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Abstract—With the rise of fully homomorphic encryption-based private

inference, data centers are anticipated to simultaneously handle two

disparate computational demands: plaintext-based non-private inference

(NPI) and ciphertext-based private inference (PI). Unfortunately, current

solutions face challenges in addressing this trend. They either depend

on costly, inflexible dedicated accelerators or utilize general-purpose

hardware with inferior performance. This limitation underscores the

urgent need for a unified architecture capable of serving both normal

and privacy-sensitive users with high efficiency.

However, the fundamental disparities in computation patterns and

resource management between NPI and PI make their architectural

fusion intricate. To bridge this gap, we explore their inherent similarities

and apply fine-grained reconfiguration to maximize resource sharing.

We propose RTPU, a reconfigurable multi-core architecture that can

seamlessly switch between tensor-based plaintext and polynomial ring-

based ciphertext computations. Building upon its reconfigurable comput-

ing fabric and parallelization mechanism, we introduce a kernel group-

based scheduling strategy to optimize hardware utilization and QoS.

Experimental results show that: i) The RTPU architecture achieves near-

ASIC performance and beyond-ASIC flexibility with substantial silicon

reuse between NPI and PI. ii) The RTPU scheduler sustains high resource

utilization for multi-tenant workloads with varying privacy requirements.

I. INTRODUCTION

Recent years have witnessed the widespread deployment of cloud-

based neural network (NN) inference services in various applications,

including image recognition, language processing, and recommenda-

tion [1]. As illustrated in Fig. 1(a), modern data centers increasingly

serve users with divergent privacy requirements. Normal users send

their data in plaintext format to servers for non-private inference

(NPI). In contrast, privacy-sensitive users who do not trust the data

center require private inference (PI) techniques [2] to secure their

data. One of the most promising solutions is fully homomorphic

encryption (FHE), often regarded as the holy grail of cryptography

[3]. FHE allows cloud servers to perform inference on encrypted

data without decryption and has been adopted by several cloud ser-

vice providers. For instance, Amazon integrates FHE in SageMaker

endpoints for secure real-time inference [4], and IBM provides beta-

stage privacy-preserving computation services [5]. Thus, there is a

predictable trend of coexisting NPI and PI in data centers.

However, as highlighted in Fig. 1(b), existing paradigms building

upon dedicated accelerators and general-purpose architectures fall

short of efficiently addressing this emerging trend. Although devel-

oping distinct accelerators for NN and FHE workloads, such as TPU

[6] and SHARP [7], achieves significant inference latency reduction,

this strategy suffers from doubled non-recurring engineering (NRE)

costs associated with design, verification, and mask set fabrication.

These performance-hungry accelerators typically require advanced

process nodes like 7 nm [6], [7], which can incur additional expenses

exceeding hundreds of millions of dollars [8]. Furthermore, the

architectural divergence between NN and FHE accelerators leads to
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Fig. 1. (a) Overview of cloud-based NPI and PI. (b) Comparison of three
accelerator design paradigms.

poor flexibility, hindering the utilization of idle hardware resources

during imbalanced NPI and PI loads. As a result, data centers are

compelled to deploy redundant accelerators to ensure QoS, which

exacerbates hardware acquisition costs. Alternative solutions imple-

mented on highly programmable architectures including GPUs [9]

and FPGAs [10] can provide low NRE costs and superior flexibility.

However, these platforms are far from ideal due to their compromised

performance and increased power consumption. The above analysis

raises a critical research question: How can we design a unified

architecture that simultaneously satisfies the demands of NPI and

PI while achieving ASIC-like performance?

Unfortunately, two major obstacles hinder the development of

high-performance unified accelerators for NPI and PI. The first

challenge stems from the fundamentally different algebraic structures

underlying plaintext-based NPI and ciphertext-based PI. The former

relies on tensor operations [6], whereas the latter utilizes polynomial

ring algebras [11]. These distinct structures involve incompatible

data widths and computational rules, making it difficult to effec-

tively reuse hardware resources between NPI and PI. The second

challenge concerns resource allocation for multi-tenant inference

services with varying privacy requirements. Although supporting

such services is crucial for optimizing hardware utilization and QoS,

existing runtime scheduling strategies like PREMA [12] and Planaria

[13] are inadequate in the context of mixed privacy-level tasks.

Specifically designed for tensor-based computations, these strategies

fail to capture the unique characteristics of polynomial ring-based

operations. Furthermore, their simplistic parallelization approaches

significantly exacerbate hardware underutilization within large-scale

systems handling both NN and FHE tasks.

Our goal is to tackle these challenges and design a versatile

platform that efficiently serves both normal and privacy-sensitive

users. As shown in Fig. 1(b), we propose the Ring&Tensor Processing

Unit (RTPU) architecture, which leverages the internal connections

between the NPI and PI kernels to accelerate both plaintext-based

and ciphertext-based inference. We also introduce an architecture-

dependent scheduling mechanism to fully harness the resources



for mixed NPI/PI workloads. Compared to prior approaches using

dedicated accelerators and general-purpose architectures, the RTPU-

based paradigm exhibits comprehensive advantages in cost, flexibility,

and performance. In summary, our key contributions include:

• We propose a novel Ring&Tensor Core (RTC) design to accel-

erate the computation and data layout transformation kernels of

NPI and PI. It can be configured into various modes at runtime,

facilitating resource sharing between NPI and PI.

• To handle the divergent resource demands of NPI and PI kernels,

we propose a multi-core RTPU architecture. It incorporates

both intra-kernel and inter-kernel parallelization mechanisms to

reduce latency and enhance resource utilization.

• To accommodate the reconfigurable computing fabric and paral-

lelization mechanism of the RTPU, we propose a kernel group-

based scheduler for elastic resource allocation that accounts for

the heterogeneity and QoS constraints of NPI and PI tasks.

