
SNO: Securing Network Function Offloading on FPGA-based
SmartNICs in Untrusted Clouds

Yunkun Liao1,2,3, Jingya Wu1, Wenyan Lu1,4, Hang Lu1,3(�), Xiaowei Li1,3(�), Guihai Yan1,4(�)

{liaoyunkun20s, wujingya, luwenyan, luhang, lxw, yan}@ict.ac.cn
State Key Laboratory of Processors, Institute of Computing Technology, Chinese Academy of Sciences1

University of Chinese Academy of Sciences2, Zhongguancun Laboratory3, YUSUR Technology Co., Ltd.4

Beijing, China

Abstract—As network bandwidth outpaces host CPU compute capabil-
ity, Smart Network Interface Cards (SmartNICs) are increasingly deployed
to offload network functions from the host CPU. FPGA-based Smart-
NICs excel due to their programmability at hardware speed, enabling
high-performance and customized offloading. Securing offloaded network
functions on FPGA-based SmartNICs is a critical challenge in the cloud,
as the sensitive user cannot fully trust the cloud service provider (CSP).
CPU Trusted Execution Environments (TEEs) protect software code, not
FPGA hardware circuits. Existing FPGA TEEs fail to provide packet
I/O protection, System-on-Chip (SoC) CPU utilization, and user-friendly
memory access interfaces. To address this gap, we introduce SNO, the
first TEE for FPGA-based SmartNICs with the secure boot, the SNO
Manager for attestation and network function lifecycle orchestration, and
the SNO Guard for I/O encryption and authentication. SNO increases SoC
CPU utilization (+6.6% for 8-CPU SoC) by co-locating the SNO Manager
with the CSP software while isolating the security-critical components of
SNO Manager inside SoC CPU TEE, reduces performance overhead by
integrating a fully-pipelined AES-GCM engine and overlapped execution,
and offers a user-friendly (86.9% user code reduction) streaming interface.
The experimental results show that SNO introduces a relative latency
overhead of 7.7–143.2% (corresponding to absolute overheads up to
96 nanoseconds) across five network functions, significantly offset by
microsecond-level latency savings from offloading.

I. INTRODUCTION

In modern cloud infrastructure, the stagnation of host CPU perfor-
mance increasingly lags behind the rapid growth of datacenter network
bandwidth. To bridge this gap, host applications involving packet
processing (i.e., network functions) are increasingly offloaded to the
Smart Network Interface Card (SmartNIC). SmartNICs augment tradi-
tional NICs with programmable compute units. Among them, FPGA-
based SmartNICs [1], [2] are widely adopted for their hardware-level
programmability, enabling high-performance, customized offloading.
A growing trend [3] is to empower cloud users to deploy their network
functions directly on FPGA-based SmartNICs.

Offloading network functions to FPGA-based SmartNICs introduces
critical security challenges for cloud users. These stem from the
inherent trust asymmetry between users and the cloud service provider
(CSP) [4], who controls both the privileged software stack and the
hardware (i.e., SmartNIC’s FPGA shell). Private users must ensure
their data is not exposed to the CSP. However, the shell has visibility
into all I/O of user-deployed network functions, making sensitive data
vulnerable to inspection or tampering by a malicious or curious CSP.
This threat model is realistic, as insider-initiated data breaches remain
a well-documented risk in public cloud environments [5].

In a threat model where the user distrusts the CSP, a Trusted
Execution Environment (TEE) offers a hardware-isolated secure zone

Hang Lu, Xiaowei Li, and Guihai Yan are corresponding authors. This paper
is supported in part by the National Natural Science Foundation of China
(NSFC) under grant No. (62090024, 92373206, 62090020, 62172387), and
in part by the Chinese Academy of Sciences under grant No.(XDB0660100,
XDB44030100), and in part by the internship program and KAIWU (Data
Network Development Platform, DNDP) of YUSUR Technology Co., Ltd.

Network Function

 SoC

Host

Packets

Shell

Local Memory Access

ShEF Security

Kernel
SNO Manager

CSP Software

TEE

CPU CPU

Register Access Host Memory AccessShEF Shield

SNO Guard

FPGA-based SmartNIC

Host CPU TEE 's
Protected Area

S-NIC's Protected Area

FP
G

A

User-friendly streaming interface

Secure co-location
with CSP software

Packet protection

SNO's
Protected Area

Role

Fig. 1: SNO is the TEE for FPGA-based SmartNICs. S-NIC [6] and
ShEF [8] are the state-of-the-art SmartNIC and FPGA TEEs.

that protects sensitive computations from privileged software and
physical attacks while preserving performance. However, existing
TEEs fall short for FPGA-based SmartNICs. First, the host CPU TEE
cannot secure network functions executing on SmartNICs, as these
functions execute outside the TEE’s security boundary. Second, the
currently available SmartNIC TEE named S-NIC [6] is designed for
software-based network functions running on the SoC CPU, making
it incompatible with hardware-based network functions running in
the FPGA. Third, FPGA TEEs [7], [8]—such as the state-of-the-art
ShEF [8]—target traditional CPU-FPGA acceleration and face key
limitations in context of SmartNIC: (1) ShEF Shield lacks packet I/O
protection, leaving a critical attack surface exposed; (2) ShEF Security
Kernel requires a dedicated SoC CPU, reducing CPU resource for CSP
software; and (3) ShEF Shield presents a complex low-level memory-
mapped interface for memory access, impeding usability and adoption.

To bridge the research gap in this area, we introduce SNO, the first
TEE for FPGA-based SmartNICs, as illustrated in Fig. 1. SNO targets
emerging heterogeneous SmartNIC architectures combining FPGA
(partitioned into shell and role regions) and SoC. To ensure security,
SNO implements three key components: (1) the secure boot verifying
the SmartNIC image, (2) the SNO Manager managing attestation and
network function lifecycles, and (3) the SNO Guard encrypting and
authenticating packet, memory, and register I/O between the user’s
network function and the shell.

In addition to securing network packets, SNO offers three key
advantages: (1) It improves SoC CPU utilization by co-locating the
SNO Manager with CSP software on an SoC CPU while isolating
its security-critical components within the SoC CPU TEE to mitigate
co-location threats. (2) SNO Guard offers a user-friendly streaming
interface for memory access at the frontend, abstracting the complexity
of controlling the memory-mapped interface at the backend. (3) SNO
Guard significantly reduces the performance overhead of authenticated
encryption by integrating a fully-pipelined AES-GCM engine that runs
concurrently with the network function.

This paper makes the following key contributions:
• We identify research gaps in existing security frameworks for

protecting network functions on FPGA-based SmartNICs.
• We propose SNO, the first TEE for FPGA-based SmartNICs,

comprising secure boot, SNO Manager, and SNO Guard. SNO
protects the confidentiality and integrity of user network function.

• We quantitatively evaluate SNO using an FPGA prototype and
RTL simulation. Leveraging the SoC CPU TEE for the SNO
Manager incurs negligible overheads (0.58 seconds for boot and
40 milliseconds for bitstream loading). SoC CPU utilization is
increased by 6.6% on an 8-CPU SoC. SNO Guard introduces a
relative latency overhead of 7.7–143.2% across five network func-
tions, with the absolute overhead under 96 nanoseconds—orders
of magnitude smaller than the latency savings from offloading
(several microseconds). SNO Guard streaming interface reduces
the user memory access code by 86.9% compared to ShEF.

II. BACKGROUND AND MOTIVATION

A. SmartNIC

Unlike traditional NICs, which solely transfer packets between the
host network stack and the network, SmartNICs incorporate onboard
compute and memory resources to enable custom packet processing.
A key use case of SmartNIC is offloading packet-driven network
functions from the host. This offloading offers two main benefits: (1)
reduced latency by avoiding packet transfers to the host and enabling
optimized in-place processing, and (2) freed host CPU cycles by
shifting network stack and application processing to the SmartNIC.

