NoC. It clarifies the basic items needed to solve
in this area. Particularly, the tradeoff between regularity of
topology and complexity of routing is the most important in
which it relates directly to the network performance and power
consumption.

Some proposed techniques follow the strict NoC
isolation strategy using rectangular shapes for performance
isolation, such as [28]. These methods are restrained by the
maximum number of consolidated workloads, which will
degrade the consolidation density. Unlike those regular-shaped
performance isolation methods, Solheim et al. [15] proposed
an irregular-shaped isolation based on complex routing
mechanism. This method also follows strict isolation between
workloads, and improves consolidation density compared with
rectangle-based isolation. However, its routing mechanism is
less efficient and exhibits substantial degradation with respect
to network performance.

For the optimization of the memory access latency,
Das et al. [19] proposed an application-to-core mapping
policies to improve system performance by reducing
interapplication interference. By mapping network-sensitive
workloads close to the MC, memory access latency could
be diminished. Sharifi et al. [31] proposed two packet
prioritization schemes, which cooperatively improve network
performance by reducing end-to-end memory access latency.
However, these two techniques can only apply to
single-threaded workloads (i.e., SPEC CPU 2006 [32]),
so they ignore the core-to-core communication interference
inherited from multithreaded workloads. RISO takes both
core-to-core and memory access traffic into account, and
performance isolation is truly enforced in NoC.

VII. CONCLUSION

This paper proposes the RISO strategy to enforce
performance isolation in cloud processors. Unlike traditional

strict isolation strategy, such as regularity-oriented and
density-oriented approach, RISO allows underutilized links to
be shared by multiple applications, as long as the aggregate
link utilization is lower than a certain congestion threshold.
Compared with regularity-oriented approach, RISO supports
more flexible topologies and can greatly improve consolidation
density. RISO does not complicate the routing mechanism
required by density-oriented approach; it also uses
cost-effective DOR and hence yields higher network
performance. In other words, RISO effectively resolves
the tradeoff between consolidation density and network
performance. For the memory access traffic that strict
isolation strategies fail to isolate, the resource sharing in
RISO also provides a unique opportunity to eliminate the
memory access interference. With the help of near-MC
mapping method, workloads can even benefit from the
accelerated memory access. We therefore believe that RISO is
a promising scheme for workload consolidation in many-core
cloud processors.

REFERENCES

[1] M. Ferdman et al., “Clearing the clouds: A study of emerging scale-out
workloads on modern hardware,” in Proc. 17th Int. Conf. Archit. Support
Program. Lang. Operat. Syst., 2012, pp. 37–48.

[2] P. Lotfi-Kamran et al., “Scale-out processors,” in Proc. 39th Annu. Int.
Symp. Comput. Archit., 2012, pp. 500–511.

[3] Intel Single-Chip Cloud Computer. [Online].
Available: http://www.intel.com/content/www/us/en/research/intel-
labs-single-chip-cloud-article.html, accessed Mar. 2013.

[4] AMD Opteron 6000+ Series. [Online]. Available:
http://www.amd.com/en-us/products/server/opteron/6000, accessed
Jun. 2013.

[5] Amazon Elastic Cloud Computing. [Online]. Available:
http://aws.amazon.com/ec2/, accessed May 2010.

[6] M. R. Marty and M. D. Hill, “Virtual hierarchies to support server
consolidation,” in Proc. 34th Annu. Int. Symp. Comput. Archit., 2007,
pp. 46–56.

[7] H. Lu, G. Yan, Y. Han, B. Fu, and X. Li, “RISO: Relaxed network-on-
chip isolation for cloud processors,” in Proc. 50th IEEE Annu. Design
Autom. Conf., May/Jun. 2013, pp. 1–6.

[8] A. K. Mishra, O. Mutlu, and C. R. Das, “A heterogeneous multiple
network-on-chip design: An application-aware approach,” in Proc. 50th
Annu. Design Autom. Conf., 2013, pp. 1–10.

[9] S. Volos, C. Seiculescu, B. Grot, N. K. Pour, B. Falsafi, and
G. De Micheli, “CCNoC: Specializing on-chip interconnects for energy
efficiency in cache-coherent servers,” in Proc. 6th IEEE/ACM Int. Symp.
Netw.-Chip, May 2012, pp. 67–74.