• Evaluation results demonstrate that the RTPU architecture main-

tains 97.43% silicon reuse across NPI and PI domains. It only

incurs minor performance overhead for individual NPI/PI tasks

compared to dedicated TPU/SHARP, and achieves considerable

speedups for mixed tasks: 1.44× over heterogeneous accelerator

platform and 20.62× over general-purpose GPU. Furthermore,

the RTPU scheduler delivers average latency improvements of

3.27× and 1.79× compared to PREMA and Planaria, respec-

tively. We also conduct design space exploration to identify

optimal parameters that balance NPI and PI efficiencies.

II. BACKGROUND AND MOTIVATION

A. Landscape of NPI and PI Acceleration

The ubiquitous NPI has spurred the proliferation of NN acceler-

ators [14], which typically incorporate numerous systolic arrays or

vector units to efficiently perform tensor operations such as general

matrix multiplication (GEMM). Beyond boosting performance, an

important lesson learned is the necessity of supporting multi-tenancy

[6]. In cloud-based NN deployments, multiple inference tasks with

distinct network structures, data precisions, and QoS requirements,

frequently share a single accelerator. To maximize resource utiliza-

tion, contemporary multi-tenant schedulers like PREMA [12] and

Planaria [13] partition hardware resources along time and space

dimensions, scheduling tasks using latency estimation models. How-

ever, these solutions are constrained to NN-specific accelerators with

limited computing resources and do not efficiently support large-scale

systems that handle both NN and FHE workloads.

The FHE-based PI is known for its robust privacy guarantee as well

as significant computational overhead [15]. To mitigate the resulting

slowdown, highly programmable GPUs and FPGAs [9], [10] are

explored as immediate solutions, despite their inferior performance

and substantial power consumption. ASIC-based accelerators [7],

[11] are then proposed to provide optimized performance, effectively

narrowing the gap between plaintext-based and ciphertext-based

inference. However, ASICs face challenges such as high NRE costs

and lengthy design cycles. Moreover, the lack of reconfigurability

makes them difficult to adapt to various scenarios. Recent efforts

to enhance ASIC flexibility focus on parameter variations [16],

algorithmic diversity [17], and performance scalability [18], [19].

Nonetheless, these works remain confined to the PI domain.

B. Hierarchical Description of NPI and PI

As shown in Fig. 2, the software stacks of NPI and PI are

hierarchically organized into three layers: model layer, operation

layer and kernel layer. Users utilize high-level descriptions to define

layer configuration
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Fig. 2. Hierarchical software stacks of NPI and PI. The underlined kernels
are for data layout transformation, and the others are for computation.

the NN layer configurations, such as sizes of input feature maps.

Leveraging NN and FHE compilers, the model is initially transformed

into a sequence of operations and subsequently lowered into multiple

kernels, whose semantics align with hardware units.

1) Kernels of NPI: The operands of NPI kernels are tensors, i.e.

multi-dimensional arrays. GEMM plays a crucial role since most linear

NN operations can be converted into matrix-matrix multiplications,

accounting for over 70% of the total runtime [20]. Non-linear opera-

tions, such as ReLU, cannot be represented as GEMM and are viewed

as special kernels. The permutation kernel (Perm) that reorders tensor

dimensions is frequently used in tensor reshaping [21].

2) Kernels of PI: In this paper, we focus on the CKKS scheme

[22] due to its prevalent adoption in PI. Notably, other schemes

like BGV and BFV share plenty of kernels with it [23]. At the

operation layer, CKKS operates on ciphertexts created by encoding

and encrypting messages that contain multiple real or complex

numbers. Each ciphertext [[m]] is composed of two polynomials,

Am(X) and Bm(X), which are defined over the polynomial ring

RQ = ZQ[X]/(XN + 1) with coefficients modulo Q and degree

N . And Am(X) =
∑N−1

i=0
Aix

i. The supported homomorphic oper-

ations include addition (HAdd), multiplication (HMult), and rotation

(HRotate). Complex procedures like key-switching and bootstrapping

can be broken down into sequences of these operations and are

thus excluded from the software stack. At the kernel layer, CKKS

adopts the residue number system (RNS) representation to circumvent

expensive large-number arithmetic. It splits a polynomial a(X) into

multiple smaller limbs {[a(X)]qi} where qi ≪ Q. Consequently, the

operands of PI kernels are polynomial matrices with limbs as row

vectors. The computation kernels are summarized as follows:

(I)NTT: The (inverse) number theoretic transform kernel con-

verts polynomials between coefficient-based and point value-based

representations. By leveraging NTT, the multiplication of polynomials

a(X) and b(X) is performed as a(X) · b(X) = INTT(NTT(a(X))
⊙ NTT(b(X))), where the operator ⊙ represents the element-wise

multiplication of their coefficients. This approach reduces the com-

plexity of polynomial multiplication from O(N2) to O(N logN).
The transformation of â(X) = NTT(a(X)) is formally defined as:

âj =

N−1∑

i=0

ai · ωij mod q, j ∈ [0, N − 1] (1)

where ai and âj correspond to the i-th and j-th coefficients of

polynomials a(X) and â(X), respectively. ω represents the twiddle

factor. An N -point NTT is conventionally implemented via a butterfly

network with log
2
N stages, each containing N/2 butterfly units [24].

However, this structure becomes prohibitive for large N . To address

this, current implementations typically adopt 2D (or four-step) NTT

that decomposes a large kernel into smaller ones with sizes NI and

NJ such that N = NI ·NJ [25]. This approach can be extended to

higher dimensions, e.g. 3D NTT, where N = NI · NJ · NK [23].

Additional kernels like matrix transposition (Trans) are inserted



between the execution of (I)NTT kernels with different sizes.

