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Abstract—Networks-on-chip (NoCs), as the communication
infrastructure in many-core processors, has demonstrated
remarkable power consumption along with the technology scal-
ing. However, due to the temporal and spatial heterogeneity of
the on-chip traffic, one critical problem is that the NoC power
consumption cannot effectively adapt to the variation of its traf-
fic intensity, also known as localized power adaptation, hence
yielding a suboptimal power efficiency. Prior approaches either
resort to the over-provisioned NoC design or coarse-grained
bandwidth scaling to partially alleviate excessive power consump-
tion brought by the traffic temporal or spatial heterogeneity.
While in this paper, we propose a novel NoC architecture called
Shuttle NoC (ShuttleNoC) to address this challenge. It lever-
ages the link reconfiguration to enable flexible packet traversing
between multiple subnetworks, and specialized punch lines to
accelerate latency sensitive traffic. With the support of the dedi-
cated power adaptation mechanisms, it is shown in the evaluation
that the proposed ShuttleNoC architecture could effectively tackle
the power and performance tradeoff and significantly boost the
power efficiency compared with the state-of-the-art baselines.

Index Terms—Many-core processors, networks-on-chip
(NoCs), power management, shuttle networks-on-chip
(ShuttleNoC).

I. INTRODUCTION

ALONG with the rapid growth of chip integration, power
consumption has become a first-order design constraint

in modern many-core processors. Ever-growing power con-
sumption not only leads to an increased energy and packaging
costs, but also results in high die temperatures that may, in the
worst case, jeopardize the chip performance and reliability.

The power consumption of a many-core processor can be
roughly broken down into the computation power by cores
and the communication power by networks-on-chip (NoCs).
Recent studies show that the power consumption of NoC could
reach as high as 80 Watts, a large slice of the total chip
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power, under 16-nm technology node for a mesh connected
multicore [1]. The same trend also emerges at other commer-
cial designs, i.e., Sun’s “Niagara” processor, the interconnect
takes nearly 17% of the total power consumption [2]; this per-
centage reaches up to 28% in the “Intel80” processor [3].
In future many-core era, the NoC power consumption is
expected to increase more rapidly [4]–[6], because most com-
putation resources are restricted inactive due to the dark silicon
problem. However, the communication infrastructure must be
kept alive to serve the memory accesses, so the proportion of
its power consumption is enlarged that is even on par with its
computation counterpart [7]–[10].

Compared with the computation power which could be
regulated with many core-level techniques such as dynamic
voltage and frequency scaling (DVFS), communication power
is more sophisticated to be managed, and without power effi-
cient communication infrastructures, we have little chance
to hit the power efficiency frontier at the chip level. The
major bane of optimizing communication power stems from
achieving localized power adaptation, which means each node
(router + link) should deliver proportional power quota in
accordance with its local traffic intensities during workload
executes [5], [11]–[14]. This requirement, though intuitively
simple, is hard to accomplish, given the sporadic traffic distri-
butions in not only temporal, but also spatial dimension. Worse
still, the on-chip traffic intensity may vary at the nanosec-
onds magnitude [15] and across unexpected locations of the
chip [16]–[18]. Chip designers cannot easily customize the
NoC power consumption to adapt such variations.

To address this challenge, recent studies aim at reducing the
power of the major components like on-chip routers and links
by deploying DVFS or power gating, clocking gating in cer-
tain voltage and frequency islands (VFIs) [19]–[21]. Although
deploying these power control schemes in the network would
substantially reduce the power consumption of the entire NoC,
careless regulating the power states of these components may
also severely malign network or even system performance. In
specific, applying DVFS in the VFIs relies on the complex syn-
chronization at the VFI boundaries. In large-scale many-core
processors running multiprogram workloads, communication
traffic will inevitably traverse considerable amounts of VFIs
to the target memory controller or the shared last level cache,
which will introduce remarkable synchronization latency [19]
limiting the headroom of network performance.

On the other hand, some approaches [6], [12], [22]–[24]
propose to use power gating to the on-chip routers to avoid the
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frequency switches between VFIs, as a way to circumvent the
overhead of frequent cross-domain synchronizations. However,
hasty activating or shutting down routers on the data path
will turn the previous regular network topology into irregu-
lar shapes, also known as the connectivity problem. In-transit
packet must detour the sleeping routers that not only increases
the distance to the destination, but also increases the complex-
ity of the underlying routing mechanism. It requires that the
routing must be reconfigurable since the candidate routers to
be deactivated are highly unpredictable that could exist at any
location of the chip. Moreover, activating a sleepy router is not
instantaneous. Traffic must wait at the upstream router for the
downstream router to be completely activated [23], and will be
inflicted with enormous contention delay. The same problem
also happens at the network injecting and receiving phase, as
the local router is disconnected from the local memory sub-
system due to power gating. This scenario is more frequently
encountered in traditional NoC designs, because no alternative
path could be provided to reach the target memory system,
which also means the deployment of power gating becomes
more difficult in these architectures.

Since effective power adaptation for the NoC is criti-
cal for achieving an optimal system-level power efficiency,
in this paper, we propose a novel NoC design, termed as
Shuttle NoC (ShuttleNoC), and the associate power adapta-
tion mechanisms to address the aforementioned challenges
in tandem. First, apart from traditional “one-case-for-all” or
multiple NoC (MultiNoC) design [5], [25]–[28], ShuttleNoC
is rearchitected by organizing several implicit subnetworks
with equal bandwidth. It is more amenable to power gat-
ing without compromising the connectivity of the network.
Second, ShuttleNoC is able to timely adapt application run-
time bandwidth demands and operate itself accordingly by
taking both temporal and spatial traffic heterogeneity into
account. By monitoring traffic intensity at each node, sub-
router and its associate links could be powered on or off to
implement the localized power adaptation without losing con-
nectivity or affecting other nodes in the vicinity. Packets in
a subnet are allowed to shuttle into the downstream active sub-
nets via the specialized link reconfiguration module (LRM),
rather than waking up the gated downstream subrouter in the
same subnet to proceed. Therefore, a majority of subrouters
do not need to stay alive to serve the scarce traffic. As another
major feature, latency-sensitive traffic has the opportunity to
be accelerated by reserving the dedicated punch lines bridged
between neighbors to avoid the worst-case performance
degradation.

ShuttleNoC could attain optimal power and performance
efficiency, but at the same time, stay free of the issues faced
by the traditional NoC designs. Generally speaking, this paper
makes the following contributions.

1) We propose ShuttleNoC architecture to fulfill local-
ized power adaptation. We leverage our insights from
the weaknesses of the existing heterogeneity-agnostic
NoC designs. By leveraging link flexibility, it avoids the
unnecessary activation of the subrouters, so the tempo-
ral/spatial heterogeneity of the on-chip traffic could be
better accommodated.

Fig. 1. NoC architectures supporting only spatial or temporal heterogeneity
in recently proposed literatures.

2) On top of the ShuttleNoC concept, we present
two canonical microarchitecures: 1) ShuttleNoC-Sparse
(ShuttleNoC-S) and 2) ShuttleNoC-Dense (ShuttleNoC-
D) for different application scenarios. ShuttleNoC-S
and -D have different data path complexity and the
internal scheduling mechanisms. They each have pros
and cons, and could be deployed according to the latency
or bandwidth sensitivity of the running workload.

3) We propose a dedicated power adaptation mechanism
associated with the ShuttleNoC architecture. As the
power subsystem, we design the power-gating and
wakeup policies integrated in the router microarchi-
tecture. It equips ShuttleNoC to react quickly to the
different network conditions like bursty traffic or traffic
already experiencing large delays.