B. FPGA-based SmartNIC

FPGA-based SmartNICs leverage FPGAs as computation units for
packet processing. FPGA offers configurable logic blocks, memory
blocks, and interconnects, which can be used to implement custom
packet processing logic. Packet processing on FPGA delivers orders-
of-magnitude speedup over software-based solutions while maintain-
ing programmability, making them widely adopted.

Figure 2 illustrates the typical FPGA-based SmartNIC architecture
adopted in cloud environments. This architecture consists of four key
components: hardened logic blocks, a system-on-chip (SoC), FPGA,
and off-chip memory. Hardened logic blocks are pre-designed, non-
programmable units optimized for high-speed I/O, such as PCIe and
Ethernet. The SoC integrates general-purpose CPUs (e.g., ARM) and
a full memory hierarchy. While earlier FPGA-based SmartNICs did
not include an SoC, modern designs (e.g., Intel C5000X-PL [9], AMD
SN1000 [10], Alibaba Cloud SmartNIC [11]) increasingly incorporate
the SoC for offloading CSP’s infrastructure software. Including the
SoC in our FPGA-based SmartNIC model aligns with current techno-
logical trends. The FPGA follows the shell-role partition [12], where
the shell is managed by the CSP and the role by the user. Both the
SoC and FPGA interface with independent off-chip memory.

The shell of an FPGA-based SmartNIC serves as the infrastructure
layer for the role and comprises the following components:

• The packet management subsystem handles low-level network
protocols (e.g., physical coding, media access control) on both
transmit (TX) and receive (RX) sides, converting packets between
wire form and user-side streaming signals. On the RX side,
this subsystem matches packet headers against user-defined rules,
forwarding unmatched packets to the host software network stack
while scheduling matched packets for network functions.

• The PCIe direct memory access (DMA) subsystem facilitates data
transfer between the host and FPGA. The host software accesses
FPGA memory regions via Memory-Mapped I/O (MMIO), while
the FPGA initiates DMA to read/write host memory.

• The memory subsystem provides a user interface for accessing
local off-chip memory.

• The interconnect exchanges data among all functional blocks.

N
et

w
or

k
In

te
rfa

ce

PCIe Interface

In
te

rc
on

ne
ct

FPGA Programmable Logic

FPGA-based SmartNIC

Shell Role Hardened Logic Block

RX

TX SoCPa
ck

et
M

an
ag

em
en

t
Su

bs
ys

te
m

In
te

rc
on

ne
ct

PCIe DMA Subsystem

Network Function

Memory Subsystem

CPUs

Off-chip Memory

Off-chip Memory

Fig. 2: Typical FPGA-based SmartNIC architecture used in the cloud.

Leveraging FPGA partial reconfiguration [13], the shell is deployed
as static logic, remaining unchanged during operation, while the role
is implemented as dynamic logic, allowing reconfiguration of its
bitstream without disrupting the shell.

C. Research Gaps

When users perform remote computation on CSP-provided infras-
tructure, data privacy and security are critical concerns. Threats can
originate from both malicious insiders such as system administrators
and external attackers. In an untrusted cloud, users often trust the hard-
ware vendor over the CSP, as vendors are economically motivated to
protect their reputation. Hardware vendors provide TEEs, such as Intel
SGX Enclaves [4], protecting sensitive code and data using hardware-
isolated zones that prevent unauthorized access and tampering.

Research Gap in CPU TEEs: Host CPU TEEs protect appli-
cations from untrusted CSP-controlled privileged software such as
the hypervisor. However, network functions offloaded to FPGA-based
SmartNICs run outside the CPU TEE’s security boundary. Moreover,
CPU TEEs are designed to protect software, whereas FPGA-based
network functions are implemented as hardware circuits.

Research Gap in Prior SmartNIC TEEs: To the best of our
knowledge, S-NIC [6] is the only TEE designed for SmartNICs.
However, it targets scenarios where network functions are offloaded
as software to the SoC CPU. S-NIC relies on CPU-enforced memory
access control to prevent CSP software from observing or tampering
with the network function. In contrast, FPGA-based network functions
are implemented as hardware circuits directly interfacing with the
CSP-controlled shell, leaving all I/O exposed.

Research Gap in Native FPGA Security Enhancements: FPGA
vendors have proposed several security enhancements in their products
[14], including key storage (e.g., eFuse), cryptographic accelerators,
image/bitstream encryption and authentication, and secure boot. How-
ever, these enhancements assume that the FPGA is exclusively owned
by the user. In contrast, in the cloud, the CSP-controlled shell co-
locates with the user’s network function and monitors the network
function’s I/O. While architecting a TEE based on native FPGA
security enhancements is desirable, additional design considerations
are needed for the FPGA-based SmartNIC.

Research Gap in Prior FPGA TEEs: FPGA TEEs for traditional
CPU-FPGA computing offload have recently emerged, with notable
solutions including SGX-FPGA [7] and ShEF [8]. SGX-FPGA, the
first FPGA TEE, aims to protect user data on the host CPU, FPGA,
and the transmission path between them. On the FPGA side, SGX-
FPGA introduces a Security Monitor, trusted by the user, to manage
and encrypt memory I/O for sensitive computing kernels. However,
SGX-FPGA’s Security Monitor is incompatible with the shell-role
architecture used in the cloud, as the Security Monitor overrides
the shell’s I/O monitoring capability. Additionally, SGX-FPGA fails
to address how the Security Monitor’s trustworthiness is ensured,
given the Security Monitor is deployed by an unknown entity. ShEF,

Key Expansion

...
R

ou
nd

 1

R
ou

nd
 2

R
ou

nd
 N

...
Key

Concat

Block Counter

IV
GHASHXOR

Plaintext

12
8-

bi
t C

ou
nt

er

128-bit Plaintext Block

Tag

AAD

AES-CTR AES-GCM

128-bit Ciphertext block
Keystream

Fig. 3: AES-GCM workflow.

the state-of-the-art FPGA TEE, is compatible with the shell-role
architecture. Users connect their accelerators to the ShEF Shield
module, which authenticates and encrypts all I/O. However, ShEF has
several limitations: (1) it lacks packet I/O protection, the most critical
requirement for FPGA-based SmartNICs; (2) it places its Security
Kernel on a dedicated SoC CPU, isolating it from CSP software
but wasting the SoC CPU; and (3) its memory-mapped interface is
complex for users to interact with.

D. Understanding AES-GCM

AES-GCM [15] is a widely adopted authenticated encryption al-
gorithm that protects both confidentiality and integrity in a single
processing step, as illustrated in Fig. 3. The design combines counter-
mode AES (AES-CTR) for encryption and Galois HASH (GHASH)
for authentication. Encryption: A 128-bit counter (96-bit initialization
vector (IV) + 32-bit block counter) is encrypted via AES substitution-
permutation network (10/12/14 rounds for AES-128/192/256-bit key,
respectively), using round keys derived from the secret key. The result-
ing keystream is XORed with a 128-bit plaintext block to produce a
128-bit ciphertext block. Authentication: GHASH processes ciphertext
blocks, additional authenticated data (AAD), and their lengths. Each
block is multiplied by a hash subkey (from AES-encrypting a zero
block) and accumulated iteratively. The final tag is produced by
encrypting the GHASH output with the initial counter. Decryption
regenerates the keystream to recover plaintext and independently
recomputes GHASH for tag verification. A mismatch invalidates the
payload, ensuring tamper detection.

