
Streamline Ring ORAM Accesses through Spatial

and Temporal Optimization

Dingyuan Cao∗†, Mingzhe Zhang†, Hang Lu†, Xiaochun Ye†‡, Dongrui Fan†, Yuezhi Che§ and Rujia Wang§

∗Tsinghua University, Beijing, China
†State Key Laboratory of Computer Architecture, ICT, CAS, Beijing, China

‡State Key Laboratory of Mathematical Engineering and Advanced Computing, China
§Illinois Institute of Technology

cdy17@mails.tsinghua.edu.cn, {zhangmingzhe, luhang, yexiaochun, fandr}@ict.ac.cn, yche3@hawk.iit.edu, rwang67@iit.edu

Abstract—Memory access patterns could leak temporal and
spatial information in a sensitive program; therefore, obfuscated
memory access patterns are desired from the security perspective.
Oblivious RAM (ORAM) has been the favored candidate to
eliminate the access pattern leakage through randomly remap-
ping data blocks around the physical memory space. Meanwhile,
accessing memory with ORAM protocols results in significant
memory bandwidth overhead. For each memory request, after
going through the ORAM obfuscation, the main memory needs
to service tens of actual memory accesses, and only one real
access out of them is useful for the program execution. Besides,
to ensure the memory bus access patterns are indistinguishable,
extra dummy blocks need to be stored and transmitted, which
cause memory space waste and poor performance.

In this work, we introduce a new framework, String ORAM,
that accelerates the Ring ORAM accesses with Spatial and
Temporal optimization schemes. First, we identify that dummy
blocks could significantly waste memory space and propose a
compact ORAM organization that leverages the real blocks
in memory to obfuscate the memory access pattern. Then,
we identify the inefficiency of current transaction-based Ring
ORAM scheduling on DRAM devices and propose an effective
scheduling technique that can overlap the time spent on row
buffer misses while ensuring correctness and security. With
a minimal modification on the hardware and software, and
negligible impact on security, the framework reduces 30.05%

execution time and up to 40% memory space overhead compared
to the state-of-the-art bandwidth-efficient Ring ORAM.

Index Terms—Ring ORAM, Performance, Space Efficiency,
Security

I. INTRODUCTION

As protecting data security and privacy becomes increas-

ingly critical, modern computing systems start to equip trusted

hardware to protect the computation and data from various

attacks. For example, we see industrial standard trusted com-

puting modules such as Trusted Computing Module (TPM)

[1], eXecute Only Memory (XOM) [2], Trusted Execution

Technology (TXT) [3], Intel SGX [4], AMD SME [5], ARM

Mingzhe Zhang, Rujia Wang and Dingyuan Cao have equal contribution.
This work was performed while Dingyuan Cao was an undergraduate research
intern at ICT, CAS. This work is supported in part by National Natural Science
Foundation of China grants No. 62002339, No. 61732018, the Strategic
Priority Research Program of the Chinese Academy of Sciences under grant
No. XDB44030200, the Open Project Program of the State Key Laboratory
of Mathematical Engineering and Advanced Computing (No. 2019A07) and
the CARCH Innovation Project (CARCH4506).

TrustZone [6], as well as academic secure processor prototypes

such as AEGIS [7], ASCEND [8]. It is clear to see that the

current trusted computing base (TCB) is still small and limited,

which includes part of the processor plus partial memory

space. The majority of components in the system, such as the

main memory, storage device, and the interconnections, are

still vulnerable to various attacks. For example, if the memory

access patterns are leaked to the adversary, the program

that is being executed may be inferred through the Control

Data Flow Graph reconstruction [9]. Researchers have also

discovered that on a remote data storage server with searchable

encryption, access patterns can still leak a significant amount

of sensitive information [10]. Some recent attacks show that

neural network architecture [11] and RSA keys [12] can be

reconstructed through the memory access patterns.

To completely remove the potential leakage through the

memory access pattern we need to obfuscate the access

patterns that the adversary may observe. Oblivious RAM

(ORAM), as a cryptographic approach, provides a complete

set of access and remap operations that can randomly move

the data blocks in the memory to a different physical address

after each access [13]. The basic idea of ORAM is to utilize

dummy blocks for obfuscation. For each memory access,

dummy blocks are fetched together with the real block. After

each memory access, the location of the accessed block is

reassigned so that the temporal and spatial access pattern can

be hidden. As a result, an outside attacker cannot infer the type

of access or whether the user is accessing the same data repeat-

edly. Because of the redundancy of dummy blocks, ORAM

comes with a high overhead, which motivates the ORAM

designers to optimize its theoretical performance. Through

decades of advances in cryptography, tree-based ORAMs show

great potential to be adopted in main memory systems with

relatively efficient bandwidth and storage overhead. For ex-

ample, Path ORAM [14] translates one memory access into a

full path operation, and has been made into hardware prototype

[15] and integrated with SGX [16]. Further, Ring ORAM [17]

optimizes the online data read overhead by selectively reading

blocks along the path, and reduces overall access bandwidth by

2.3× to 4× and online bandwidth by more than 60× relative

to the Path ORAM [17].