[10] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a Teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep./Oct. 2007.

[11] S. Bell et al., “TILE64—Processor: A 64-core SoC with mesh inter-
connect,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2008,
pp. 88–89.

[12] M. D. Schroeder et al., “Autonet: A high-speed, self-configuring local
area network using point-to-point links,” IEEE J. Sel. Areas Commun.,
vol. 9, no. 8, pp. 1318–1335, Oct. 1991.

[13] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Segment-
based routing: An efficient fault-tolerant routing algorithm for meshes
and tori,” in Proc. 20th Int. Parallel Distrib. Process. Symp., Apr. 2006,
pp. 10–19.

[14] J. Flich et al., “On the potential of NoC virtualization for multicore
chips,” in Proc. Int. Conf. Complex, Intell. Softw. Intensive Syst., 2008,
pp. 801–807.

[15] A. G. Solheim, O. Lysne, T. Sødring, T. Skeie, and J. A. Libak,
“Routing-contained virtualization based on up*/down* forwarding,” in
Proc. 14th Int. Conf. High Perform. Comput., 2007, pp. 500–513.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. 17th Int.
Conf. Parallel. Archit. Compil. Techn., 2008, pp. 72–81.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

3064 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12, DECEMBER 2015

[17] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links
for power optimization of interconnection networks,” in Proc. 9th Int.
Symp. High-Perform. Comput. Archit., 2002, pp. 91–102.

[18] J. W. van den Brand, C. Ciordas, K. Goossens, and T. Basten,
“Congestion-controlled best-effort communication for networks-on-
chip,” in Proc. Design, Autom. Test Eur. Conf. Exhibit., 2007, pp. 1–6.

[19] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi,
“Application-to-core mapping policies to reduce memory system inter-
ference in multi-core systems,” in Proc. IEEE 19th Int. Symp. High
Perform. Comput. Archit., Feb. 2013, pp. 107–118.

[20] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
Proc. 50th IEEE Annu. Design Autom. Conf., May/Jun. 2013, pp. 1–10.

[21] M. Kandemir, O. Ozturk, and S. P. Muralidhara, “Dynamic thread and
data mapping for NoC based CMPs,” in Proc. 46th IEEE Annu. Design
Autom. Conf., Jul. 2009, pp. 852–857.

[22] B. Fu, Y. Han, J. Ma, H. Li, and X. Li, “An abacus turn model for
time/space-efficient reconfigurable routing,” in Proc. 38th Annu. Int.
Symp. Comput. Archit., 2011, pp. 259–270.

[23] Y. S.-C. Huang, K. C.-K. Chou, C.-T. King, and S.-Y. Tseng, “NTPT:
On the end-to-end traffic prediction in the on-chip networks,” in Proc.
47th ACM/IEEE Annu. Design Autom. Conf., Jun. 2010, pp. 449–452.

[24] Y. S.-C. Huang, K. C.-K. Chou, and C.-T. King, “Application-driven end-
to-end traffic predictions for low power NoC design,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 21, no. 2, pp. 229–238, Feb. 2013.

[25] Booksim2.0. [Online]. Available: https://nocs.stanford.edu/, accessed
Jan. 2012.

[26] GEMS Simulator. [Online]. Available: http://research.cs.wisc.edu/gems/
publications.html, accessed May 2011.

[27] Flexus Simulator. [Online]. Available: http://parsa.epfl.ch/simflex/flexus.
html, accessed Oct. 2013.

[28] V. Gupta and A. Jayendran, “A flexible processor allocation strategy for
mesh connected parallel systems,” in Proc. Int. Conf. Parallel Process.,
1996, pp. 166–173.

[29] F. Trivino, J. L. Sanchez, F. J. Alfaro, and J. Flich, “Exploring NoC vir-
tualization alternatives in CMPs,” in Proc. 20th Euromicro Int. Conf.
Parallel, Distrib. Netw.-Based Process., 2012, pp. 473–482.

[30] W. R. Stevens and S. A. Rago, Advanced Programming in the UNIX
Environment. Reading, MA, USA: Addison-Wesley, 2005.