II. BACKGROUND AND MOTIVATION

Heterogeneous communication infrastructure in many-
cores is a widely studied topic in recent literatures. Some
techniques [4], [8], [29], [30] propose to use several different
subnetworks with different voltage and frequency settings to
serve bandwidth and latency-sensitive applications. Although
they achieve obvious performance improvement, fixed band-
width at each node is hard to capture traffic heterogeneity
in a global manner. In order to maintain network connectiv-
ity, Chen and Pinkston [23] proposed a decoupled core-router
injection technique. Instead of waiting for the drowsy router
to be fully activated, it allows the processing element to inject
poised packets into a cyclic bypass path. Thus, blocking delay
is able to be, to some extent, alleviated but at the same time,
the design complexity of the underlying routing is also aug-
mented which is proportional to the scale of the many-core
processors.

Some other prior studies [15] devote to design a hetero-
geneous NoC based on the traffic “spatial” distribution. For
example, in Fig. 1(a), big routers are relatively designed for
boosting network performance by providing a higher band-
width (256 bits), in comparison with small power efficient
routers (64 bits). This design philosophy assumes that the
routers in the central area of the mesh topology will handle
much heavier traffic than those at the boundaries, so a larger
power consumption of big routers is essentially expected to
obtain a proportional performance enhancement. Whereas, on-
chip traffic distribution is never fixed and hotspots may migrate
anywhere in NoC, especially when it handles multiprogram
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Fig. 2. Motivation example. Power adaptation based on local traffic intensity.
In this paper, we term this packet steering as “shuttle.” (a) Waking up a
higher-level router. (b) Packet shuttling into the newly activated router.

workloads. Small routers like R5 and R13 may also encounter
intense traffic while big routers are almost idle. Under these
circumstances, power efficiency will suffer.

At the other end of the spectrum, some solutions aim to
design a configurable NoC to capture the traffic “temporal”
heterogeneity. MultiNoC [5], as a representative, evenly breaks
down the original single NoC into multiple subnetworks (sub-
nets). By deploying power gating, an entire subnet could be
powered on or shutdown according to the temporal traffic vari-
ations, as shown in Fig. 1(b). However, such temporal-oriented
approach ignores the spatial traffic distribution, and is not
a comprehensive solution either. For example, in Fig. 1(b),
there are two subnets with each 64 bits wide. If a traffic flow
intends to traverse from node 5 to node 4 under dimensional
order routing, i.e., XY routing, and subrouter R5 is already
a hotspot, the only solution is to wake up all subrouters along
the path in subnet 2 (R�5, R�6, R�7, R�8, R�4) to serve this
traffic flow, even though subrouters R6, R7, R8, R4 in subnet
1 are sufficient to handle this traffic flow. Hence, this power
management approach degrades the power efficiency of these
nodes.

The temporal/spatial heterogeneity yields different network
demands and power efficiency consequences. Ideally, we
would expect each node’s bandwidth to be in line with its
local traffic intensity. Power management should be capable
to adapt to both temporal and spatial heterogeneity of the
on-chip traffic, rather than either side of them. For exam-
ple, Fig. 2(a) shows a scenario that packets are blocked by
a “hotspot” subrouter. If it could “Wakeup” the “higher level”
subnet at the neighboring node, and steer the congested pack-
ets into the newly activated subrouter, the congestion condition
would be effectively alleviated, just as Fig. 2(b) shows. By
contrast, if an active subrouter is redundant due to the light
traffic condition, we can offload the traffic back into the “lower
level” subnet and control the offloaded subrouter to “Sleep”
state to save power. We term such packet steering between
different subnetworks as “packet shuttle.”

The above description motivates a new network design
that leverages the packet shuttling to elongate router sleeping
cycles and evade the blocking delay on the critical path by
keeping the network connectivity. In the next section, we will
specify the details of the ShuttleNoC concept, the microar-
chitectures and the associate power adaptation mechanisms
enforced.

III. SHUTTLE NETWORKS-ON-CHIP ARCHITECTURE

A. General Concept

In order to achieve the aforementioned packet shuttling,
we need some modifications in terms of the router and
link microarchitecture upon traditional NoCs. The proposed
ShuttleNoC design is shown in Fig. 3, without loss of gener-
ality, we start describing its microarchitecture using a 4 × 4
mesh connected NoC with two subnets. The figure shows
two instances of ShuttleNoC paradigm. Fig. 3(a) shows
ShuttleNoC-S, while Fig. 3(b) shows ShuttleNoC-D. The
packet shuttling is implemented through two hierarchies.

1) At the chip level, apart from temporal-oriented approach,
a particular fraction called LRM is added between neigh-
boring nodes, which makes previously separated subnets
related to each other. The link of a subnet is reachable
to other subnets after reconfigured in LRM.

2) For an individual subrouter, we need additional con-
trol paths connected to the LRM to transmit “shut-
tle requests,” so LRM could reconfigure the links
accordingly and steer the flits to the desired subnet.
But note that the implementation of LRM differs for
ShuttleNoC-S and ShuttleNoC-D, and that is also the
major distinction of the two instances, which will be
specified later.

In specific, ShuttleNoC resolves two power efficiency
limitations associated with previous heterogeneity-agnostic
approaches. First, it eliminates the unnecessary activation of
the subrouters, hence avoiding the over-provisioned power
consumption at the less congested nodes. This benefit, unique
in ShuttleNoC, stems from the flexible link connectivity pro-
vided by the sparse link reconfiguration unit (SRM). Taking
the same packet forwarding example in Section II, only R�5 is
necessary to be activated in ShuttleNoC-S as Fig. 3(a). Packets
could shuttle from R�5 to R6, which is a light-loaded sub-
router (R�6 is still sleeping), and proceed to the destination in
subnet 1. Thus, we have 4 less router activations. For other
passing-by packets, i.e., R1 → R9, R�5 could also be used
for shuttling, leaving R�1 and R�9 at sleeping state. Hence,
the overall power consumption could be reduced significantly.
Second, apart from spatial-oriented approach, the bandwidth
of a node is never fixed but could be dynamically coordinated,
so the traffic spatial variations could be well adapted to further
improve power efficiency.

ShuttleNoC-S divides multiple subnetworks at the node
level, that is, R1 and R�1 belongs to subnet 1 and 2, respec-
tively, while for the ShuttleNoC-D architecture, the difference
is that the subnetworks are divided based on the location of the
node. In particular, R1 and R�1 both belong to subnet 1, but R2
and R�2, however, belong to subnet 2. Packets are endorsed to
shuttle between subnets (R1 → R�5), or in other cases between
routers within the same subnet (R1 → R�3). ShuttleNoC-D
relies on more complex dense reconfiguration module (DRM)
residing on the links to achieve more aggressive power adapta-
tion. The major difference compared to ShuttleNoC-S is that
it allows “shortcuts” to bypass intermediate node(s), to fur-
ther minimize router pipeline delay for the latency-sensitive
traffic. The shortcuts are directly connected via two adjacent
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Fig. 3. ShuttleNoC architecture. We show two instances in ShuttleNoC design paradigm. Both constitute of two subnetworks, and instantiate multiple
LRMs between the consecutive nodes. The two designs differ in LRM and subnetwork division: ShuttleNoC-S differentiates subnets within each node, while
ShuttleNoC-D differentiates each subnet at different nodes.

DRMs, bridged as the express way according to the requests
imposed by the upstream subrouters. Taking the same packet
as an example, in ShuttleNoC-D, R�5 is still the only activated
router to alleviate congestion at R5, but after packets are sched-
ule into R6, it could bypass R7 and reach R8 (Path A), so the
pipeline delays in node 7 is entirely evaded for this packet.
As an alternative, it could also select Path B by steering itself
into R7 and then back to R8, if the virtual channel resources
in R8 are not available right now or other competitive packet
has won the arbitration of using Path A at that time spot.