III. THREAT MODEL

Since no standard business model exists for FPGA-based SmartNICs
in the cloud, we define our own as follows. The CSP purchases host
machines and SmartNICs from hardware vendors and offers them
for rental. The CSP installs its software and FPGA shell on the
SmartNIC’s SoC and FPGA. The user rents a virtual machine instance
with SmartNIC acceleration and deploys network functions on the
FPGA. These functions are composed of the user’s in-house logic and
intellectual property (IP) cores from third-party vendors.

In our threat model, the CSP is considered an honest-but-curious
adversary [16]. It follows pre-negotiated protocols, such as resource
allocation, but may attempt to infer sensitive information from the
user’s network function. As such, all privileged software and hardware
under CSP control are untrusted, including the host hypervisor and the
FPGA shell. For example, the CSP can monitor all I/O through the
shell, enabling inspection, recording, or tampering with unprotected
data. Physical attacks on off-chip components—such as host memory
and PCIe links—are also possible due to malicious CSP insiders [17].

We do not consider malicious co-located tenants in our threat model,
as commercial cloud FPGA platforms currently adopt a single-tenant
model [8]. However, SNO inherently mitigates future inter-tenant
attacks: all I/O from a sensitive network function is protected by SNO
Guard’s authenticated encryption, and the secrets are known only to
the owning user.

We assume that the SmartNIC vendor, user, and IP vendor are
trusted. Therefore, the SmartNIC and IP vendor do not intentionally

Host Application

Host CPU TEE

VM

Hypervisor

Host CPU

PC
Ie

SNO Manager CSP Software
SoC CPU TEE

SoC

Shell

Host Off-chip Memory

SNO Guard

FPGA Programmable Logic

AES-GCM
Network Function

Local Off-chip Memory

SNO Runtime

At
te

st

Load/Clear

Host FPGA-based SmartNIC Remote User

Untrusted

Trusted

Control Path Data Path

Network

Fig. 4: High-level system architecture of SNO.

implant attack surfaces like the hardware Trojan in the SmartNICs or
IP cores [18]. We also assume there is a host CPU TEE to protect the
user’s host application. The host application takes charge of offloading
the network function to the SmartNIC, such as performing attestation,
sending the FPGA bitstream to the SmartNIC, and configuring the net-
work function. We assume the user synthesizes the network function
bitstream in a secure environment after the user has obtained necessary
design sources, including the shell interfaces, SNO Guard source code,
IP cores, and FPGA layout constraints. The secure environment can
be a private server owned exclusively by the user.

We do not address side-channel or covert-channel attacks, including
those targeting SmartNIC microarchitecture [6] and FPGA power
consumption [19]. Additionally, denial-of-service attacks are beyond
the scope of this work. However, given the reconfigurable nature of
FPGA, defenses against such attacks can be incorporated in the future.

IV. SNO DESIGN

A. Overview

SNO introduces a TEE for FPGA-based SmartNICs to safeguard
user-deployed network functions. Figure 4 illustrates the system ar-
chitecture. SNO spans both the host and the SmartNIC. On the host,
it assumes the user’s application is protected by existing CPU TEEs
at the virtual machine level, such as Intel TDX [20] and AMD SEV
[21]. On the SmartNIC, the SNO Manager and SNO Guard protect the
network function from CSP software and hardware in both the control
and data paths. The SNO Manager runs inside the SoC CPU TEE
and secures critical operations such as attestation, bitstream loading,
and clearing. The SNO Guard applies AES GCM to encrypt and
authenticate all I/O between the user’s network function and the CSP-
controlled shell.

B. Control Path: Secure Boot, Attestation and SNO Manager

1) Secure Boot: SNO proposes a secure boot to ensure the FPGA-
based SmartNIC only accepts the verified boot image and loads the
SNO Manager to the desired state. During manufacturing, the vendor
installs an AES device key (Kdev) into the FPGA’s eFuse as the Root
of Trust. When the user instructs the CSP to launch the FPGA-based
SmartNIC, the two-stage secure boot sequence begins.

In the first stage, dedicated secure-boot modules (e.g., Platform
Management Unit (PMU) and Configuration and Security Unit (CSU)
of AMD UltraScale+ MPSoC [14]) execute fixed-state machines or
immutable ROM code, with cryptographic integrity verified by each
module before transitioning to the next. The boot image, provisioned
by the SmartNIC vendor, includes bootloaders, firmware for the TEE
(e.g., ARM Trusted Firmware), and an operating system with the TEE
and SNO Manager enabled. While the CSP can deploy its software
code and shell bitstream on the SmartNIC, the CSP cannot alter the
boot image. In the second stage, each part of the boot image is
authenticated and decrypted before loading. SNO secure boot uses the
rolling key features to minimize the risk of Kdev exposure: The part i
of the boot image contains an pair of encrypted AES-GCM operational
key (Kop,i) and IV (IVi), which is encrypted and authenticated by the

SNO Manager Host Application User

Send Challenge

Send

Upload and cryptographic

metadata, encrypted by

Remote
User

1. Generate nonce

2. Calculate

3. = Sign ({Boot Image Hash), , , , },)

4. = Sign (,)

Boot Image Hash, , , ,

Cert (), , ,
Send

1. Verify
2. Generate nonce , calculate

Mutual TLS
Send cryptographic

metadata for network I/O

()

TEE-protected TEE-protected

Fig. 5: SNO attestation procedure.

Kop,i−1 and IVi−1. The first part of the boot image is decrypted by
the Kdev , accomplished by the last secure-boot modules.

2) TEE-protected SNO Manager: The SNO Manager is a daemon
process running in the SoC CPU, responsible for attestation, loading
the CSP’s shell and the user’s network function bitstream onto the
FPGA, and clearing the network function bitstream upon the user’s
request. To enable full-lifecycle SmartNIC attestation, an asymmet-
ric key pair (Devpub/Devpriv) is embedded in the SNO Manager
binary during boot image provisioning. To reduce the risk of key
exposure during runtime attestation, the SNO Manager generates a
fresh ephemeral key pair (Attpub/Attpriv) after secure boot.

The SNO Manager must protect security-critical components from
untrusted CSP software at runtime. These include attestation metadata,
the plaintext network function bitstream, and the operations that
process this data. ShEF [8] addresses this by dedicating an FPGA
SoC CPU to its Security Kernel and storing sensitive data in secure
on-chip memory. However, this design has two key drawbacks: (1)
dedicating a CPU incurs significant resource cost, and (2) secure on-
chip memory is severely limited (e.g., 256KB on AMD UltraScale+
MPSoCs [22]). In contrast, SNO adopts a cost-effective and scalable
solution by leveraging the SoC CPU TEE available in modern FPGA-
based SmartNICs. For instance, the AMD SN1000 [10] includes
sixteen TrustZone-enabled ARM CPUs, enabling the secure execution
of sensitive code and data. Prior work [23], [24] has demonstrated
that TrustZone effectively secures bitstream loading. Therefore, SNO
places its security-critical functions inside a TrustZone-compatible
TEE such as OP-TEE [25], allowing CSP software to co-locate on the
same CPU in the non-secure world. OP-TEE uses TrustZone-enforced
isolation to protect sensitive data and operations, supporting secure
memory regions of several megabytes [26].