BConv: The basis conversion kernel expands or shrinks the limbs

of an RNS-based polynomial, which is essential for key-switching.

As shown in Eq. (2), polynomial a(X) with the modulus set C =
{qi} is converted to â(X) with another set B = {pj} [11]. Here

q̂i =
∏

k ̸=i
qk. Notably, the second step (·q̂i mod pj) dominates the

computation time, corresponding to modular multiplication between

a |B|×|C| base table matrix and a |C|×N polynomial matrix [11].

[â(X)]B =

{|C|−1
∑

i=0

([a(X)]qi · q̂−1

i mod qi)

· q̂i mod pj

}

, j ∈ [0, |B| − 1]

(2)

EWE-MM/MA: The element-wise kernel performs modular mul-

tiplication or addition between corresponding coefficients of two

polynomials, or between the coefficients of a polynomial and a scalar.

Besides the aforementioned matrix transposition (Trans), auto-

morphism (Auto) is crucial for polynomial data reordering. When a

ciphertext is rotated by an amount r, it maps the i-th coefficient of

the polynomial to φr(i)-th position, where φr(i) = i · 5r mod N .

3) Kernel Parallelization Strategies: To enhance computational

efficiency, two complementary parallelization strategies can be used.

Intra-Kernel parallelization divides a single kernel into multiple sub-

kernels for parallel execution, applicable to various dimensions of

input tensors and polynomials for NPI and PI [11], [26]. Inter-

Kernel parallelization allows for the concurrent execution of multiple

kernels with data dependencies through fine-grained pipelines. For

instance, splitting large batches into smaller microbatches enables

the overlapping of multiple consecutive GEMM kernels [26].

C. Motivation of Efficient Architectural Fusion

Existing general-purpose hardware exhibits an inferior architectural

fusion of NPI and PI. A representative example lies in modern GPUs:

While Tensor Cores significantly boost NPI workloads, executing

PI kernels requires algorithmic modifications to utilize these com-

ponents, which inevitably increase time complexity [9]. To address

these limitations, we design RTPU to provide native support for both

NPI and PI kernels, as shown in Fig. 2. This approach is driven

by three key insights: Insight 1 (I1): The computation and data

layout transformation kernels in NPI and PI follow similar dataflows.

For example, BConv defined in Eq. (2) primarily involves modular

multiplication between the base table matrices and the polynomial

matrices [11], akin to GEMM in NPI. This similarity allows for

significant sharing of interconnects among processing elements (PEs).

These interconnects occupy a substantial portion of chip area [11].

Insight 2 (I2): The high-bitwidth modular arithmetic units used in PI

can be decomposed into a series of low-bitwidth integer units that are

compatible with NPI. Insight 3 (I3): Both NPI and PI accelerators

are dominated by a large amount of on-chip memory, facilitating

silicon reuse across tasks with different privacy requirements. As a

result, our RTPU efficiently fuses NPI and PI, maximizing the reuse

of interconnects, compute units, and memory resources.

III. RTPU ARCHITECTURE AND SCHEDULER

A. Overview

We propose RTPU, a versatile system designed to perform both

plaintext-based NPI for normal users and ciphertext-based PI for

privacy-sensitive users. The RTPU architecture (see §III-B) comprises

three key components: i) a multi-mode RTC accelerating diverse NPI

and PI kernels, ii) a hybrid parallelization mechanism reducing kernel

latencies and enhancing hardware utilization, and iii) memory and
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NoC designs optimized for NPI/PI data access and communication

patterns. Guided by a unified performance model, the kernel group-

based RTPU scheduler (see §III-C) operates in two stages: i) an

offline optimization stage generating multi-version configurations,

and ii) an online scheduling stage dynamically allocating resources

and selecting configurations for all tasks.

B. Hierarchical RTPU Architecture

Fig. 3 illustrates the proposed RTPU architecture, which consists

of RTC clusters, a shared buffer, and HBM controllers. These

components are hierarchically interconnected through intra-cluster

and inter-cluster network-on-chips (NoCs). The subsequent sections

elaborate on the RTC design, RTPU-specific kernel parallelization

mechanism, and on-chip memory and NoC constructions.

1) Single Core Design: As depicted in Fig. 3(c), an RTC com-

prises a controller, an NoC interface, a PE array (PEA), a data layout

transformer (DLT), and a local buffer. Additionally, the miscellaneous

units encompass components dedicated to NPI such as activation units

[21], and those dedicated to PI like PRNG generators [11]. Both

the PEA and DLT are highly configurable, playing crucial roles in

efficiently executing NPI and PI kernels.

PEA: As illustrated in Fig. 4(a), the 2D PEA, consisting of

nrow rows and ncol columns, is designed to handle all essential

computation kernels detailed in §II-B, namely GEMM, (I)NTT,

BConv, and EWE-MM/MA. Notably, existing reconfigurable compu-

tation units [27], [28] provide only partial support for these kernels.

The proposed inter-PE topology efficiently merges three demanded

inter-PE dataflows: SIMD, systolic array, and butterfly network (I1).

To cater to the SIMD-friendly dataflow for EWE, the PEA can be

divided into ncol SIMD units chained via horizontal links, with

each unit containing nrow lanes. This allows multiple EWE kernels

to be mapped onto the array and executed in a pipelined manner.