As an upgraded version of ShuttleNoC, it provides more
flexible data path versatilities to address the low power con-
sumption and the optimal packet latency in synergy. However,
it is also imperative that more complex dense reconfiguration
module must be enrolled to construct the requested data paths,
as well as relatively more complex arbitration mechanisms
handling concurrent shortcut requests. In the next sections, we
will elaborate the microarchitectures of LRMs and the router
implementations with the associate packet steering mecha-
nisms, and how they collaborate to support the localized power
adaptation.

B. Microarchitectures

1) Link Reconfigure Module: As mentioned before, LRM
serving as the key component to achieve packet shut-
tling, has two different instances for ShuttleNoC-S and
ShuttleNoC-D. The detailed implementation of SRM is shown
in Fig. 4. In order to implement packet shuttling, we need
additional control and data paths between the neighboring
nodes. Therefore, SRM is comprised of two strongly coupled
yet cost-effective modules: 1) packet steering and 2) multi-
plexer array each responsible for receiving and arbitrating the
proposed requests and constructing the data paths accordingly.

Fig. 4. ShuttleNoC-S data path configuration, (re)constructed by SRM.

For example, at the east output of R1 in the figure, sub-
router could issue a shuttle request (shuttle_req) for the
destination subnet, i.e., west input of R�2. The data path
is reconfigured by controlling the multiplexer array in the
SRM. According to different enabler combinations, we can
get different subnet connections. In Fig. 4, supposing a packet
intends to shuttle from R1 to R�2, LRM configures the route
as R1 → Nd → Nd→ R�2. Obviously, although we adopt
SRMs on links, it only introduces a negligible power and
area overhead in the architecture.

As for ShuttleNoC-D architecture, the data path is aug-
mented with bi-directional shortcuts, as a way to accelerate
latency-sensitive packets to bypass the intermediate nodes
along its path to the destination. As the major distinction
compared with ShuttleNoC-S, we term the express way as
punch line in this paper, as shown in Fig. 5. The punch line
connects two adjacent DRMs with the same bandwidth as
normal data path, bridging physically segregated nodes at all
four directions. The main benefit brought by such punch line
connection is that the selected packet that has already suf-
fered from long contention delay is provided the opportunity
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Fig. 5. ShuttleNoC-D data path configuration, governed by the DRM. It enables the latency sensitive packets to surf through the express way (bold links in
the figure) and bypass the intermediate nodes. We term these shortcut links as punch line in this paper.

Fig. 6. Details of densely connected LRM (DRM) in ShuttleNoC-D. We
have two more MUXs for punching.

to overtaking other packets, which is conductive to minimiz-
ing the worst-case latency introduced by the traffic hotspots.
Taking the similar example in Figs. 4 and 5 shows three nodes
from the East output of R1 to the West input of R3 and the
punch line allows the packet leaping R2 and reaching R3 in
just one link traversal cycle, evading the contention delays in
R2. We define the punch bypassing one node as short punch.
Besides, as can be imagined, two adjacent punch lines are
separated by one DRM, so it is possible that the packet could
reserve the two punch lines simultaneously and prolong the
leaping distance. Packet spawned from the East output of R1 in
Fig. 5 could traverse R2 and R3 via the two bolded punch
lines and approach farther downstream node. We define such
operation as long punch in this paper.

The punch feature is provided by more fine-grained
scheduling in DRM. Fig. 6 shows the circuit design in
DRM. Compared with SRM, it introduces two additional mul-
tiplexer Ne (whose input data path is from upstream punch
line) and Nf (whose output data path is to downstream
punch line), to select between the normal shuttle path and local
punch line. If the traffic intends to reach R2 from R1, the multi-
plexers are constructed in the same way as in Fig. 4. However,
if the packet has reserved the local punch line to attain R3, the
DRM configures the route as R1 → Na → Nf → DRM, and
the packet finally reaches R3, bypassing intermediate node 2.

2) Router Microarchitectures: Having introduced the
infrastructure on the links, we then specify the router microar-
chitecture by first elaborating the pipeline stages used to

support the shuttle or punch operation. ShuttleNoC has typical
pipelines as the conventional NoC routers. Meanwhile, it has
unique operations that are shadowed with the normal routing
pipelines as shown in Fig. 7. The detailed shadowed stages
include the following.

1) Punch line arbitration (PA) shadowed with the routing
computation (RC), it determines the winner packet that
could use the local punch line. The reason it lodges
itself with RC is that RC is able to provide the des-
tination of the current packet as well as the distance
to its desired destination. As can be imagined, only the
distance larger than two nodes is meaningful for this
packet to use the local punch line. Otherwise, it means
the packet will reach the desired destination right at the
next hop, and using punch line will make it falsely miss
the destination.

2) Remote VC allocation (RA) shadowed with the virtual
channel allocation (VA), the winner packet could use the
punch line, so apart from normal VA in the conventional
routing pipeline, it is also entitled to reserve remote vir-
tual channels that are at least two nodes away from its
current node, to support punch operation.

3) Generate shuttle requests (GS) shadowed with the switch
allocation (SA), both instances of ShuttleNoC propagate
shuttle/punch request to the local/remote LRM. LRM
is responsible to arbitrate amongst multiple concurrent
requests at this stage.

4) Punch line reservation (PR) shadowed with switch
traversal (ST), this stage reserves the punch line before
the final link traversal, informing LRM to configure the
path in advance to serve the packet at the next cycle.

The pipeline stages are not exactly identical for
ShuttleNoC-S and ShuttleNoC-D. In specific, ShuttleNoC-S
only has the RA and GS stage, because ShuttleNoC-S does not
architect the punch line in its SRM so it does not need to arbi-
trate or reserve punch lines. Due to the packet shuttling feature,
a local subrouter needs to probe the available virtual channel
resources that may belong to a different subnet, which is the
major difference compared to the conventional VA stage. Once
one of the downstream subrouters is active, its VC occupan-
cies are hence acknowledged by its neighborhood, as shown
in Fig. 7. Router needs to record the already allocated VC,
together with its subnetwork ID. In SA/GS stage, the opera-
tion involves sending this runtime information to the LRM’s
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Fig. 7. ShuttleNoC router pipeline stages. All stages are shadowed with the conventional NoC router pipeline. ShuttleNoC-S contains RA and GS, while
ShuttleNoCD has all four stages.

“packet steering” module for further arbitration and data path
reconstruction. Whereas, for the ShuttleNoC-D, the pipeline
stages are relatively more complex than ShuttleNoC-S, involv-
ing all four stages. Packets could not only reserve the normal
VCs of the next hop if there are credits, but also seize the
punch line for acceleration. Therefore, pipeline stages are
modified from the very beginning, but note that ShuttleNoC-D
router pipelines are coupled with each conventional stage, so
it will not introduce additional pipeline latencies.

a) Punch packet selection in the PA stage: Intuitively,
multiple packets would impose concurrent reservations to the
same punch line of the local node for acceleration, and that
will lead to the punch line competition and even traffic conges-
tion if they are not regulated properly. In order to efficiently
schedule packets and mitigate the latency introduced by such
competitions, DRM maintains an arbitration mechanism in
the PA pipeline stage to determine the long or short punch
based on the accumulated in-transit packet latency, with the
following metric:

αAvg ≤ Lati ≤ βAvg
then=⇒ short punch

Lati > βAvg
then=⇒ long punch

Lati < αAvg
then=⇒ shuttle

wherein Lati is the latency packet i has experienced, repre-
sented in cycles. This latency information is embedded within
the packet’s header flit, and is interpreted for evaluation at the
very beginning of the RC/PA stage, while Avg is the slid-
ing average latency value of the historical packets passing
through this router. Coefficient α and β are both empirical
values that quantize the relationship between Lati and Avg
and further determine if the packet could use the local punch
line or not. We use this straightforward metric because, on
one side, different locations have different congestion status
and obviously each packet will experience different contention
delay, so one packet may be accepted to use the punch line but
in other routers only shuttle path will be allocated to it. We
want the arbitration is based on the local traffics rather than
global information. On the other side, local decision making
is relatively easy to implement eliminating congestion prop-
agation paths commonly seen in previous congestion control
techniques [16], [17], [31], [32], so it reduces the implemen-
tation overhead of the chip. To determine an optimal setting
of the two coefficients, we use a cycle-accurate NoC simulator

running workload traces to offline train the two coefficients.
We also carry out a design space exploration to see the impact
of their scaling in Section IV.

b) Punch/shuttle request arbitration in the GS stage:
ShuttleNoC is composed of several parallel-organized sub-
networks/subrouters at each node. Sometimes, multiple sub-
routers will impose concurrent requests, i.e., multiple packets
intend to shuttle into the same downstream subrouter in the
GS stage. Or, they might impose the same punch line requests
for acceleration at the PR stage. Therefore, we need two arbi-
tration mechanisms to determine the target packet that could
use these shared resources. This time of arbitration, imple-
mented in LRM instead of in each subrouter, is also required
to avoid sophisticated microarchitectural design, so we use
round Robin algorithm, to poll each subrouter if it has posed
a request that will be received by the packet steering module in
the LRM. For punch line competition, we still employ round
robin to allocate punch line accessibility for each subrouter, so
each subrouter can fairly use the express way for acceleration
if it spawns a punch packet.

c) Detailed pipeline stage transition in the router
microarchitecture: As demonstrated in Fig. 8, after PA stage
has determined which packet is endowed with the privi-
lege to use the local punch line. Its VC ID is registered as
“PL-VCID.” While in the RA stage, punch-line packet could
reserve remote VCs if available, normal packet in local VCs
could, however, only reserve the available VCs in the down-
stream subrouters. After RA stage, the pipeline enters SA stage
in which some special tricks are necessary. SA outputs the
winner VC (recorded as “SW-VCID”) that could prepare the
ST, so the winner might be either punch line VC or normal
VC. We employ five comparators at each input VC port and
compare if the SW-VCID equals to the PL-VCID in the SA/GS
stage. For example, in Fig. 8, we see that if VC1 (marked in
blue in input port 4) is the previously recorded PL-VCID in the
PA stage and wins in the SA, the comparator initiates the con-
trol signal to the corresponding multiplexers selecting between
“punch” or “shuttle” request. The result will subsequently be
notified to the P_Steering module in the LRM. Combining the
type of punch operation (long or short punch), P_Steering con-
figures the multiplexer array to establish the desired data path.
In the next cycle, packet will traverse the link to the target
downstream node, which might just be its neighbor or three
nodes away after surfing the punch line. We allocate one latch
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Fig. 8. ShuttleNoC-D router microarchitecture and the specific circuitry for the punch line reservation.

at each output port, because the arbitration in P_Steering mod-
ule would only allow the winner to shuttle or punch into the
downstream. The “EN” signal controls if the current port is
the winner or not, so the flit must wait at the output latch if
it fails the arbitration.

C. Power Adaptation Mechanisms

Previous sections have elaborated the hardware implemen-
tations of ShuttleNoC, including data paths on links as well
as the router pipeline microarchitectures. In this section, we
elaborate its power subsystem and how they collaborate with
the ShuttleNoC microarchitecture to achieve localized power
adaptation.

In order to support packet shuttling/punch, router microar-
chitecture must be capable of detecting the “on/off states” of
the subrouters in the vicinity, as the references to propagate
the corresponding shuttle or punch request to the LRM. Packet
shuttling is implemented between neighboring subrouters, so
their power states must be obtained in real time. Localized
power adaptation also relies on runtime statistics as the refer-
ence to power on/off a subrouter in a particular subnetwork.
In ShuttleNoC, three modules: 1) power metric computation
(PMC); 2) local state ctrl (LSC); and 3) ctrl signal propaga-
tion (CSP) are added to serve these purposes and they consist
of the low power subsystem in the router microarchitecture
(Fig. 9), and they also apply to both instances of ShuttleNoC,
specified as follows.

PMC: In order to quantify traffic intensity, we employ
PMC module to compute the microarchitectural parameters
at runtime. Previous work [5], [33]–[35] has proposed several

Fig. 9. ShuttleNoC power subsystem, which is used to collaborate with the
hardware microarchitecture and fulfill the localized power adaptation.

reasonable congestion detection metrics, such as local injection
queue occupancy, the average or maximum buffer occupancy,
etc. These metrics can be seamlessly deployed in ShuttleNoC;
however, to measure traffic intensity, the metric should be
able to pinpoint the precise data path or direction that causes
the packet contention. We then propose to use average flits
queuing delay for each output direction as the intensity met-
ric, formulated as QDoutdir = (

∑Noutdir
i delayi/Noutdir), where

Noutdir stands for the total number of flits heading direction
“outdir.” “delayi” is the queuing delay that flit i must be
retained in its input virtual channel, due to the failure of VA
or SA. An increasing queueing delay may indicate that out-
put virtual channels in outdir direction may be limited, and
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Algorithm 1 Subnet Selection in CSP
Input: State of neighboring routers: state in; subnetworks: N;
PMC requests: requests;
Output: Subnet selected: n;
1: for each req < dir, opa > ∈ request do
2: if opa == PG then
3: for (i = N − 1; i>= 0; i−−) //shut down from the

highest-level do
4: if state in[dir][i] == WU then
5: return n; //power off subnet n at output dir
6: end if
7: end for
8: else if opa== WU then
9: for (i = 0; i<N; i++) //wake up from the lowest-level do
10: if state in[dir][i] == PG then
11: return n; //wake up subnet n at output dir
12: end if
13: end for
14: end if
15: end for

a power adaptation request is supposed to be issued to higher
level subrouter. These parameters can easily be obtained as
soon as a packet has finished certain pipeline stages, without
introducing additional overhead.

LSC: LSC is used to control the power state transition
of its host subrouter. Bandwidth adaptation signals, namely
PG/WU_in, are received from neighboring subrouters of
four directions from its neighborhood. “PG” and “WU” indi-
cate a “power-gated” or Wakeup request, respectively. If we
use two subnets in ShuttleNoC, it is hence an 8-bit signal
(2 subrouters×4 directions) and each bit is possible to be
a PG or WU. By analyzing their numerical relationship, LSC
decides to power on/off its host subrouter. This relationship
is significant in determining power and performance tradeoff,
and is also evaluated in Section IV.

CSP: Note that once PMC intends to issue a power adap-
tation request (PG/WU) to a certain output direction, CSP
module is designed to inform the target subrouter, in that
direction, of this request. state_in includes the on/off status
sent from neighbor LSCs. CSP, based on this information,
propagates power adaptation request by controlling the sym-
metrically organized MUXes, as Fig. 9 shows. Each bit of
PG/WU_out will connect to the corresponding subrouter’s
LSC module in the neighborhood.

As specified above, CSP processes the power adaptation
requests generated by PMC. It must decide which subrouter
is supposed to be activated/deactivated based on their on/off
status. Detailed procedure is shown in Algorithm 1. We stipu-
late the activation of subnets must be in order. For example, if
subnet 1 is already active and subnets 2–4 are off, subnet 2 is
then chosen as the activation candidate (lines 8–11). Shutting
down, on the contrary, follows a reverse order by starting from
the highest level active subnet (lines 2–5).