3) Attestation: To establish trust between the user’s host applica-
tion and the SNO Manager, SNO employs an attestation procedure
based on standard cryptographic primitives (public key infrastructure
and Diffie-Hellman Key Exchange [27]) executed within the TEE-
protected SNO Manager. At the same time, sensitive data and secrets
are synchronized among the user, host application, SNO Manager,
and the remote user. Figure 5 shows the attestation procedures: ①

User Uploads Encrypted Bitstream and Cryptographic Metadata:
The user uploads the encrypted network function bitstream (Bit)
and SNO Guard cryptographic metadata (including AES-GCM keys
and initial IVs of the Register, Packet, DMA, and Local Memory
Guard) to the host application via a CSP-provided channel. The files
are encrypted with Khost, as the CSP-provided channel is untrusted,
where Khost is the secret key owned by the user, fused into the host

DMA Guard
Network

Function Local Memory

Guard

Packet

Guard

Register Guard

Access Host Memory

Access Local DRAM/HBM

Read

Write

RX

TX

Read

Write

from Host Application

AXI Lite

AXI Stream

AXI Memory-mapped

SNO Guard

Plaintext domain

Ciphertext domain

Frontend Backend

Fig. 6: SNO Guard provides streaming interfaces to the user’s network
function kernel, enabling secure decryption of data while ensuring
integrity protection.

application binary (e.g., via user configuration or secure injection),
and protected by the host CPU TEE. The SNO Guard cryptographic
metadata, fused into Bit during bitstream synthesis, enables secure
data exchange between the host application, remote user, and the
network function. ② Host Application Sends Challenge: The host
application invokes the SNO runtime to send a challenge c to the
SNO Manager to initiate attestation. ③ SNO Manager Generates
Attestation Response: Upon receiving c, the SNO Manager generates
a nonce a, computes ga mod p, and signs the combination of the
boot image hash, g, p, c, and ga mod p with Attpub to produce
signature s. It then sends the boot image hash, g, p, c, ga mod p,
the certificate of Devpub, Attpub, satt, and s to the host application.
④ Host Application Verifies Attestation: The host application verifies
that the certificate of Devpub is signed by a trusted SmartNIC vendor.
It then uses Devpub to verify satt and Attpub to verify s. ⑤ Symmetric
Communication Key Establishes: The host application generates a
nonce b, computes gb mod p, and sends it to the SNO Manager. Both
parties derive a symmetric communication key Kcom = gab mod p,
which is used to exchange data (e.g., Bit) securely. ⑥ Remote User
Setup and Metadata Exchange: The remote user establishes a TLS
session with the host application and acquires cryptographic metadata
of the Packet Guard to exchange packets with the network function.

C. Data Path: SNO Guard

SNO Guard ensures the confidentiality and integrity of I/O ex-
changed between a protected network function and an untrusted shell
that monitors this I/O. Implemented as a hardware module interposing
on the path between network function and shell, SNO Guard authen-
ticates and encrypts all egress I/O leaving the network function. Con-
versely, it decrypts ingress ciphertext I/O before forwarding plaintext
to the NF. This ensures the NF operates solely on plaintext data. The
attestation protocol (§IV-B3) protects the cryptographic keys used by
SNO Guard from disclosure to untrusted entities.

SNO Guard secures all I/O channels associated with the network
function, including host-side register access, host and local memory
accesses, and network packet I/O. Unlike prior work such as ShEF
Shield [8], SNO Guard extends protection to network packet I/O.
This enhancement is essential because offloaded network functions
fundamentally operate on packets.

SNO Guard enables efficient and user-friendly bulk data handling
through streaming interfaces and overlapped execution. Streaming
interfaces for memory access and packet I/O simplify integration by
abstracting the bus interconnect complexity found in memory-mapped
designs like ShEF Shield. SNO Guard overlaps cryptographic process-
ing with network function processing to preserve high performance,
effectively exploiting packet-level parallelism.

1) User-friendly Streaming Interface: SNO Guard provides the
network function with streaming interfaces for three types of data-

intensive I/O, as shown in Fig. 6. ① Network packet reception and
transmission: In FPGA-based SmartNICs [28], [29], network packets
are continuous byte streams carried via streaming interfaces (e.g., AXI
Stream). Packet Guard retains this feature, enabling users to handle
network I/O efficiently. ② Host memory access: Network functions
access shared host memory to exchange data with host applications.
DMA Guard provides a frontend streaming interface with six channels
(three for write/read, including address handshake, data, and response),
simplifying integration for the user by requiring only valid-ready
handshake and data transfer handling. Unlike complex AXI memory-
mapped interfaces [30], [31] adopted by ShEF [8], which involve burst
control, outstanding control, address alignment, and signal dependency
management, DMA Guard removes these complexities in the frontend
interface. On the backend, DMA Guard manages PCIe communica-
tion, supporting AXI memory-mapped interfaces for PCIe bridges or
vendor-specific IPs like AMD QDMA [32]. ③ Local memory access:
Similar to DMA Guard, the Local Memory Guard provides a frontend
streaming interface with a backend that communicates with the shell’s
local memory interface (e.g., AXI memory-mapped).

2) Secure Register Access: Register Guard maintains an industry-
standard register access interface (e.g., AXI Lite) for both the network
function and the untrusted shell. To ensure integrity, the Register Guard
employs a Message Authentication Code (MAC) to protect ciphertext
register values. To preserve the register space layout, Register Guard
reuses the register address for storing the MAC, requiring the host
application to follow a specific write sequence: first writing the
encrypted register value, then writing the MAC (partitioned to adapt
with the register width if necessary). Once the complete MAC is
received, Register Guard verifies the integrity of the encrypted value
and, upon successful authentication, writes the decrypted value to
the network function’s register space. For reads, the host application
issues multiple read operations: the first retrieves the encrypted value,
while subsequent reads fetch the MAC. During read handling, Register
Guard reads the plaintext register value from the network function,
encrypts the register value, and computes the corresponding MAC.

3) AES-GCM Engines: SNO Guard employs the 128-bit-key AES-
GCM engine to ensure the confidentiality and integrity of the network
function’s I/O. AES-GCM was selected due to its proven security and
high performance in memory [33] and packet encryption [34]. The
AES-GCM engine computes an authentication tag during plaintext I/O
encryption and verifies the tag during ciphertext I/O decryption. To
minimize performance overhead of data-intensive I/O, SNO integrates
a fully pipelined AES-GCM implementation for Packet Guard, DMA
Guard, and Local Memory Guard, sustaining a throughput of one
128-bit input per clock cycle in steady-state operation. At a typical
FPGA frequency of 250MHz, the AES-GCM engine can sustain the
bandwidth of 25Gbps Ethernet. AES-GCM engine design supporting
higher network bandwidth like 100Gbps [35] can be seamlessly
integrated into SNO Guard. For Register Guard, which secures 32-
bit register accesses where performance is less critical, SNO employs
a lightweight AES-GCM implementation that processes one 128-bit
input every ten clock cycles, significantly reducing FPGA resource uti-
lization. Leveraging FPGA reconfigurability, users can also customize
the AES-GCM design to balance performance and resource constraints
based on their requirements.

4) Overlapped Execution for Packet-Level Parallelism: To preserve
the acceleration benefits of offloading network functions from the
host to the FPGA-based SmartNIC, SNO Guard must minimize the
performance overhead of AES-GCM within the packet processing
pipeline. To exploit parallelism between SNO Guard and the network
function, we design an overlapped execution flow for consecutive

Network

Function
AES-GCM Engine

FIFO Decoupler

AES-GCM Engine

Without Overlapped

Execution
Packet Guard Network Function DMA Guard

With Overlapped

Execution

Packet Guard DMA Guard

Packet Guard Network Function DMA Guard

Packet Guard Packet Guard
Network Function Network Function

DMA Guard DMA Guard

Latency Reduction

FIFO DecouplerPa
ck

et
-2

Pa
ck

et
-1

Clock

Fig. 7: Overlapped execution in SNO Guard using FIFO decouplers,
reducing latency.

packets, as shown in Fig. 7. The key idea is to decouple SNO
Guard from the network function, effectively hiding AES-GCM engine
latency. A First-In-First-Out (FIFO) buffer with a streaming interface
is implemented as the decoupling mechanism. As illustrated in Fig. 7,
processing of the second packet begins as soon as the first packet
completes Packet Guard processing, rather than waiting for DMA
Guard processing of the first packet. This overlap significantly reduces
overall latency compared to a non-overlapped design.