To further satisfy the high bandwidth requirement of SIMD, we

utilize a data scatter&gather network capable of unicasting nrow

operands to or collecting nrow results from PEs in each column per

cycle. Additionally, horizontal and vertical links are used to support

orthogonal data transmissions in systolic arrays [21] for GEMM and

BConv. These kernels can also leverage the data scatter&gather
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network to minimize stalls caused by PE data loading and stor-

ing. For implementing the 2nrow-point butterfly network required

by (I)NTT, diagonal links are added to the first log
2
2nrow PE

columns. Notably, the NTT decomposition involves twisting steps, i.e.

element-wise modular multiplications, between executions of smaller

(I)NTT kernels [11]. Therefore, additional columns of tailored

PEs (TPEs), with the logic for butterfly operations removed, are

incorporated. Each TPE performs one modular multiplication per

cycle, necessitating two columns to match the throughput of the

butterfly network. Previous approaches employ bidirectional butterfly

networks to support both NTT and INTT, resulting in considerable

area overheads [11]. Instead, our PEA consistently uses bit-reversed

input and output orders, which are achieved through hardwired

order reversing in the last two columns. This adjustment enables a

unidirectional design, effectively reducing the inter-PE links needed

by the butterfly network by half. (I)NTT can also reuse the data

scatter&gather network to load twiddle factors.

We further design a multi-mode PE that supports both tensor and

polynomial ring algebra. Tensor operations typically use low-bitwidth

integers, whereas polynomial ring operations require at least 28-

bit modular arithmetic [7]. In this paper, we use 8-bit precision

for NPI due to its widespread adoption [14], and 32-bit precision

for PI, aligning with the NPI bitwidth and following precedents in

[25]. Fig. 5(a) illustrates that each PE is organized into 4 × 12
slices, each containing an 8-bit integer multiplier and two 16-bit

integer adders ( I ). The adders can also be configured as subtractors.

By dynamically orchestrating these slices through configurable data

paths, the proposed PE seamlessly switches between two forms:

tensor PE and ring PE (I2). As shown in Fig. 5(b), when functioning

as a tensor PE for GEMM, its slices operate independently in MAC

mode ( 1 ). Each slice cascades two 16-bit adders to construct a

32-bit adder, performing 8-bit multiplication and accumulation with

operand forwarding. Consequently, the PE acts as a 4 × 12 output-

stationary sub-systolic array, cooperating with the global systolic

array dataflow of PEA. Note that other computation dataflows, such as

input and weight stationary, can be realized by changing connections

between inputs and computation units [29]. As depicted in Fig. 5(a),

to construct a ring PE, we aggregate low-bitwidth multipliers and

adders distributed in slices step by step. Initially, 32-bit multipliers

are created by combining sixteen 8-bit multipliers and twenty-four

16-bit adders across 4 × 4 slices using the schoolbook method

( II ). For our PE design, sophisticated methods such as Karatsuba

multiplication are undesirable due to their marginal resource savings

[30]. By cascading the remaining 16-bit adders in slices, we also

obtain 32-bit adders/subtractors. With these 32-bit integer units, we

further form 32-bit modular arithmetic units including the Barrett

reduction-based multiplier1 [31] ( III ), 1/2 multiplier ( IV ), adder ( V ),

and subtractor (omitted here). Ultimately, the versatile ring PE ( VI ) is

realized with these components. As shown in Fig. 5(b), by setting up

corresponding data paths through multiplexers, it can switch between

five PI kernel modes: 2 MMAC for BConv. Each PE performs 32-bit

modular multiplication and accumulation, with the entire PEA using

the systolic array dataflow for modular multiplication between base

table and polynomial matrices. 3 / 4 CTB/GSB for NTT/INTT. Each

PE performs a Cooley-Tukey (CT)/Gentleman-Sande (GS) butterfly

operation. We adopt a compact design to avoid overheads of pre-

processing and post-processing in negative wrapped convolution-

based NTT [28]. The entire PEA is organized as the butterfly network

dataflow. 5 / 6 MM/MA for EWE-MM/EWE-MA. Each PE acts as a

32-bit modular multiplier/adder, and the PEA employs the SIMD

dataflow. To minimize area overheads, TPEs remove unnecessary

circuits required solely for CTB and GSB modes. Notably, our method

is general and can easily adapt to other bitwidth settings.

Reusing PEAs across NPI and PI raises concerns regarding

resource utilization. For GEMM, the PEA’s equivalent systolic array

size is 4nrow ×12ncol. For (I)NTT, the butterfly network structure

requires ncol − 2 = log
2
2nrow [24]. By judiciously sweeping

candidate parameters (see §IV-B4), we set nrow = 32 and ncol = 8
to balance the efficiencies of NPI and PI. The size of the resulting

RTC is significantly smaller than the computation units used in prior

FHE accelerators, which have 256 lanes [7], [11]. This necessitates a

multi-core design (see §III-B2) for performance scaling. Additionally,

it renders the canonical 2D decomposition method [25] unusable for

the common N = 216, leading to the adoption of 3D NTT [23].

DLT: The proposed DLT executes all essential data layout trans-

formation kernels delineated in §II-B, namely Perm, Trans, and

Auto. Initially, Perm is converted into a series of 8-bit Trans, as

outlined in [32]. We then integrate 8-bit Trans, 32-bit Trans, and

32-bit Auto into a vectorized swapping network that utilizes 2nrow

lanes to meet the throughput requirements of (I)NTT computations

on the PEA. Our design unifies these kernels through two innovations:

i) a modified swapping order and ii) low-bitwidth subnets (I1, I2).

To align with the network topology, the DLT shown in Fig. 4(b)

employs a bottom-up quadrant swapping strategy for Trans using

multiplexers and buffers, which is contrary to the top-down method

1It actually introduces integer units with non-uniform data widths, such
as 32 bits and 33 bits [10]. This can be addressed by using 9-bit multipliers
and 17-bit adders in specific slices, omitted here for simplicity.
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used in [25]. For example, transposing an 8 × 8 matrix proceeds

in three pipelined stages: quadrant swapping first on sixteen 2 × 2
sub-matrices (Stage 1), then on four 4 × 4 sub-matrices (Stage 2),

and finally on the entire 8 × 8 matrix (Stage 3). Auto execution

follows [11], where quadrant swapping is guided by precomputed

control signals derived from rotation amounts. Additionally, to ac-

commodate varying data widths, the network can be partitioned into

four independent 8-bit subnets for 8-bit Trans in NPI, and combined

into a 32-bit monolithic network for 32-bit Trans and Auto in PI.