1) State Transition in the LSC: Clearly, the efficacy of
power management mechanism depends on the dynamic
router status, so similar to [5] and [23], we also use three
power states to depict a subrouter: 1) Active; 2) Sleep;
and 3) Wakeup. The state is maintained in LSC module.
“Active” indicates the router is currently working and packet

Fig. 10. LSC handshaking with CSP. LSC controls power state transitions
of its host router, and we allocate three power states to be in align with the
recently proposed schemes.

shuttling/punch is applicable, while Sleep and Wakeup means
the router is power-gated or currently waking up, respec-
tively. Packets are not allowed to shuttle or punch into Sleep
and Wakeup routers. LSC and CSP are coupled as two sides
of handshaking operation. Fig. 10 shows such interaction.
Note that it only shows two neighboring subrouters of the
same subnet, while LSC also interacts with CSPs that belong
to other levels of subnets. For a particular subrouter, state
transition from Active to Sleep must satisfy two conditions:
1) Num(WU) equals to 0, which denotes all bits in PG/WU_in
are PGs and 2) no packet is remained in local input buffers.
LSC can then safely shut down this router to reduce power
consumption. By contrast, if LSC detects arbitrary PG/WU
combinations in PG/WU_in, state transition from Sleep to
Wakeup depends on if Num(WU) attains a predefined thresh-
old. If so, it means the local bandwidth is more prone to be
expanded. LSC will then wake up its host router. Once the
router is waking up, it may take 10–20 cycles that active
state will be finally attained, according to [5] and [23]. We
use T_wu to indicate this transition delay in the figure.

IV. EVALUATION

In this section, we evaluate the proposed ShuttleNoC archi-
tecture and the associate localized power adaptation mecha-
nisms. First, we introduce the platform and baselines we use.
Second, we show various results and discussions in terms of
the performance and runtime power efficiency.

A. Experimental Setup

1) Platform: We evaluate ShuttleNoC at the network and
full system level.

1) From the network perspective, we modified
Booksim2.0 [36] simulator to run application traces,
which is extracted from GEM5 [37], a full-system
cycle-accurate simulator. The fundamental NoC topol-
ogy includes 4 × 4 and 8 × 8 mesh. We also construct
different scales of mesh/torus topology in the sensitivity
analysis. On-chip router is configured with a four-stage
pipeline plus one cycle for shuttle or punch. We use
four virtual channels for the input buffer with 5-flit
depth each.

2) From the full-system perspective, we carry out the
cycle-accurate simulation using GEM5 running selected
PARSEC [38] benchmarks. The basic platform contains
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Fig. 11. Power consumption breakdown (normalized to single-256) for ShuttleNoC (S/D) and the baselines. We analyze dynamic and static power as well
as ShuttleNoC specific LRM power.

16 alpha cores with private L1 (32KB, 2-way) and
shared L2 (256KB, 2-way, MESI) caches. This config-
uration is also used for extracting the application traces
for network-only evaluations.

Both computation and communication infrastructures are
clocked at 1.16V/0.8 GHz for power estimation. This V/F
setting is also aligned with the Intel single-chip cloud
computer (SCC) [39] under 45-nm technology node. We
extract component statistics from GEM5 and use McPAT [40]
with CACTI for the computation power estimation, and
DSENT [41] power model for the NoC. ShuttleNoC does
not apply DVFS to the router and links so it does not
incur any cross-domain synchronization as in the SCC or
previous proposed techniques [19]. Besides, it is also unneces-
sary to worry about the misalignment of core-NoC frequencies
under such configuration. We also employ Synopsis Design
Compiler [42] to obtain the area overhead of various NoC
designs under SMIC90 technology library.

2) Baselines: We use three baselines to prove the efficacy
of ShuttleNoC in the power adaptation.

1) The first one is a traditional single NoC with no
power management involved. We configure its band-
width as 256 bits, so the first baseline is referred to
as “single-256.”

2) The second baseline, referred to as “SO-64/256,” is the
“spatial-oriented” approach, and two bandwidth config-
urations are set as 64 bits and 256 bits as in [15].

3) The third one, referred to as “TO-256,” is the “temporal-
oriented” approach [5] with four subnets and each one
64 bits wide.

The same configuration is also set for the proposed
ShuttleNoC. Besides, T_wu is set as 20 cycles for a waking-
up subrouter to finally attain Active state [5] [23]. Since we
use four subnets, state_in/out and PG/WU_out/in are both
16 bits (4 subrouters × 4 directions) for the two instances
of ShuttleNoC. Note that even if the bandwidth configuration
for the baselines and ShuttleNoC is not exactly the same, the
maximum bandwidth (256 bits) is strictly equal. ShuttleNoC
does not intentionally broaden the bandwidth in our
evaluations.

Theoretically, punch packet in ShuttleNoC-D is able to pass
a series of nodes, as long as the punch lines along its path
is available. However, we only restrain the distance of long
punch within three nodes and short punch within two nodes,
because from the implementation point of view, prolonged

wires will elongate the packet traverse cycles and the NoC
clock frequency must be limited within a certain range. To
make the simulation more practical, we do not allow much
longer punch. However, in the chip design phase, this parame-
ter could be dynamically scaled based on the desired operating
voltage and frequency settings. The proposed packet steering
and power adaptation mechanism are kept unchanged.

B. Results and Analysis

1) Network-Level Power and Performance Tradeoff:
ShuttleNoC enables the localized power adaptation, so in this
set of experiment, we show how much benefit it brings in
terms of overall power reduction in 8 × 8 mesh. Fig. 11 plots
the decomposition of NoC power to examine the impact of
each component. Compared with single-256, SO-64/256, and
TO-256, ShuttleNoC-S shows substantial total power reduc-
tion by 26.3%, 17.1%, and 12.1%, while ShuttleNoC-D shows
an improvement of 24.9%, 15.7%, and 10.7%, slightly less
beneficial than ShuttleNoC-S.

Discussion: The improvement comes from the localized
power adaptation, mainly from the reduction of static power
consumption. ShuttleNoC only activates/deactivates subrouter
based on the local traffic intensity, rather than fixing the band-
width as done in SO-64/256. Compared to TO-256, it does not
need to affect neighboring node to maintain the network con-
nectivity, so static power is also reduced. On the other hand,
ShuttleNoC employs LRM to achieve packet shuttling/punch,
so dynamic power may increase due to the frequent link recon-
figure operation. As shown in the figure, it incurs 3.8% power
overhead due to the SRMs, and 1.7% and 3.3% dynamic power
increase compared to SO-64/256 and TO-256, respectively.
However, the abundant static power reduction still guaran-
tees the two instances of ShuttleNoC an overall power saving
compared with the baselines.

To further prove the effectiveness of ShuttleNoC, we then
show the performance degradation to explore the power
and performance tradeoff. Average packet latency is used
as the performance metric. The result in Fig. 12 shows
that ShuttleNoC-S degrades average network performance by
9.6%, and 5.0% for ShuttleNoC-D, compared with single-
256. While, SO-64/256 and TO-256 demonstrate more severe
performance degradation as 14.1% and 27.2%, respectively.

Discussion: One may suspect that why power reduction
does not introduce severe network performance degradation
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Fig. 12. Performance comparison, illustrated via average packet latency,
between ShuttleNoC and the baselines.