5) Integrity Protection Considerations: The MAC and version
number (VN) ensure data integrity and protect against replay attacks.
In AES-GCM, the MAC is the GHASH tag of the ciphertext and addi-
tional authenticated data (e.g., packet headers). The VN, concatenated
with a random value, forms the IV for an AES-GCM invocation. Two
key design considerations follow.

• Function-specific Integrity Granularity and Version Number
Protection The data integrity granularity enforced by a MAC
should align with the network function’s data access pattern.
The CPU TEE’s 64-byte cacheline granularity is unsuitable due
to the high overhead of authentication tag computation, MAC
storage, and VN management. For network I/O, Packet Guard
adopts packet-level granularity, assigning one MAC and one VN
per packet. Packet Guard maintains two internal counters: tx_vn
(transmit-side VN) and rx_vn (expected receive-side VN). The
initial tx_vn is negotiated between the host application and
the remote user during the SNO attestation, and rx_vn is
initialized to the remote user’s tx_vn. On packet transmission,
tx_vn is incremented; on reception, Packet Guard verifies the
packet’s VN against rx_vn before decryption and authentication,
ensuring replay attack detection. Notably, Packet Guard’s MAC
and VN management operate independently of network transport
protocols, which remain under the control of an untrusted shell
[36]. For host or local memory I/O, the protection granularity is
function-specific. For instance, in multi-slot DMA ring buffers
used for communication between host and the network function,
slot-level granularity can be enforced, with a global VN managed
by DMA Guard and the host application.

• Pipeline-efficient MAC Placement: To maximize pipeline effi-
ciency, the MAC should follow the ciphertext. Figure 8 compares
two network packet structures and their ciphertext output timing
in Packet Guard. Since the AES-GCM standard finalizes the au-
thentication tag after processing all ciphertext and AAD, placing
the MAC after the ciphertext naturally aligns with the algorithm’s
data flow, avoiding pipeline stalls or buffering that would occur
if the MAC needed to precede the ciphertext. Furthermore, users
must allocate sufficient ciphertext buffer space to enable DMA
Guard and Local Memory Guard to append the MAC after the
ciphertext in a single memory transfer, avoiding initiating separate
memory transfers for the ciphertext and the MAC.

6) Cache for Memory Access: BRAM- or URAM-based internal
caches can be optionally embedded in DMA Guard and Local Memory
Guard to reduce performance overhead for repeated data access. The

Header

MAC

Payload

Header

MAC

Payload

Pipeline-efficient Pipeline-inefficient

Ciphertext

MAC

MAC

Ciphertext MAC

Ciphertext

Clock

Latency Reduction

Fig. 8: The pipeline-efficient approach reduces ciphertext output
latency compared to alternative MAC placements.

internal cacheline can be designed to match the memory integrity
protection granularity, storing plaintext data. Encryption and authenti-
cation occur only when a cacheline is evicted, while cache line fetches
from off-chip memory involve decryption and integrity verification
using the corresponding MAC. One key design consideration follows.
Cache should be used carefully: If FPGA resource constraints allow,
caching can be beneficial for memory exclusively owned by the
network function. As demonstrated by ShEF [8], caching significantly
improves performance for workloads with high locality. However, for
memory shared between the network function and the host application,
caching should be bypassed to ensure memory coherence. For exam-
ple, if the writes to host memory to notify the host of an event, writes
cached in DMA Guard remain invisible to the host CPU’s memory
controller, preventing timely event processing.

V. EVALUATION

We first quantitatively evaluate SNO across the following dimen-
sions: data path performance, control path performance, SoC CPU
utilization, user friendliness, and FPGA resource consumption. Finally,
we provide an informal security analysis of SNO.

A. Experimental Setup

1) RTL Simulation: We describe SNO Guard at the register-transfer
level (RTL) using SystemVerilog to evaluate its cycle-accurate perfor-
mance overhead and detailed FPGA resource consumption. The AES-
GCM engine in SNO Guard is implemented based on an open-source
design [37]. To determine SNO Guard’s upper-bound performance,
we employ a fully pipelined AES-GCM engine by default. However,
a more resource-efficient AES-GCM configuration can be used when
actual performance requirements are lower. Host memory access is
simulated using the DDR4 model from the Alibaba Cloud FPGA
Simulation Platform [38]. Currently, PCIe-related latency for host
memory access is not modeled due to the lack of an available sim-
ulation model. Including PCIe latency in the performance evaluation
would reduce SNO Guard’s relative performance overhead. The typical
PCIe latency (over 800 ns [39]) is an order of magnitude larger than
the maximum absolute overhead introduced by SNO Guard (96 ns),
reinforcing that SNO’s impact is negligible within the end-to-end data
path. For simulation and resource analysis, we use AMD Vivado
2023.2, targeting the xcu200-fsgd2104-2-e FPGA, which is similar
to the FPGA used in AWS F1 instances.

2) FPGA Prototype: We prototype the TEE-protected bitstream
loader of SNO Manager on an AMD Zynq UltraScale+ MPSoC
ZU3EG, focusing on the secure boot and TEE-protected bitstream
loading mechanism. OP-TEE v3.18.0 runs on the ARM Cortex-A53
CPU, providing a secure execution environment alongside the non-
secure Linux kernel. The SNO bitstream loader operates as a Pseudo
Trusted Application at EL1 in the Secure World, ensuring hardware-
enforced isolation. For comparison, we implement the ShEF [8]
bitstream loader as a bare-metal application on the same platform.
Both implementations follow identical bitstream loading sequences to
ensure a fair evaluation. The tools used include AMD Vivado 2023.2,
AMD Vitis 2023.2, and Petalinux 2023.2.

3) Benchmarks: To evaluate the performance overhead of SNO
Guard, we selected a diverse set of popular network functions typically
offloaded to SmartNICs, including Aggregate, Histogram, All Reduce,
Filtering, and Strided DDT. These five workloads are derived from the
PsPIN SmartNIC benchmark [40] and recent FPGA-based SmartNIC
research [41]. Since these workloads were neither designed for FPGA-
based SmartNICs nor available as open-source, we reimplement them
in SystemVerilog, ensuring adherence to their specified functionalities.

• Aggregate: Accumulates packet payloads in 4-byte granularity
into an internal 8-byte accumulator and writes the accumulator
to host memory at the end.

• Histogram: Increments frequency counts in a 4096-bin histogram
based on packet payloads and notifies the host with an 8-byte
DMA write at the end.

• All Reduce: Reduces gradients in the incoming packet payload
into a local gradient block and sends the neighboring gradient
block to the network.

• Filtering: Computes a hash from the source IP using Jenkins
Lookup3, modifies the UDP destination port based on the hash
value, and writes the modified packet to host memory.

• Strided DDT: Performs direct data transfer (DDT) that copies
packet payloads to host memory using a specified starting address
and stride.

B. Data Path Performance Evaluation

64 128 256 512 1024
Packet Payload Size (Bytes)

0

20

40

60

80

100

Pa
ck

et
 F

or
w

ar
di

ng
 L

at
en

cy
 (C

yc
le

)

+6
50

.0
%

+6
25

.0
%

+3
25

.0
%

+3
12

.5
%

+1
62

.5
%

+1
56

.2
% +8

1.
2%

+7
8.

1%

+4
0.

6%

+3
9.

1%

(a)

RX Unsecure
RX Packet Guard
TX Unsecure
TX Packet Guard

64 128 256 512 1024
Memory Access Request Size (Bytes)

0

20

40

60

80

100

120

140

M
em

or
y

Ac
ce

ss
 L

at
en

cy
 (C

yc
le

)

+1
50

.0
%+8

4.
8%

+1
16

.7
%+6

6.
7%

+8
0.