[31] A. Sharifi, E. Kultursay, M. Kandemir, and C. R. Das, “Addressing end-
to-end memory access latency in NoC-based multicores,” in Proc. 45th
Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2012, pp. 294–304.

[32] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

Hang Lu received the B.Eng. and M.Eng. degrees
from the Beijing University of Aeronautics and
Astronautics, Beijing, China, in 2008 and 2011,
respectively. He is currently pursuing the Ph.D.
degree in computer architecture with the University
of Chinese Academy of Sciences, Beijing.

His current research interests include
high-performance networks-on-chip, power
efficient manycore architectures, and scale-out
processors.

Binzhang Fu (M’09) received the B.Eng. degree
in electronics and information engineering, and
computer science and technology from the
Huazhong University of Science and Technology,
Wuhan, China, in 2004, and the Ph.D. degree in
computer science from the Institute of Computing
Technology (ICT), Chinese Academy of Sciences
(CAS), Beijing, China, in 2011.

He is currently an Associate Professor with
ICT, CAS. His current research interests include
high-performance and high-reliable interconnection

networks.

Ying Wang (S’11) received the B.Eng. and
M.Eng. degrees in electrical engineering from the
Harbin Institute of Technology, Harbin, China, in
2007 and 2009, respectively. He is currently pursu-
ing the Ph.D. degree with the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China.

His current research interests include reconfig-
urable computing, interconnects, memory system,
and fault-tolerance for many-core architectures.

Yinhe Han (M’06) received the B.Eng. degree from
the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2001, and the
M.Eng. and Ph.D. degrees in computer science
from the Institute of Computing Technology (ICT),
Chinese Academy of Sciences (CAS), Beijing,
China, in 2003 and 2006, respectively.

He is currently a Professor with the State Key
Laboratory of Computer Architecture, ICT, CAS.
His current research interests include computer
architecture, in particular, on fault-tolerant and

low-power architecture and VLSI design and test.
Prof. Han is a member of the Association for Computing Machinery/China

Computer Federation/Institute of Electronics, Information and Communication
Engineers. He was a recipient of the Best Paper Award at the Asian Test
Symposium (ATS) in 2003. He was the Program Chair of ATS in 2014, and
was the Finance Chair of the International Symposium on High-Performance
Computer Architecture (HPCA) in 2013 and the Program Co-Chair of the
Workshop on RTL and High Level Testing in 2009. He served on the
Technical Program Committees of multiple IEEE and ACM conferences,
including the International Conference on Parallel Architectures and
Compilation Techniques (PACT) in 2014, HPCA in 2013, the Asia and South
Pacific Design Automation Conference (ASPDAC) in 2013, Cool Chip in
2013, ATS from 2008 to 2010, and Great Lakes Symposium on VLSI from
2009 to 2010.

Guihai Yan (M’11) received the B.Sc. degree in
electronics and software engineering from Peking
University, Beijing, China, in 2005, and the Ph.D.
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing, in 2011.

He is currently an Associate Professor with ICT,
CAS. His current research interests include com-
puter architecture, domain-specific microsystems,
and energy-efficient computing.

Xiaowei Li (SM’04) received the B.Eng. and
M.Eng. degrees from the Hefei University of
Technology, Hefei, China, in 1985 and 1988,
respectively, and the Ph.D. degree from the Institute
of Computing Technology (ICT), Chinese Academy
of Sciences (CAS), Beijing, China, in 1991, all in
computer science.

He is currently a Professor and the Deputy
Director of the Key Laboratory of Computer
System and Architecture with ICT, CAS. His current
research interests include VLSI testing and design

verification, dependable computing, and wireless sensor networks.
Prof. Li is an Associate Editor-in-Chief of the Journal of Computer Science

and Technology and a member of the Editorial Board of the Journal of
Electronic Testing and the Journal of Low Power Electronics. He serves on
the Technical Program Committees of multiple IEEE and ACM conferences,
including the Vehicular Technology Society, the Design Automation and Test
in Europe, the Asia and South Pacific Design Automation Conference, and
the Conference on Dependable Computing. He was the Program Co-Chair of
the IEEE Asian Test Symposium (ATS) in 2003, and the General Co-Chair
of ATS in 2007.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:47:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