Fig. 13. ShuttleNoC runtime EDP. This metric is used to convey power
efficiency.

for ShuttleNoC architectures. The reason is that although
it limits the bandwidth resources, it provides more flexi-
ble link connectivity so the head-of-line blocking problem is
effectively alleviated. Packets have more path candidates to
proceed according to the location of the destination, instead
of waiting for previous queued packets to be first processed.
This direct benefit is not attainable in conventional one-
case-for-all or spatial-oriented approach. Temporal-oriented
approach like TO-256 baseline could, to some extent, alle-
viate head-of-line-blocking, but only at network injection
phase. ShuttleNoC could serve in-transit packet at any loca-
tion, so the latency increment brought by bandwidth reduction
is overshadowed by the improvement brought by data path
flexibility. ShuttleNoC-D provides additional punch lines for
latency-sensitive traffics that further contributes to the overall
performance improvement.

As a further proof, we evaluate the power efficiency vari-
ation periodically, by executing one of our selected bench-
marks (swaptions). We use energy delay product (EDP) as
the power efficiency representative. In the snapshot shown in
Fig. 13, we observe that EDP values remain almost constant:
5.1% variation on average for ShuttleNoC-S and 4.8% for
ShuttleNoC-D. Whereas, TO-256 exhibits large fluctuations
during execution, because of the coarse-grained, subnet-level
power control. For SO-64/256, it suffers from the severe
performance degradation when heavy traffic migrates to small
routers. Similar behavior is also observed in other benchmarks
and other snapshots within the same benchmark.

2) Full-System Power and Performance: We intend to
explore the fraction of the ShuttleNoC power reduction at the

system level. We present the full system power and the break-
down of the cores and NoC power, respectively, in Fig. 14.
For the selected 8 PARSEC benchmarks, the average fraction
of NoC power over the total chip power is 17.7% and 17.8%
under the preset chip-level voltage and frequency settings. The
average power reduction is 6.8% and 5.9% compared with
Single-256. These results coincide with the numbers reported
in Sections I and IV-B1. The fraction of NoC over total chip
power is nearly 18%, so the benefit of ShuttleNoC in opti-
mizing system power is around 7%. Similarly, system power
reduction does not incur obvious performance loss. Table I
shows the detailed performance degradation results obtained
from our cycle-accurate simulation platform. Compared with
the original classic singular-width NoC design, performance
degradation is graceful with only 1.4% and 0.8% decrement
for the two representatives of ShuttleNoC, and that proves the
power savings at the communication infrastructure does not
introduce severe system performance loss.

Note that in full system evaluation, we does not apply any
power management schemes such as DVFS on computation
resources, so the power results of cores remain nearly the same
(slightly different) for the ShuttleNoC and the employed base-
line. We only want to show the impact of ShuttleNoC to the
system performance and power, while DVFS for cores could
also be applied seamlessly in accompany with the ShuttleNoC
if more aggressive power/performance tradeoff is required at
the chip level.

3) Heterogeneity Adaptation Analysis: The smooth power
efficiency of ShuttleNoC stems from the effective adapta-
tion of traffic heterogeneity, the most important feature of
ShuttleNoC. As evidence, this set of experiment traces the
latency variation of each node in a 4 × 4 NoC, by execut-
ing the same benchmark in the previous experiment. This
time, we calculate the average packet latency for the pack-
ets that terminates at this node at an interval of 1 ms. As
shown in Fig. 15, SO-64/256 exhibits obvious latency vari-
ations between 40–190 cycles. Due to the large bandwidth
of big routers in the center, nodes 6, 7, 10, and 11 show
a moderate latency variation compared to nodes at boundaries
like 1 or 15, but still around 100 cycles. TO-256 shows a mild
latency variation around 110 cycles on average. By sharp con-
trast, ShuttleNoC-S shows a more smooth latency variation
around 30–40 cycles, and ShuttleNoC-D around 20–30 cycles
due to the contribution of punch lines. Such near-constant
latency further proves that ShuttleNoC has the unique abil-
ity of localized bandwidth adaptation, and thus more possible
to achieve optimal power efficiency.

4) Sensitivity Analysis:
a) Request threshold and ShuttleNoC responsiveness: In

this experiment, we first evaluate the impact of the Wakeup
request threshold—Num(WU) in Fig. 10, to the ShuttleNoC
responsiveness. We employ ShuttleNoC-S to evaluate this key
parameter. Speaking of the responsiveness, we evaluate the
NoC power consumption and average packet latency, with
Num(WU) tuned from the minimum to the maximum. We
evaluate all the selected benchmarks as the design space explo-
ration, seeking to explore the tradeoff between the network
performance and power imposed by this parameter. As can
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Fig. 14. Full system power breakdown.

TABLE I
FULL-SYSTEM EXECUTION TIME (IN CYCLES) ANALYSIS. THE PERFORMANCE DEGRADATION PERCENTAGE IS MARKED IN BOLD

Fig. 15. Heterogeneity adaptation analysis. We use surfplot to visualize the fluctuation of latency stats at each node. ShuttleNoC is more streamlined compared
with the other baselines.

Fig. 16. Sensitivity analysis of the router wakeup threshold—Num(WU), versus the NoC power consumption.

be seen from the “hockey” curves in Fig. 16, the workloads
demonstrate a uniform behavior. Taking swaptions as an exam-
ple, the packet latency remains almost stable with threshold
varied from 1 to 10, while the power reduces nearly 50%.
This phenomenon proves that larger threshold contributes to
the power reduction due to the prolonged subrouter sleep-
ing cycles without compromising performance. However, the
latency starts to climb significantly to 160 cycles (207.7%
degradation) from 10 to 16. NoC performance is suffered
under this scenario, because subrouters become too “lazy”
to respond to the increasing WU requests, even if the total
power continues to decrease. Different benchmarks have dif-
ferent inflexion point in its hockey curve, almost around 8–10.

Therefore, in the previous experiments, we all set the request
threshold as 10 to acquire a better energy/performance trade-
off. Actually, ShuttleNoC can actually work at other threshold
values, contingent to the available power budget at the chip
level or the intended NoC power efficiency.

b) Subnet configuration: As can be imagined, differ-
ent scales of subnets could influence the overall network
performance. That is, because the subnet configuration affects
the bandwidth and further determines the packet size of
network traffic. Our baseline single-256 could be regarded as
an extreme case that contains only one subnet with 256 bits
bandwidth. Fig. 17 also explores the 2-subnet configuration
with 128 bits each to evaluate the performance variation. We
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Fig. 17. Sensitivity analysis of the subnet configuration. We use total trace
execution cycles as the performance metric.

use total execution cycles as the metric this time and analyze
the results from two perspectives. First, comparing to the 2-
subnet configuration, the 4-subnet configuration yields 2.28%
and 2.61% higher average execution cycles. It proves the com-
mon sense that large bandwidth generates higher performance.
Similar result is also observed in Fig. 12 for the extreme case
Single-256. However, the power consumption is not that opti-
mistic under larger bandwidth. Oracle configuration should
reference the power efficiency constraint and set the number
of subnets accordingly. Second, within the range of 2-subnet
configuration, ShuttleNoC-D still outperforms ShuttleNoC-S,
which is aligned with the 4-subnet configuration.

c) Topology settings: We evaluate the topology scaling
ranging from 4 × 4 to 16 × 16 mesh and torus topologies,
and explore the power efficiency under these cases running
the benchmark trace of swaptions. We calculate the reciprocal
of EDP as the power efficiency metric as shown in Fig. 18.
The results are normalized to the 4 × 4 mesh. The behavior
of topology scaling is uniform, larger scale has lower power
efficiency because the traffic volume also increases that causes
an enlarged packet latency. For torus, we does not allocate
punch lines on the end-to-end loopback wires, and sets the
latency of the loopback wires as three cycles, identical to the
punch line latency. Even so, torus still has a slightly higher
performance due to the shortcut of loopback wires. It is worth
mention that ShuttleNoC is a general design concept that could
be applied on any other topology besides mesh and torus.

d) Punch line usage: The two design parameters α and
β are the incoming packet is endorsed to use the local punch
line or not. Intuitively, it is tricky to select the two values
because mishandling the proportion of shuttle and punch pack-
ets will form the resource competition. In specific, α too
small will shrink the amount of shuttle packets and further
intensify the competition for the punch lines. As another exam-
ple, β too large will shrink the amount of long punches, so
rush packets can only acquire inadequate accelerations. Our
design exploration proves this notion. Fig. 19 shows four
benchmarks with different computation and communication
intensities under α/β scaling. They all exhibit a valley area in
the near central of the mesh plot. Average packet latency is

Fig. 18. Topology scaling and its impact to power efficiency. We evaluate
different scales of mesh and torus topology, ranging from 4 × 4 to 16×16.
The higher the better.