8%

+4
6.

8%

+5
0.

0%

+2
8.

8%

+2
3.

0%

+2
3.

5%

(b)

RD Unsecure
RD DMA Guard
WR Unsecure
WR DMA Guard

Fig. 9: (a) Packet forwarding latency comparison between Packet
Guard and Unsecure, (b) Memory access latency comparison between
DMA Guard and Unsecure, with relative latency overhead to the
Unsecure baselines annotated.

1) Micro-Benchmark: We use micro-benchmarks to analyze the raw
performance overhead of Packet and DMA Guard, independent of
upstream and downstream network functions. ① For Packet Guard,
we measure packet forwarding latency for ciphertext and plaintext
packet in both RX and TX directions. The baseline (Unsecure) con-
figuration forwards packets without additional processing. Figure 9(a)
compares RX/TX latency between Unsecure and Packet Guard across
increasing packet payload sizes. ② For DMA Guard, we evaluate
memory access latency for one write (WR) and read (RD) request.
The baseline (Unsecure) configuration performs direct memory access
without additional processing. Direct quantitative comparison with
ShEF Shield’s DMA [8] is challenging due to fundamental differences
in cryptographic algorithms and enforced transfer granularity. First,
DMA Guard leverages AES-GCM, which offers greater parallelism
than ShEF Shield’s AES+HMAC [42]. Second, ShEF Shield enforces
fixed 4096-byte transfers (64-byte bus width, cache-bypass mode)
regardless of application demand, leading to mismatched workload
assumptions for fine-grained I/O. Figure 9(b) compares WR/RD la-
tency between Unsecure and DMA Guard with increasing memory
access request size. The relative latency overhead of Packet and DMA
Guard is computed against their Unsecure baselines.

We derive two key observations from Fig. 9. First, the relative
latency overhead decreases as the size of protected data increases. The

64 128 256 512 1024
Packet Payload Size (Bytes)

0

20

40

60

80

100

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

) Aggregate

+2
66

.7
%

+1
84

.6
%

+1
14

.3
% +6

4.
9%

+34.8%

64 128 256 512 1024
Packet Payload Size (Bytes)

0

50

100

150

200

250

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

) Histogram

+7
0.

0%

+1
6.

7% +8
.8

%

+4
.5

%

+2.3%

64 128 256 512 1024
Packet Payload Size (Bytes)

0

20

40

60

80

100

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

) All_Reduce

+2
33

.3
%

+1
61

.5
%

+1
00

.0
% +5

6.
8%

+30.4%

64 128 256 512 1024
Packet Payload Size (Bytes)

0

25

50

75

100

125

150

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

) Filtering

+7
8.

9%

+6
5.

2%

+2
0.

5%

+7
.0

%

+2.9%

64 128 256 512 1024
Packet Payload Size (Bytes)

0

25

50

75

100

125

150

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

) Strided_DDT

+1
75

.0
%

+8
5.

0%

+2
7.

8%

+7
.4

%

+3
.8

%

Unsecure Packet Guard Only DMA Guard Only Packet and DMA Guard

Fig. 10: Average packet processing latency comparison of Unsecure, Packet Guard, DMA Guard, and both Packet and DMA Guard across the
five network functions, with the relative processing latency overhead to the Unsecure baseline annotated.

64 128 256 512 1024
Packet Payload Size (Bytes)

0

100

200

300

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

)

Aggregate (Packet Guard Only)

-1
7.

1%

-1
5.

4%

-1
2.

8%

-9
.5

% -6
.3

%

64 128 256 512 1024
Packet Payload Size (Bytes)

0

100

200

300

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

)

Histogram (Packet Guard Only)

-3
2.

6%

-3
7.

1% -2
4.

5%

-1
4.

6%

-8
.0

%

Without Overlapped Execution With Overlapped Execution

Fig. 11: Impact of overlapped execution on Packet Guard, with the
relative processing latency reduction annotated.

AES-GCM engine is fully pipelined, meaning that after initializing
the first keystream block upon receiving a new IV, the AES-GCM
engine seamlessly encrypts or decrypts the entire data stream with
only a single additional clock cycle of overhead—regardless of the
total number of processed blocks. Since the AES-GCM initialization
latency remains constant, its amortized impact diminishes as data
size grows. Second, Packet Guard incurs a higher relative latency
overhead than DMA Guard. This discrepancy arises because off-chip
memory accesses exhibit significantly higher latency compared to
packet forwarding. Consequently, the AES-GCM initialization latency
is more effectively amortized in DMA operations.

2) Performance Evaluation on Network Functions: Figure 10 com-
pares network function performance across varying security levels.
The baseline (Unsecure) does not protect network or host memory
I/O, while the highest security level integrates both Packet and DMA
Guard. Intermediate configurations deploy either Packet or DMA
Guard independently. Performance is evaluated as the average packet
processing latency over eight consecutive packets, with each packet
injected as soon as the network function becomes ready.

We derive three key observations from Fig. 10. First, the geometric
mean of relative processing latency overhead across the five network
functions ranges from 7.7% to 143.2% (corresponding to absolute
overheads between 56 ns and 96 ns at the 250 MHz FPGA frequency).
We conclude that SNO Guard-protected network functions maintain
the performance benefit of offloading, as the incurred overhead re-
mains well below an order of magnitude of the software network
stack latency (a few microseconds [43]). Second, SNO Guard’s
relative overhead decreases with larger packet payloads due to (1)
greater amortization of the fixed AES-GCM initialization latency and
(2) improved efficiency from overlapping execution across a wider
processing window. Third, functions with minimal I/O and higher
computational complexity exhibit lower overhead: reduced I/O lessens
data protection overhead, while increased computational intensity
amortizes SNO Guard’s latency and further expands the overlapping
execution window.

3) Ablation Study: To assess the effectiveness of overlapped exe-
cution in SNO Guard, we selectively disable the overlapped execution
in Packet Guard and DMA Guard and measure the processing latency

64 128 256 512 1024
Packet Payload Size (Bytes)

0

50

100

150

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

)

Filtering (DMA Guard Only)

-1
3.

9%

-1
2.

5%

-2
1.

4% -1
7.

0%

-9
.9

%

64 128 256 512 1024
Packet Payload Size (Bytes)

0

50

100

150

Pr
oc

es
si

ng
 L

at
en

cy
 (C

yc
le

)

Strided_DDT (DMA Guard Only)

3.
0% -7
.1

%

-1
8.

3% -1
7.

5%

-1
0.

0%

Without Overlapped Execution With Overlapped Execution

Fig. 12: Impact of overlapped execution on DMA Guard, with the
relative processing latency reduction annotated.

across different network functions. Figure 11 illustrates the perfor-
mance impact of overlapped execution in Packet Guard for Aggregate
and Histogram, with DMA Guard disabled. Similarly, Figure 12
presents the performance impact of overlapped execution in DMA
Guard for Filtering and Strided DDT, with Packet Guard disabled.
We compute the relative latency reduction of overlapped execution by
comparing it against a non-overlapped baseline.

We derive three key insights from Fig. 11 and Fig. 12. First,
overlapped execution significantly reduces processing latency by 6.3%
to 37.1% for Packet Guard (Aggregate, Histogram) and 7.1% to
18.3% for DMA Guard (Filtering, Strided DDT). Second, its benefits
scale with network function complexity. For example, Histogram’s
bin dependencies introduce higher execution latency compared to
Aggregate, widening the overlapping window for Packet Guard’s
AES-GCM engine. Similarly, Filtering’s hash computation makes it
compute-intensive compared to Strided DDT, enhancing the effective-
ness of overlapped execution. Third, DMA Guard incurs performance
degradation for Strided DDT at 64-byte payloads due to a 3-cycle
FIFO overhead per packet, outweighing the gains from overlapped
execution. However, enabling both Packet and DMA Guards together
outperforms DMA Guard alone at 64-byte payloads, as shown in
Fig. 10, where Packet Guard increases upstream execution latency,
amplifying the benefits of overlap.