14

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

978-1-6654-2235-2/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00012

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
22

35
-2

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
51

64
7.

20
21

.0
00

12

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

While Ring ORAM is efficient in terms of theoretical

bandwidth overhead (log(N), where N is the total data blocks

in the ORAM tree), when implemented on real memory

system, we identify that both space and access efficiency

require further optimization. Since we need to reserve and

store abundant dummy blocks in the memory or storage de-

vices, the off-chip memory effective utilization rate decreases

significantly. Also, Ring ORAM accesses show biased locality

during different access phases, even with the optimal subtree

layout is applied. The read path operation selectively read

blocks along a path, leading to relatively low row buffer hit

rate; eviction operation reads and then writes on a full path

and shows much better utilization of the subtree layout. As a

result, implementing Ring ORAM on main memory devices

requires further optimizations with hardware implications to

minimize additional overhead.

This motivates us to rethink the existing ORAM design:

can we achieve access and space efficiency while ensuring the

memory access pattern is well obfuscated? In this work, we

propose String ORAM with a set of schemes that are aiming

at achieving such goals. We first quantitatively analyze the

memory space waste of state-of-art ORAMs due to the dummy

blocks. Then, we dig into the behavior of DRAM bank during

each ORAM access, and find the opportunity to squeeze more

command into one access. Based on such observations, we

propose several schemes, which can: 1) minimize the memory

space waste and reshuffle overhead by reusing real data blocks,

2) improve the ORAM operation performance by reducing

memory bank idle time, 3) allow us to achieve both space

and access efficiency with a fully integrated architecture. Our

contributions are as follows:

• We present an in-depth study of memory space and access

inefficiency caused by dummy data blocks in current ORAM

design.

• We propose innovative protocol side modifications that can

hide the access pattern by utilizing existing massive real data

blocks. The more compact protocol can reduce the memory

space utilization inefficiency.

• We propose a slight modification on the DRAM command

scheduler, which can issue PRE and ACT command in ad-

vance. This helps to minimize DRAM bank idleness and return

real blocks faster.

• We combine the two optimization approaches through archi-

tectural integration and evaluate our String ORAM framework

with state-of-the-art optimizations.

• We show the evaluation results of improvement in per-

formance, queuing time, and row buffer miss rate. We also

evaluate the hardware modification overhead and security of

our design.

II. BACKGROUND

A. Threat Model

In this work, the system equips the secure and tamper-

resistance processor, which is capable of computing without

information leakage [14], [17]–[19]. The off-chip memory

systems are vulnerable to access pattern attacks, such as

physically monitoring the visible signals on the printed circuit

boards (including the motherboard and memory modules).

With commodity DRAM DIMMs in the system, the address

bus, the command bus, and the data bus are separate. The

memory controller sends out the pair of addresses and data

to the DRAM with corresponding DRAM command, such

as precharge, read/write, and activate. Therefore, the attacker

can still sniff critical information through the address and

command bus, even when the data bus is encrypted. By

observing the access patterns such as access frequency, access

type (read or write), and also the repeatability of accesses

to the same location, the attacker can obtain some leaked

sensitive information in the program [10].

With the emerging memory technologies and interfaces,

adding additional trusted components to the memory DIMMs

or data path can partially reduce the attack surfaces, therefore,

reducing the need for security protection. For example, Secure

DIMM [20] assumes that the entire ORAM controller can

be moved from the processor to the memory module side.

D-ORAM [21] assumes that the memory module is still

not trusted, but we can leverage a secure delegator on the

motherboard to facilitate the ORAM accesses. Meanwhile,

ObfusMem [22] and InvisiMem [23] assume that the entire

memory modules are trusted with logic inside and only care

about the access pattern in between. However, such designs

always require substantial modifications to the memory hard-

ware or interface, which are less general approaches to hide

the memory access pattern. Therefore, in our threat model, we

still assume the memory device is out of the trusted boundary.