Fig. 19. α and β scaling and its impact to average packet latency (in cycles).
We use mesh plot to clearly demonstrate the “valley” in the central area.
The four benchmarks are blackscholes (top-left), ×264 (top-right), freqmine
(bottom-left), and fluidanimate (bottom-right).

TABLE II
AREA OVERHEAD BREAKDOWN (mm2). THE TOTAL

AREA IS NORMALIZED TO SINGLE-256

minimum in this area. Whereas in the mesh boundaries, the
execution cycles exhibit obvious upward. Therefore, in prac-
tical use, we need to carefully select the two values. A viable
option is to make them on-line tunable to accommodate dif-
ferent executing phases, while local coordination at each NoC
node is hardly to ensure a global optimal performance. We
still need an extra central monitor, beside the many-core
chip, and do global optimization that will inevitably increase
the implementation cost. We will leave this problem as our
future work.
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e) Overhead analysis: ShuttleNoC relies on LRM and
dedicated hardware in routers to fulfill the power adaptation
purpose. We evaluate the implementation cost of ShuttleNoC
by comparing its area overhead to other NoC designs, as
shown in Table II. We analyze the area contributive compo-
nents. ShuttleNoC incurs a mild increase of the total NoC area,
due to the complicated link layout and the dedicated control
modules. Fortunately, LRM only consists of several multiplex-
ers, and does not introduce significant area overhead (up to
3.7%). Compared with Single-256, the area increase is up to
1.37× in total. Note that although ShuttleNoC exhibits more
area overhead, it does not consume a larger power, because
the proposed power adaption mechanism brings more power
savings, and even gives a better play in power/performance
tradeoff.

V. CONCLUSION

This paper proposes ShuttleNoC, a novel NoC architecture
to enforce optimal power efficiency for the communica-
tion infrastructure in manycores. Unlike previous temporal
and spatial-oriented approach, ShuttleNoC achieves local-
ized power adaptation to serve runtime traffic heterogene-
ity. By designing precise power state transition mechanism
and dedicated LRM, packets are allowed to shuttle/punch
between multiple subnetworks. Compared with temporal-
oriented approach, ShuttleNoC avoids unnecessary activation
of subrouters to obtain lower power consumption. Besides,
ShuttleNoC does not resort to fixed bandwidth configura-
tions as in spatial-oriented approach, and hence yields higher
power efficiency. We also demonstrate two representatives
under ShuttleNoC design paradigm, that is, ShuttleNoC-S and
ShuttleNoC-D, elaborating their pros and cons and respective
hardware implementation in link and router microarchitecture.
At last, we specify how the associate power adaptation mech-
anisms are supported in the two representatives for localized
power adaptation. We believe that ShuttleNoC is a promis-
ing architecture to achieve optimal power efficiency for the
communication infrastructure in future many-core processors.

REFERENCES

[1] S. Borkar, “Networks for multi-core chips,” in Proc. Special Session
ACM/IEEE Int. Symp. Low Power Electron. Design, 2007, pp. 1–6.

[2] “Niagara 2 opens the floodgates,” Sun Microsyst. Inc., Santa Clara, CA,
USA, Rep., Nov. 2006.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51–61, Sep./Oct. 2007.

[4] C. Rajamanikkam, J. S. Rajesh, K. Chakraborty, and S. Roy, “BoostNoC:
Power efficient network-on-chip architecture for near threshold comput-
ing,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
Austin, TX, USA, 2016, pp. 1–8.

[5] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap:
Energy proportional multiple network-on-chip,” presented at the 40th
Ann. Int. Symp. Comput. Archit., Tel Aviv, Israel, 2013.

[6] J. Zhan, Y. Xie, and G. Sun, “NoC-sprinting: Interconnect for fine-
grained sprinting in the dark silicon era,” in Proc. 51st ACM/EDAC/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, 2014, pp. 1–6.

[7] A. Sharifi, A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das,
“PEPON: Performance-aware hierarchical power budgeting for NoC
based multicores,” presented at the 21st Int. Conf. Parallel Archit.
Compilation Techn., Minneapolis, MN, USA, 2012.

[8] H. Bokhari, H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran,
“darkNoC: Designing energy-efficient network-on-chip with multi-Vt
cells for dark silicon,” in Proc. 51st ACM/EDAC/IEEE Design Autom.
Conf. (DAC), San Francisco, CA, USA, 2014, pp. 1–6.

[9] R. Parikh, R. Das, and V. Bertacco, “Power-aware NoCs through routing
and topology reconfiguration,” in Proc. 51st ACM/EDAC/IEEE Design
Autom. Conf. (DAC), San Francisco, CA, USA, 2014, pp. 1–6.

[10] K. Swaminathan et al., “Steep-slope devices: From dark to dim silicon,”
IEEE Micro, vol. 33, no. 5, pp. 50–59, Sep./Oct. 2013.

[11] H. Lu, G. Yan, Y. Han, Y. Wang, and X. Li, “ShuttleNoC: Boosting on-
chip communication efficiency by enabling localized power adaptation,”
in Proc. 20th Asia South Pac. Design Autom. Conf. (ASP-DAC), 2015,
pp. 142–147.

[12] A. Samih et al., “Energy-efficient interconnect via router parking,” in
Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit. (HPCA2013),
2013, pp. 508–519.

[13] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.

[14] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy pro-
portional datacenter networks,” presented at the 37th Annu. Int. Symp.
Comput. Archit., St.-Malo, France, 2010.

[15] A. K. Mishra, N. Vijaykrishnan, and C. R. Das, “A case for heteroge-
neous on-chip interconnects for CMPs,” in Proc. 38th Annu. Int. Symp.
Comput. Archit. (ISCA), San Jose, CA, USA, 2011, pp. 389–399.

[16] S. Ma, N. E. Jerger, Z. Wang, M. Lai, and L. Huang, “Holistic routing
algorithm design to support workload consolidation in NoCs,” IEEE
Trans. Comput., vol. 63, no. 3, pp. 529–542, Mar. 2014.

[17] M. Sheng, N. E. Jerger, and Z. Wang, “DBAR: An efficient routing
algorithm to support multiple concurrent applications in networks-on-
chip,” in Proc. 38th Annu. Int. Symp. Comput. Archit. (ISCA), San Jose,
CA, USA, 2011, pp. 413–424.

[18] R. Hesse, J. Nicholls, and N. E. Jerger, “Fine-grained bandwidth
adaptivity in networks-on-chip using bidirectional channels,” in Proc.
IEEE/ACM 6th Int. Symp. Netw. Chip, 2012, pp. 132–141.

[19] A. K. Mishra et al., “A case for dynamic frequency tuning in on-
chip networks,” in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchit.
(MICRO), New York, NY, USA, 2009, pp. 292–303.

[20] H. Lu, G. Yan, Y. Han, and X. Li, “PowerTrader: Enforcing autonomous
power management for future large-scale many-core processors,”
IEEE Trans. Multi-Scale Comput. Syst., vol. 3, no. 4, pp. 283–295,
Oct./Dec. 2017.