64 128 256 512 1024

Packet Payload Size (Bytes)

0

200

400

600

R
el

at
iv

e
O

ve
rh

ea
d

(%
)

1 AES-GCM Engine
2 AES-GCM Engines

3 AES-GCM Engines
4 AES-GCM Engines

Fig. 13: Relative packet forwarding latency overhead of RX Packet
Guard with varying numbers of AES-GCM engines.

4) Discussion: Reducing Performance Overhead. We propose an
approach to further reduce performance overhead without compromis-
ing security. Deploying multiple AES-GCM engines in round-robin
amortizes the fixed initialization latency, which dominates overhead

Bitstream Size ShEF SNO SNO Overhead
1.44MiB 33.2 ms 76.1 ms 42.9 ms
2.95MiB 60.9 ms 104.9 ms 44.0 ms

TABLE I: Comparison of FPGA bitstream loading latency between
ShEF and SNO.

0 20 40 60 80
Time Slot

0.8

0.9

1.0

So
C

CP
U

Ut
iliz

at
io

n

SNO (8 SoC CPUs)
ShEF (8 SoC CPUs)

SNO (16 SoC CPUs)
ShEF (16 SoC CPUs)

Fig. 14: SoC CPU utilization comparison between SNO and ShEF.

for small packets. The initialization process is security-critical, as each
encryption requires a unique IV. Our proposal trades FPGA resources
for performance: with m engines, the effective initialization interval
drops from N to N

m
cycles. Figure 13 shows the relative packet

forwarding latency overhead of RX Packet Guard using 1 to 4 AES-
GCM engines. While multiple engines substantially reduce overhead
for small packets, the benefit diminishes with larger packets.

Performance Overhead at Higher Network Bandwidth (e.g.,
100Gbps). SNO Guard maintains constant performance overhead as
network bandwidth scales, assuming sufficient FPGA resources. At
100Gbps and 250MHz, four 128-bit data blocks arrive per cycle, but
a single AES-GCM pipeline processes only one block per cycle. We
use the parallel-pipelined AES-GCM engine [35], which incorporates
four AES-CTR pipelines and four GHASH units to enable four-way
block processing in the steady state. Final tag generation incurs only
one additional cycle to aggregate partial GHASH results.

C. Control Path Performance Evaluation

First, we evaluate the boot time overhead of OP-TEE initialization
for SNO on our FPGA prototype. We measure the boot time of a base-
line image (without OP-TEE) and an OP-TEE-enabled image across
three iterations. The results show that OP-TEE adds 0.58 seconds on
average to the boot process—a negligible overhead compared to the
39+ seconds required for VM setup in public clouds [44].

Second, we evaluate the FPGA bitstream loading latency of SNO
Manager’s TEE-protected loader compared to the ShEF loader. Table
I shows that SNO introduces a consistent 40-millisecond overhead
compared to ShEF. This overhead is negligible for network functions,
which typically run for minutes to hours [6].

D. SoC CPU Utilization Improvement

SNO Manager can be co-located with CSP software on the SoC
CPU, increasing the available SoC CPU resource for the CSP soft-
ware. We model SoC CPU utilization to compare SNO and ShEF
quantitatively. Assume the SoC has M SoC CPUs. In each time slot,
the SNO Manager or the ShEF Security Kernel occupies x SoC CPUs,
where x follows a uniform distribution between 0 and 1 for the SNO
Manager but is fixed at 1 for the ShEF Security Kernel. SoC CPU
utilization is defined as M−x

M
, representing the available SoC CPUs

for the CSP. Figure 14 shows that the SNO Manager achieves higher
SoC CPU utilization, which improves the SoC CPU utilization by
6.6% and 3.3% for 8- and 16-CPU SoC.

E. User Friendliness Improvement

We evaluate user friendliness by comparing line-of-code (LoC)
requirements for SNO Guard’s streaming interface and ShEF Shield’s
memory-mapped interface. For the Strided DDT workload, SNO
Guard requires only 89 LoC, an 86.9% reduction from the 675 LoC

Aggregate Histogram All_Reduce Filtering Strided_DDT
Workload Type

0

1

2

3

R
es

ou
rc

e
C

on
su

m
pt

io
n

(%
)

CLB LUT CLB REG CARRY8 F7MUX F8MUX BRAM

Fig. 15: Resource consumption of SNO Guard across workloads.

needed for the memory-mapped baseline (aligned via SNO DMA
Guard’s backend for a fair comparison). This reduction highlights
SNO Guard’s user friendliness, enabling simpler integration, lower
complexity, and faster user adoption.

F. Resource Consumption

We evaluate the FPGA resource consumption of SNO Guard,
including CLB LUT, CLB REG, CARRY8, F7MUX, F8MUX, and
BRAM. Since FIFO decoupler usage varies across network functions,
we report SNO Guard’s consumption separately in Fig. 15, adjusting
FIFO depths based on network function requirements. We have the
following key result: SNO Guard incurs acceptable resource overhead,
with CLB LUT usage below 4% and other resources below 1% in
cloud FPGA settings.

SNO Guard’s resource consumption scales with network bandwidth.
For example, the AES-GCM engine dominates the resource, consum-
ing 85.5–96.8% of total CLB LUTs across all workloads. The parallel-
pipelined [35] architecture linearly increases both AES-CTR pipelines
and GHASH modules, resulting in near-linear CLB LUT scaling with
network bandwidth.

G. Security Analysis

Attacks from the CSP. All I/O of a network function exposed
to the CSP-controlled shell is secured via AES-GCM authenticated
encryption. The shell, while monitoring all I/O (network packets, host
DMA, memory accesses), cannot compromise data confidentiality or
integrity without the correct keys and IVs. The CSP has no access
to the correct combination of AES key and IV due to: (1) The host
application safeguards these secrets in host CPU TEE; (2) The secrets
within the network function are physically inaccessible from the CSP.

Physical Attacks on the Off-chip Components All I/O of a network
function residing in local and host memory and traversing PCIe
links is secured using AES-GCM authenticated encryption. AES-
GCM keys and IVs are exclusively provisioned by users within
secure environments. For instance, DMA symmetric keys are fused
into encrypted bitstreams during network function synthesis. In our
threat model, attackers cannot extract keys through package tampering,
restricting their capabilities to (1) passively observing ciphertext (with
confidentiality preserved) or (2) actively attempting data modifications
(which are immediately detected through integrity verification).

VI. CONCLUSION

Ensuring the security of network functions on FPGA-based Smart-
NICs is crucial for sensitive users. We present SNO, the first TEE
designed to enable secure, high-performance, and user-friendly of-
floading on FPGA-based SmartNICs. SNO consists of three key
components: a secure boot mechanism for a verified execution envi-
ronment, the TEE-hosted SNO Manager for secure network function
deployment, and the SNO Guard with a streaming interface for I/O
protection. Our evaluations demonstrate that SNO introduces negligi-
ble overhead, maintaining the acceleration benefits of offloading.

REFERENCES

[1] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
accelerated networking:smartnics in the public cloud,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18),
2018, pp. 51–66.

[2] R. Miao, L. Zhu, S. Ma, K. Qian, S. Zhuang, B. Li, S. Cheng, J. Gao,
Y. Zhuang, P. Zhang et al., “From luna to solar: the evolutions of the
compute-to-storage networks in alibaba cloud,” in Proceedings of the
ACM SIGCOMM 2022 Conference, 2022, pp. 753–766.