2) Multi-Core Parallelization: RTPU integrates numerous RTCs

to deliver performance on par with dedicated FHE accelerators,

unlocking extensive parallelization opportunities. As shown in Fig.

6(a), it achieves intra-kernel parallelization by partitioning a kernel

across multiple RTCs and executing all portions concurrently. For

NPI kernels, input tensors are evenly split along their axes. To

minimize communication between partitioned PI kernels, we use

coefficient-based partitioning for BConv and limb-based partitioning

for others [33]. However, the RTPU architecture faces limitations

with solely intra-kernel parallelization. The primary drawback is the

underutilization resulting from the mismatch between the limited

parallelism of individual kernels and the abundance of small RTCs.

For example, executing Auto with 8 limbs results in 50% idle cores

when 16 RTCs are assigned. Additionally, the sequential execution of

kernels with data dependencies necessitates a communication process:

producer RTC→shared buffer→consumer RTC. This imposes high

bandwidth and capacity pressure on the shared buffer. To address

these issues, RTPU supports inter-kernel parallelization by mapping

multiple kernels to RTCs simultaneously and creating a fine-grained

pipeline. Specifically, NPI kernels are pipelined at microbatch gran-

ularity [26]. Most PI kernels use limb-based granularity. However,

BConv requires all limbs rather than just one, preventing it from

leveraging inter-kernel parallelism and forcing it to wait until the

producer kernel completes. As illustrated in Fig. 6(b), the five-stage

pipeline reads and writes the shared buffer at the beginning and end,

significantly reducing intermediate buffer accesses. Notably, intra-

kernel parallelization remains necessary to balance the latencies of

stages for optimizing pipeline efficiency. For instance, 1 EWE-MM is

allocated two PEAs, each acting as an nrow-lane SIMD, to match the

2nrow throughput of other kernels. The RTPU scheduler incorporates

both intra-kernel and inter-kernel parallelization to reduce kernel

latencies and enhance resource utilization.

3) Memory and NoC Constructions: The on-chip memory is

efficiently shared between NPI and PI by exploiting their similar

data reuse patterns and a configurable multi-bank structure (I3).

The global shared buffer is capable of prefetching input data that

exceeds the capacities of local buffers, which include layer weights

for NPI and evaluation keys for PI. Within each RTC, the local buffer

enhances data reuse by storing tiled weights and feature maps for NPI,

as well as tiled limbs for PI. We further organize the local buffer into

8-bit banks. When executing PI kernels, it combines every four banks

into a 32-bit bank to match the bitwidth of PEA and DLT. Moreover,

it can be bypassed to directly chain multiple RTCs, as depicted in

Fig. 4, eliminating redundant local buffer accesses.

As depicted in Fig. 3(b), our design employs a fat tree-based

intra-cluster NoC that efficiently supports two essential communi-

cation patterns for NPI and PI workloads: i) unicast and multicast

traffic generated by tensor and polynomial partitioning in intra-

kernel parallelization [11], [26], and ii) peer-to-peer communication

necessary for pipeline construction in inter-kernel parallelization.

Moreover, compared with the commonly used mesh topology offering

placement-sensitive inter-RTC bandwidth, the inherent symmetry of

fat tree topology provides a location-agnostic bandwidth guarantee

[34]. This architectural property eliminates the need for complex

placement optimization [35] and enables straightforward logical RTC

mapping during online scheduling (see §III-C2).

C. Two-Stage RTPU Scheduler

RTPU scheduler dynamically allocates resources including the

RTC regions, off-chip bandwidth, and shared buffer sizes for both

NPI and PI tasks. Existing methods [12], [13] rely on tensor-specific

performance models that are unable to characterize the polynomial

ring-based computations in PI. Moreover, they are limited to intra-

kernel parallelization and thus fail to leverage the extensive paral-

lelization opportunities offered by massive RTCs. To overcome these

shortcomings, we unify plaintext-based and ciphertext-based NN

models into directed acyclic graphs (DAGs), where nodes and edges

represent kernels and data dependencies, respectively. To enable inter-

kernel parallelization, each DAG is sequentially executed at the

granularity of a kernel group comprising up to ngrp kernels that

create the pipeline. We then develop a unified performance model

and two-stage scheduling strategy as detailed below.

1) Unified Performance Model: By overlapping computation and

memory access, we model the execution time of the i-th task as the

maximum of computation time (cti) and memory access time (mti),
achieving a balance between estimation accuracy and implementation

complexity. For its j-th kernel group, due to the pipelined execution

of kernels, the computation time ctij is calculated with:

ctij =

ngrp∑

k=1

ctij,k

︸ ︷︷ ︸

Latency of initialization

+(niter − 1) ·max({ctij,k}1≤k≤ngrp)
︸ ︷︷ ︸

Latency of subsequent iterations

(3)

where ctij,k denotes the k-th kernel’s computation time. For NPI

kernels, niter represents the microbatch count, whereas for PI kernels

(excluding BConv), it refers to the number of limbs. The computation

time of a vectorized PI kernel depends on three factors: input

polynomial dimension, hardware unit configuration, and degree of

intra-kernel parallelization. For example, an Auto kernel with l-limb

inputs requires Nl/2nrow/nDLT cycles, where these terms represent

the polynomial coefficient count, DLT lane quantity, and number

of allocated DLTs, respectively. Both GEMM and BConv utilize the

systolic array dataflow, with their latencies modeled according to

[12]. Using Eq. (4), memory access time estimation focuses on off-

chip data transfers, owing to the substantial disparity between off-

chip and on-chip bandwidth. For each kernel group, its external

data comprises two components: intermediate results exchanged with

the shared buffer at the pipeline’s initial and final stages, and input

operands such as layer weights for NPI and evaluation keys for PI.