[21] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-
core architectures running multi-threaded applications,” presented at the
38th Annu. Int. Symp. Comput. Archit., San Jose, CA, USA, 2011.

[22] H. Matsutani, M. Koibuchi, H. Amano, and D. Wang, “Run-time power
gating of on-chip routers using look-ahead routing,” in Proc. Asia South
Pac. Design Autom. Conf. (ASPDAC), 2008, pp. 55–60.

[23] L. Chen and T. M. Pinkston, “NoRD: Node-router decoupling for effec-
tive power-gating of on-chip routers,” in Proc. 45th Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO), Vancouver, BC, Canada, 2012,
pp. 270–281.

[24] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, “Power punch:
Towards non-blocking power-gating of NoC routers,” in Proc. IEEE
21st Int. Symp. High Perform. Comput. Archit. (HPCA), Burlingame,
CA, USA, 2015, pp. 378–389.

[25] P. Gratz et al., “On-chip interconnection networks of the TRIPS chip,”
IEEE Micro, vol. 27, no. 5, pp. 41–50, Sep./Oct. 2007.

[26] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep./Oct. 2007.

[27] N. E. Jerger, A. Kannan, Z. Li, and G. H. Loh, “NoC architectures for
silicon interposer systems: Why pay for more wires when you can get
them (from your interposer) for free?” in Proc. 47th Annu. IEEE/ACM
Int. Symp. Microarchit., 2014, pp. 458–470.

[28] S. Volos et al., “CCNoC: Specializing on-chip interconnects for energy
efficiency in cache-coherent servers,” in Proc. IEEE/ACM 6th Int. Symp.
Netw. Chip, 2012, pp. 67–74.

[29] A. K. Mishra, O. Mutlu, and C. R. Das, “A heterogeneous multiple
network-on-chip design: An application-aware approach,” in Proc. 50th
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Austin, TX, USA, 2013,
pp. 1–10.

[30] A. Flores, J. L. Aragon, and M. E. Acacio, “Heterogeneous interconnects
for energy-efficient message management in CMPs,” IEEE Trans.
Comput., vol. 59, no. 1, pp. 16–28, Jan. 2010.

[31] M. Ramakrishna, P. V. Gratz, and A. Sprintson, “GCA: Global con-
gestion awareness for load balance in networks-on-chip,” in Proc. 7th
IEEE/ACM Int. Symp. Netw. Chip (NoCS), 2013, pp. 1–8.



LU et al.: ShuttleNoC: POWER-ADAPTABLE COMMUNICATION INFRASTRUCTURE FOR MANY-CORE PROCESSORS 1451

[32] F. A. Samman, T. Hollstein, and M. Glesner, “Runtime contention and
bandwidth-aware adaptive routing selection strategies for networks-on-
chip,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7, pp. 1411–1421,
Jul. 2013.

[33] Y. S.-C. Huang, K. C.-K. Chou, C.-T. King, and S.-Y. Tseng, “NTPT: On
the end-to-end traffic prediction in the on-chip networks,” in Proc. 47th
ACM/IEEE Design Autom. Conf. (DAC), Anaheim, CA, USA, 2010,
pp. 449–452.

[34] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-performance
optimization in manycores,” in Proc. 22nd Int. Conf. Parallel Archit.
Compilation Techn. (PACT), 2013, pp. 51–61.

[35] U. Y. Ogras and R. Marculescu, “Prediction-based flow control for
network-on-chip traffic,” in Proc. 43rd ACM/IEEE Design Autom. Conf.,
San Francisco, CA, USA, 2006, pp. 839–844.

[36] Booksim2.0. Accessed: Jun. 12, 2017. [Online]. Available:
https://nocs.stanford.edu/

[37] (2018). The Gem5 Simulator. [Online]. Available: http://www.gem5.org/
Main_Page

[38] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proc. Int. Conf.
Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[39] P. Salihundam et al., “A 2 Tb/s 6 × 4 mesh network for a single-
chip cloud computer with DVFS in 45 nm CMOS,” IEEE J. Solid-State
Circuits, vol. 46, no. 4, pp. 757–766, Apr. 2011.

[40] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), New York, NY,
USA, 2009, pp. 469–480.

[41] C. Sun et al., “DSENT—A tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in Proc.
IEEE/ACM 6th Int. Symp. Netw. Chip, 2012, pp. 201–210.

[42] Synopsis. Design Compiler. Accessed: Mar. 2, 2015. [Online]. Available:
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Design
Compiler/Pages/default.aspx

Hang Lu received the Ph.D. degree from the
University of Chinese Academy of Sciences,
Beijing, China, in 2015.

He is currently an Assistant Professor with the
State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese
Academy of Sciences, Beijing. His current research
interests include high performance networks-on-
chip, power efficient many-core architectures,
scale-out processors, and high performance neural
network accelerators.

Yisong Chang received the B.S., M.S., and Ph.D.
degrees in computer science and technology from
Tianjin University, Tianjin, China, in 2008, 2010,
and 2013, respectively.

He is currently an Assistant Professor with the
State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China. His current
research interests include heterogeneous accelera-
tors, memory subsystem, and system-level HW-SW
co-design.

Guihai Yan (M’11) received the B.Sc. degree in
electronics and software engineering (dual-degree)
from Peking University, Beijing, China, in 2005
and the Ph.D. degree in computer science from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, in 2011.

He is currently an Associate Professor with
the Institute of Computing Technology, Chinese
Academy of Sciences. His current research interests
include high performance computer architecture,
domain-specific microsystems, and energy-efficient
computing.

Ning Lin received the B.Eng. degree from Xiangtan
University, Xiangtan, China, in 2016. He is cur-
rently pursing the Ph.D. degree with the University
of Chinese Academy of Sciences, Beijing, China.

His current research interests include computer
architecture, low-power design of deep learning
algorithms, DNN compression, and DNN acceler-
ation on mobile and embedded devices.

Xin Wei received the B.Eng. degree in elec-
tronic information science and technology from
Zhengzhou University, Zhengzhou, China, in 2016.
He is currently pursing the master’s degree with
the University of Chinese Academy of Sciences,
Beijing, China.

His current research interests include convo-
lutional neural network accelerator on embedded
devices and convolution neural network algorithm
optimization.

Xiaowei Li (SM’04) received the B.Eng. and
M.Eng. degrees in computer science from the Hefei
University of Technology, Hefei, China, in 1985
and 1988, respectively, and the Ph.D. degree in
computer science from the Institute of Computing
Technology (ICT), Chinese Academy of Sciences
(CAS), Beijing, China, in 1991.

He was an Associate Professor with the
Department of Computer Science and Technology,
Peking University, Beijing, from 1991 to 2000. In
2000, he joined ICT, CAS, as a Professor, where he

is currently the Deputy Director of the State Key Laboratory of Computer
Architecture. He has co-authored over 280 papers in journals and interna-
tional conferences, and he holds 60 patents and 30 software copyrights. His
current research interests include very large scale integration testing, design
for testability, design verification, dependable computing, and wireless sensor
networks.

Dr. Li has been the Vice Chair of the IEEE Asia & Pacific Regional Test
Technology Technical Council since 2004, where he is currently Vice Chair.
He was the Chair of the Technical Committee on Fault Tolerant Computing,
China Computer Federation from 2008 to 2012, and the Steering Committee
Chair of IEEE Asian Test Symposium from 2011 to 2013. He was the Steering
Committee Chair of IEEE Workshop on RTL and High Level Testing from
2007 to 2010. He services as an Associate Editor of the Journal of Computer
Science and Technology, the Journal of Low Power Electronics, the Journal of
Electronic Testing: Theory and Applications, and the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