[3] W. Lin, Y. Shan, R. Kosta, A. Krishnamurthy, and Y. Zhang, “Supernic:
An fpga-based, cloud-oriented smartnic,” in Proceedings of the 2024
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2024, pp. 130–141.

[4] V. Costan, “Intel sgx explained,” IACR Cryptol, EPrint Arch, 2016.
[5] W. Jansen, T. Grance et al., “Guidelines on security and privacy in public

cloud computing,” 2011.
[6] Y. Zhou, M. Wilkening, J. Mickens, and M. Yu, “Smartnic security

isolation in the cloud with s-nic,” in Proceedings of the Nineteenth
European Conference on Computer Systems, 2024, pp. 851–869.

[7] K. Xia, Y. Luo, X. Xu, and S. Wei, “Sgx-fpga: Trusted execution environ-
ment for cpu-fpga heterogeneous architecture,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2021, pp. 301–306.

[8] M. Zhao, M. Gao, and C. Kozyrakis, “Shef: Shielded enclaves for
cloud fpgas,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2022, pp. 1070–1085.

[9] Intel, “Fpga ipu platform c5000x-pl,” https://www.intel.com/content/
www/us/en/products/details/fpga/platforms/ipu/c5000x-pl-platform.html,
2025, accessed: 2025-03-24.

[10] AMD, “Amd alveo sn1000 smartnic accelerator card,” https://www.
amd.com/en/products/accelerators/alveo/sn1000/a-sn1022-p4.html, 2025,
accessed: 2025-03-24.

[11] X. Li, X. Jiang, Y. Yang, L. Chen, Y. Wang, C. Wang, C. Xu, Y. Lv,
B. Yang, T. Wu et al., “Triton: A flexible hardware offloading architecture
for accelerating apsara vswitch in alibaba cloud,” in Proceedings of the
ACM SIGCOMM 2024 Conference, 2024, pp. 750–763.

[12] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al.,
“A reconfigurable fabric for accelerating large-scale datacenter services,”
ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 13–24,
2014.

[13] K. Vipin and S. A. Fahmy, “Fpga dynamic and partial reconfiguration:
A survey of architectures, methods, and applications,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–39, 2018.

[14] E. Peterson, “Developing tamper-resistant designs with zynq ultrascale+
devices,” Xilinx Application Note, 2018.

[15] M. J. Dworkin, “Recommendation for block cipher modes of operation:
Galois/counter mode (gcm) and gmac,” 2007.

[16] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries,” Tech.
Rep, 2014.

[17] W. R. Claycomb and A. Nicoll, “Insider threats to cloud computing:
Directions for new research challenges,” in 2012 IEEE 36th annual
computer software and applications conference. IEEE, 2012, pp. 387–
394.

[18] M. Ye, X. Feng, and S. Wei, “Hisa: Hardware isolation-based secure
architecture for cpu-fpga embedded systems,” in 2018 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD). IEEE, 2018,
pp. 1–8.

[19] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel attacks,”
in 2018 IEEE symposium on security and privacy (SP). IEEE, 2018,
pp. 229–244.

[20] P.-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel tdx demystified: A top-down ap-
proach,” ACM Computing Surveys, vol. 56, no. 9, pp. 1–33, 2024.

[21] A. Sev-Snp, “Strengthening vm isolation with integrity protection and
more,” White Paper, January, vol. 53, no. 2020, pp. 1450–1465, 2020.

[22] AMD, “On-chip memory,” https://docs.amd.com/r/en-US/
ug1085-zynq-ultrascale-trm/On-chip-Memory, 2025, accessed: 2025-03-
20.

[23] M. Gross, K. Hohentanner, S. Wiehler, and G. Sigl, “Enhancing the
security of fpga-socs via the usage of arm trustzone and a hybrid-tpm,”

ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 15, no. 1, pp. 1–26, 2021.

[24] Y. Wang, X. Chang, H. Zhu, J. Wang, Y. Gong, and L. Li, “Towards
secure runtime customizable trusted execution environment on fpga-soc,”
IEEE Transactions on Computers, vol. 73, no. 4, pp. 1138–1151, 2024.

[25] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-tee–
an open virtual trusted execution environment,” in 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 400–407.

[26] B. Hu, Y. Wang, J. Cheng, T. Zhao, Y. Xie, X. Guo, and Y. Chen,
“Secure and efficient mobile dnn using trusted execution environments,”
in Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security, 2023, pp. 274–285.

[27] Wikipedia contributors, “Diffie–hellman key exchange — Wikipedia,
the free encyclopedia,” 2025, [Online; accessed 30-March-2025].
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Diffie%
E2%80%93Hellman key exchange&oldid=1279458222

[28] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, “Corundum: An
open-source 100-gbps nic,” in 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2020, pp. 38–46.

[29] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “Panic: A
high-performance programmable nic for multi-tenant networks,” in 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 2020, pp. 243–259.

[30] R. Bhaktavatchalu, B. S. Rekha, G. A. Divya, and V. U. S. Jyothi, “Design
of axi bus interface modules on fpga,” in 2016 International Confer-
ence on Advanced Communication Control and Computing Technologies
(ICACCCT). IEEE, 2016, pp. 141–146.

[31] M. Zonta-Roudes, A. Meza, N. Hinderling, L. Deutschmann, F. Restuccia,
R. Kastner, and S. Shinde, “expect: On the security implications of
violations in axi implementations,” in Proceedings of the 43rd IEEE/ACM
International Conference on Computer-Aided Design, 2024, pp. 1–9.

[32] AMD, “Dma for pci express (pcie) subsystem,” https://www.xilinx.com/
products/intellectual-property/pcie-dma.html, 2025, accessed: 2025-03-
18.

[33] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Im-
proving cost, performance, and security of memory encryption and
authentication,” ACM SIGARCH Computer Architecture News, vol. 34,
no. 2, pp. 179–190, 2006.

[34] J. Salowey, A. Choudhury, and D. McGrew, “Aes galois counter mode
(gcm) cipher suites for tls,” Tech. Rep., 2008.

[35] L. Henzen and W. Fichtner, “Fpga parallel-pipelined aes-gcm core for
100g ethernet applications,” in 2010 Proceedings of ESSCIRC. IEEE,
2010, pp. 202–205.

[36] D. Korolija, T. Roscoe, and G. Alonso, “Do os abstractions make sense
on fpgas?” in 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), 2020, pp. 991–1010.

[37] BLu85, “Aes-gcm-128-192-256-bits,” https://github.com/BLu85/
AES-GCM-128-192-256-bits, 2023, gitHub repository.

[38] A. Cloud, “Alibaba cloud fpga: Open-source fpga development resources,”
https://github.com/aliyun/alibabacloud-fpga, 2019, gitHub repository.

[39] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo, and
A. W. Moore, “Understanding pcie performance for end host networking,”
in Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, 2018, pp. 327–341.

[40] S. Di Girolamo, A. Kurth, A. Calotoiu, T. Benz, T. Schneider, J. Beránek,
L. Benini, and T. Hoefler, “A risc-v in-network accelerator for flexible
high-performance low-power packet processing,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 958–971.

[41] R. Ma, E. Georganas, A. Heinecke, S. Gribok, A. Boutros, and E. Nurvi-
tadhi, “Fpga-based ai smart nics for scalable distributed ai training
systems,” IEEE Computer Architecture Letters, vol. 21, no. 2, pp. 49–
52, 2022.

[42] S. Gueron, “Aes-gcm for efficient authenticated encryption–ending the
reign of hmac-sha-1,” Real-World Cryptography, 2013.

[43] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A study of networking software induced
latency,” in 2015 International Conference and Workshops on Networked
Systems (NetSys). IEEE, 2015, pp. 1–8.

[44] K. Hoffman, “Comparing the speed of vm creation and ssh access of
cloud providers,” https://blog.cloud66.com/, 2017.