The equation indicates that if the volume of external data (datai
j)

exceeds the capacity of the task’s designated shared buffer (sbufi),
off-chip transmission occurs under the assigned bandwidth (bwi).
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mtij = max (datai
j − sbufi, 0)/bwi (4)

2) Scheduling Strategy: To minimize the hardware complexity of

the online scheduler, we pregenerate multiple configuration versions

offline and switch to the appropriate one at runtime [13].

Offline Optimization: As illustrated in Fig. 7(a), the input DAG

initially undergoes rule-based kernel fusion to enhance hardware

utilization. Certain kernel combinations, such as two consecutive EWE

kernels, are fused for intra-PEA pipelining. Also, kernels utilizing

PEAs (e.g. NTT) and DLTs (e.g. Trans) are fused into the same

RTC. The DAG is then flattened into a sequence through depth-first

topological sorting to minimize the memory footprint of intermediate

results. This is crucial for PI which generates large intermediate

polynomials [7]. The sequence is further split into multiple kernel

groups of fixed size ngrp, with an exception for BConv, which

lacks inter-kernel parallelism and is grouped individually to prevent

pipeline stalls. Although resource-aware splitting [36], [37] can

improve performance, it is unsuitable for the multi-tenant RTPU

due to its inconsistent kernel groups across configuration versions,

requiring complex rollback mechanisms for version switching. The

final stage enumerates all possible RTC quantities and generates

corresponding configuration versions. For each group, the degree of

intra-kernel parallelization, i.e. the number of RTCs assigned to each

fused kernel, is adjusted to balance pipeline stages. Consequently,

each partitioned kernel is assigned to a logical RTC. To avoid

resource over-provisioning, versions with marginal computation time

improvements are pruned, enabling power-gating of unused RTCs.

For example, tasks #1 and #2 in Fig. 7(a) use up to 80 and 10 RTCs,

respectively.

Fig. 7(a) illustrates the detailed structure of configuration tables.

Each entry corresponds to a kernel group, specifying the fused and

partitioned kernels contained in each logical RTC. It also outlines

the communication between DLTs and PEAs within the same logical

RTCs or across multiple ones. To minimize the overhead of runtime

performance estimation, each entry includes the precomputed remain-

ing computation time and data volumes of subsequent kernel groups,

calculated by summing ctij in Eq. (3) and datai
j in Eq. (4). Although

the multi-version approach results in bloated configuration files, we

address this issue by storing them in off-chip memory and loading

only the active table entries onto the chip.

Online Scheduling: As shown in Fig. 7(b), the task queue main-

tains each task’s slack time before the QoS deadline, a pointer to

multi-version configurations, and the next kernel group ID. Notably,

the online scheduling does not assume specific task arrival patterns

and relies solely on the task queue status. Details are provided below.

Resource reallocation occurs when new inference tasks arrive or

existing tasks complete, adjusting three critical resources: RTCs, off-

chip memory bandwidth, and shared buffer. The scheduler first iden-

TABLE I
DESCRIPTION OF RTPU PARAMETERS.

Core Configuration

PEA/DLT Dimension nrow = 32, ncol = 8

Local Buffer Size 1 MB

System Configuration

# RTC 4 clusters, 16 RTCs each

Shared Buffer Size 128 MB

NoC
Crossbar/Fat tree for inter-/intra-

cluster NoC, 256-byte links

Off-Chip Memory Bandwidth 2 HBM2 [38], 500 GB/s each

Operating Frequency 1 GHz

Scheduler Setting ngrp = 6

tifies the minimum RTC requirement for each task by sequentially

checking configuration versions until finding one with a remaining

computation time less than the slack time. If RTCs are insufficient,

tasks are allocated their minimum required RTCs in the order of

urgency scores, defined as the ratio of remaining computation time

to slack time. Tasks failing to receive RTCs are suspended. If there are

sufficient RTCs, surplus cores are distributed to all tasks in proportion

to their urgency scores. After quantitative allocation, RTC regions are

decided using a zig-zag pattern. This simple heuristic prioritizes high-

bandwidth local cluster and minimizes intra-cluster communication

hops by positioning same-task RTCs under their nearest common

ancestor routers in the fat tree topology. Off-chip memory bandwidth

is then allocated proportionally to the peak demand of each task,

derived from the ratio of remaining data volume to slack time. Next,

the scheduler obtains the minimum shared buffer requirements based

on precomputed remaining data volume and accumulated Eq. (4),

where the max operation is relaxed to simplify solving. Shared buffer

sizes are decided in a manner similar to the RTC allocation. At the

end of resource reallocation, running tasks release their occupied

RTCs and shared buffers once current kernel groups complete. For

tasks with modified RTC quantities, new configuration table entries

also need to be loaded. Active tasks then execute their subsequent

kernel groups under the adjusted resource allocations.

Logical RTC mapping is triggered each time a kernel group entry in

the configuration table executes. As shown in Fig. 7(b), logical RTCs

are initially mapped to the allocated physical region, still following

the zig-zag pattern. The relevant registers of PEAs and DLTs are then

configured to execute their designated kernels. To further establish

inter-RTC communication, NoC interfaces in the RTCs are set up to

align the indices of logical and physical RTCs. Finally, the slack time

and next group ID in the task queue are updated.

IV. EVALUATION

A. Experimental Setup

Hardware Implementation. We set parameters of RTPU as out-

lined in Table I to align with the performance of contemporary

FHE accelerators [7]. We implement the RTC using the ASAP7

7nm predictive process design kit [39], with synthesis and place-

and-route performed by Cadence Genus and Cadence Innovus. The

NoC overheads are modeled using DSENT [40]. The peak power of

RTPU is estimated based on usage cases that activate all components.

Benchmark Workloads. We select five classic NN models from

prior studies [7], [41]: MLP, LeNet-5, ResNet-20, SqueezeNet and

MobileNet. Input image sizes are configured as 224×224 for NPI

and 32×32 for PI. The NN compiler [42] converts these models into

NPI DAGs, while the FHE compiler [41] produces PI DAGs at 128-

bit security level (polynomial degree N = 216). We further construct

two types of workloads: single workloads running tasks exclusively

on the entire accelerator, and mixed workloads with randomized task
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arrivals to simulate concurrent servicing. For mixed workloads, the

total number of tasks is fixed at 106, and we use varying PI-to-NPI

task ratios to model diverse user distributions. QoS constraints for

NPI tasks are set directly according to [43], whereas those for PI

tasks are scaled based on their slowdown.

Baseline Architectures. We choose TPU [6] and SHARP [7]

as baseline accelerators for NPI and PI, respectively. Given the

significant resource disparities between the original TPU and RTPU,

we maintain identical core quantities and I/O interface configurations.

To model the dedicated accelerator-based deployment, we create a

heterogeneous accelerator platform (HAP) integrating a TPU chip and

a SHARP chip [7]. To ensure a fair comparison, we adjust the number

of cores in TPU and the number of clusters in SHARP, reducing

the area of both chips to nearly half that of RTPU. In addition, to

compare against general-purpose hardware, we employ the NVIDIA

A100 GPU with the CKKS implementation from [9].

Baseline Schedulers. We use the time-sharing PREMA [12] and

spatial-sharing Planaria [13]. Their performance models are extended

with the methods illustrated in §III-C1 to support PI kernels.

Simulation Infrastructure. We develop a cycle-accurate simulator

in Python, which encompasses latency and throughput models of

computation units, buffers and NoCs of RTPU.

Evaluation Metrics. To assess reconfiguration efficiency, we re-

port: i) the area and power overheads of control logic, and ii) the area

proportion of hardware units shared between NPI and PI. We consider

global average latencies of tasks, measuring each task’s latency from

arrival to completion. Following [9], we quantify GPU utilization with

SM occupancy. Notably, this single metric may not directly correlate

with the achieved throughput [44]. For other architectures, utilization

is assessed through the area proportion of active computation units.

Energy efficiency is quantified using the energy-delay product (EDP).

B. Experimental Results

1) Implementation Results: Fig. 8(a) presents the RTC layout. The

entire RTPU achieves 177.63 mm2 area and 164.74 W peak power.

The area and power breakdowns shown in Fig. 8 (b) and (c) highlight

two key points: i) The control logic for RTPU reconfiguration in-

curs low overheads. PEA-Rcfg. and DLT-Rcfg., involving additional

multiplexers and registers within PEAs and DLTs, constitute merely

3.42% of total area and 4.93% of power consumption. This is minor

compared with the significant flexibility they offer. ii) The RTPU

achieves high silicon reuse between NPI and PI. General units

like buffers and NoCs dominate the overall area. For a PE, all 48

multipliers and 96 adders are used in the tensor PE configuration,

while 48 multipliers and 94 adders are repurposed for the ring PE

configuration. Thus, nearly the entire PEA can be reused between

NPI and PI. Moreover, the DLT is completely shared by NPI and

PI kernels. Components used solely by NPI/PI, i.e. NPI/PI-dedicated

miscellaneous units, only account for 2.57% of the area, allowing

97.43% of hardware resources to be reused between NPI and PI.

2) Architecture Comparisons: First, we compare different archi-

tectures under single workloads to understand their performance gaps,

as shown in Fig. 9. On average (geometric mean), RTPU exhibits
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only 1.03× higher latency than the NN-specific TPU due to their

similar systolic array dimensions (128× 96 versus 128× 128). For

smaller models like MLP and LeNet-5, the larger systolic arrays in

TPU are underutilized, resulting in lower performance density. For PI

tasks, RTPU achieves an average of 1.06× higher latency and 0.95×
lower performance density compared to the FHE-specific SHARP.

This gap arises from two factors: i) SHARP’s 256-lane (= 2
√
N for

2D NTT) configuration fully utilizes its NTT units, while RTPU’s 64-

lane ( ̸= 3
√
N for 3D NTT) design leaves 8.33% of the PEA and DLT

lanes idle during (I)NTT execution. ii) SHARP uses heterogeneous

computation units like NTT and BConv units, which lead to inferior

global utilization with imbalanced kernel distributions. In contrast,

RTPU’s homogeneous RTC design allows flexible core allocation,

mitigating the disadvantages noted in factor i). RTPU outperforms

the GPU across all models, with average latency/performance density

improvements of 2.73×/12.71× for NPI tasks and 47.17×/219×
for PI tasks. While the GPU incorporates Tensor Cores to optimize

tensor computation, it lacks native support for modular arithmetic

and NTT dataflow [9], [45]. This limitation necessitates algorithmic

modifications, making it less efficient in handling polynomial rings.

Second, we evaluate architectural flexibility using mixed workloads

simulating real-world deployments. As shown in Fig. 10, RTPU

delivers an average speedup of 1.44× over HAP. Despite incorpo-

rating optimized accelerators (TPU and SHARP), HAP suffers from

resource idling when handling imbalanced NPI and PI tasks due to the

architectural divergence between these components. Consequently, its

performance initially improves but then degrades as the proportion

of PI tasks increases, a trend following the utilization curve. Given

the three-order-magnitude latency gap between performing NPI on

TPU and PI on SHARP, HAP reaches peak performance when PI

tasks occupy 0.08% of the total tasks. Regardless of the TPU/SHARP

area ratio, HAP consistently exhibits low utilization with mismatched

NPI and PI tasks, fundamentally limiting its adaptability to uncer-

tain user distributions. Furthermore, RTPU achieves an average of

20.62× speedup over GPU. While GPU maintains high utilization
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(over 90%), it suffers from inherent computational inefficiencies,

particularly for PI-dominated workloads. Notably, RTPU utilization

increases with the PI task proportion. This occurs because PI kernels

(with limb-based partitioning) leverage RTCs more efficiently than

NPI kernels (with tensor-based partitioning) under our hardware

parameters and NN model settings. To illustrate, when executing

median-size kernels (e.g. NTT with 20-limb and GEMM with (288×
11664, 11664× 92)-tensor inputs) and increasing the allocated RTC

quantity from 1 to 10, PI maintains an average PEA utilization of

0.83, significantly higher than the 0.43 utilization achieved by NPI.

Third, we compare energy efficiency of different architectures

using mixed workloads, with results illustrated in Fig. 11. Although

RTPU consumes slightly more energy than HAP due to its reconfig-

uration logic, its significant latency reduction results in an average

of 1.30× lower EDP. Additionally, RTPU substantially outperforms

GPU in both energy and latency, improving EDP by 580× on average.

Based on the above evaluations, we conclude that the RTPU ar-

chitecture demonstrates comprehensive advantages in performance,

flexibility, and energy efficiency over both dedicated accelerators

and general-purpose hardware.

3) Scheduler Comparisons: We compare different scheduling

strategies using mixed workloads, with results depicted in Fig. 12.

RTPU scheduler achieves average speedups of 3.27× and 1.79× over

PREMA and Planaria, respectively. PREMA’s kernel-wise strategy

partitions each kernel across all RTCs for sequential execution.

Its maximized intra-kernel parallelization leads to small operand

sizes, resulting in severely underutilized PEAs and DLTs (utilization

below 21.24%). Planaria mitigates this by running multiple tasks

concurrently, reducing intra-kernel parallelization by assigning fewer

RTCs per task. Nevertheless, this approach is still fundamentally

constrained to kernel-wise scheduling, which prevents it from fully

exploiting the abundant RTCs in RTPU, especially under insufficient

concurrent tasks. Our RTPU scheduler operates at the granularity of

kernel groups, strategically reducing intra-kernel parallelism require-

ments through inter-kernel pipelining. Therefore, we conclude that

prior schedulers are ill-suited to the RTPU architecture, whereas

our approach enables significantly improved resource utilization.

4) Design Space Exploration: We first analyze the RTC size

parameter nrow under fixed area budgets for the RTCs and NoC.

Fig. 13(a) shows that nrow = 32 yields optimal global average

latency for RTPU, rendering the canonical setting of nrow = 128
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Fig. 13. Comparisons of different (a) nrow and (b) ngrp, where their results
are normalized to the counterparts of nrow = 32 and ngrp = 6, respectively.
Both (a) and (b) are conducted under mixed workloads containing 0.08% PI
tasks, ensuring balanced execution time of NPI and PI kernels.

[7] suboptimal. Smaller nrow values (i.e. 8 and 16) create excessive

RTCs, making the system communication-bound due to the limited

scalability of the fat tree-based intra-cluster NoC [46]. Note that RTC

bandwidth requirements differ when executing NPI versus PI kernels,

with NPI tasks undergoing a more drastic change in communication

latency. Conversely, larger nrow values (i.e. 64 and 128) result in

fewer RTCs. They significantly alleviate NoC pressure but shift the

system bottleneck to computation. NPI computation latency increases

because GEMM achieves diminishing utilization on larger systolic

arrays. PI tasks instead show fluctuating computation latency, which

is caused by the decomposition of (I)NTT kernels (see §II-B2).

The utilization of RTC varies depending on the mismatches between

its lane number (2nrow) and decomposed kernel sizes (NI/NJ/...).
Overall, we set nrow to 32 to achieve a computation-communication

trade-off for both NPI and PI kernels.

We then study the scheduler parameter ngrp that controls the

maximum kernel group size. As depicted in Fig. 13(b), both NPI

and PI tasks initially experience performance improvements as ngrp

increases. This is because running multiple kernels concurrently alle-

viates the underutilization of computation units caused by excessive

intra-kernel parallelization. However, these benefits diminish when

ngrp continues to grow. Note that for NPI, the sizes of layers within

NN models vary significantly. Balancing pipeline stages becomes

more difficult for larger kernel groups, since each layer requires at

least one PEA/DLT regardless of its size. This constraint introduces

substantial pipeline bubbles and latency penalties when ngrp exceeds

6. For PI tasks, the actual kernel group sizes also depend on BConv

(see §III-C2), which frequently appears and mitigates the effects of

further increasing ngrp. Therefore, we set ngrp to 6 to strike a

balance between intra-kernel and inter-kernel parallelization.

V. DISCUSSION AND CONCLUSION

A. Applicable Scenarios

After considering the benefits and overheads, we believe that RTPU

is ideal for scenarios meeting three conditions: i) privacy-sensitive

users mandating FHE for extreme data security, ii) equally important

NPI and PI demands with temporal variations, and iii) tolerance for

small performance and power overheads. In rare situations where

these conditions are not met, the programmable architecture with

high generality or dedicated accelerators optimized for performance

and power efficiency might be necessary.

B. Conclusion

In this paper, we rethink the accelerator design paradigm for

coexisting NPI and PI in data centers. We introduce the reconfigurable

RTPU that bridges the gap between tensor-based plaintext and

polynomial ring-based ciphertext computations by leveraging their

inherent similarities. The proposed architecture delivers performance

on par with dedicated accelerators while offering higher flexibility

and incurring minor overheads. Furthermore, the scheduler efficiently

allocates resources to tasks with varying privacy requirements.
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