B. Basics of ORAM

Oblivious RAM [13] is a security primitive that can hide the

program’s access pattern and eliminate information leakage

accordingly. The basic idea of ORAM is to access more

blocks than the actual data we need, and shuffle the address

space so that the program address appears to be random. With

the ORAM controller in the secure processor, one memory

access from the program is translated into an ORAM-protected

sequence. ORAM protocol guarantees that any two ORAM

access sequences are computationally indistinguishable. In

other words, ORAM physical access pattern and the original

logical access pattern are independent, which hides the actual

data address with the ORAM obfuscation. Since all ORAM

access sequences are indistinguishable, an attacker cannot

extract sensitive information through the access pattern.

Tree-based ORAM schemes, such as Path ORAM [14] and

Ring ORAM [17], have greatly improved the overall access

and reshuffle efficiency through cryptographic innovations.

Tree-based ORAM schemes are also the building blocks of

several advanced ORAM frameworks, such as Obliviate [24],

Taostore [25] and Zerotrace [16]. In this work, we focus on

one of the most bandwidth-efficient tree-based ORAM, Ring

ORAM [17].

Figure 1 shows the control and memory layout of Ring

ORAM. The memory is organized as a binary tree, which

15

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

Memory

Controller

E/D LogicStash

Addr. LogicPos. Map
Coming

Request

Return

Response

Data

E/D

Data

R/W

Leaf

Label

Physical

Addr.

Level 0

Level 1

Level 2

Level 3

0 1 2 3 4 5 6 7

bucket

Real Block Dummy Block Access Path

Fig. 1. An example 4-level Ring ORAM structure with Z = 4 and S = 5.

Data Metadata

Index Valid? Real? Counter

0 1 1 2 3

1 1 0 0

Index Valid? Real?

Index Valid? Real?

Index Valid? Real?

2 1 0

3 1 1

4 1 0

5 0 1

6 1 1

7 0 0

Dummy Block

Accessed

Real Block

Access

Fig. 2. Ring ORAM bucket details (Z = 4, S = 4).

has L+ 1 levels – the root of the tree is at level 0 while the

leaves are at level L. And each node of the tree is a bucket

that can store multiple real and dummy data blocks. All data

blocks are encrypted indistinguishably so that an adversary

cannot differentiate dummy blocks from real ones. Each leaf

node has an one-to-one correspondence to a path � that goes

to the leaf node from the root, so there are 2L paths in total

(path 0, 1, ..., 2L − 1). On the controller side, the ORAM

interface consists of several components: stash, position map,

address logic, and encryption/decryption logic. The stash is a

small buffer that temporarily stores data blocks fetched from

the ORAM tree. The position map is a lookup table that maps

program addresses to data blocks in the tree. In the position

map, each data block corresponds to a path id �, indicating

that it is situated in a bucket along the path �.

In the Ring ORAM construction, each bucket on the binary

tree node has Z + S slots and a small amount of metadata.

In these slots, Z slots store real data blocks, and S slots store

dummy blocks. Figure 2 shows the bucket organization of Ring

ORAM. In this example, we have a bucket with Z = 4 and

S = 4, and each bucket has additional metadata fields such as

index, valid, real, and a counter. Bit valid identifies whether

this block has been accessed, bit real identifies which blocks in

the bucket are real blocks, and the counter records how many

times this bucket has been accessed. For example, in Figure

2, a dummy block at index 1 (real bit is 0) has been accessed,

so its valid bit changes to 0, and the counter increases by

1. For every bucket in the tree, the physical positions of the

Z + S real and dummy blocks are permuted randomly when

the counter exceeds S.

Channel N

Channel 0

Rank

Bank

Rank

Bank

R
o

w
 D

e
co

d
e

r row

Row Buffer

wordline

b
it

li
n

e

ro
w

-a
d

d
r

cell

amplifier

cmd

addr

data

To/From LLC

Memory

Controller

Read Queue

Write Queue

Fig. 3. The DRAM-based main memory organization.

The Ring ORAM operations are summarized as below:

• Read path operation reads and decrypts the metadata of all

buckets along the path �, to determine which bucket contains

the block of interest. Then the ORAM controller selects one

block to read per bucket along the path. The selection is

randomly based on the metadata: a block that has been read

before cannot be reread (by checking the valid bits). The

bucket that contains the block of interest returns the real block,

while all other buckets along this path return a dummy block.

The blocks accessed in each bucket are marked invalid.

• Eviction operation is issued after every A times of read

path operations. For each bucket along the path, it reads all the

Z real blocks, permutes them, and writes Z +S blocks back.

The sole purpose of an eviction operation is to push blocks

back to the binary tree from the stash. Ring ORAM adopts

a deterministic eviction order, reverse lexicographic order so

that consecutive eviction paths have fewer overlapped buckets

[17].

• Early reshuffle is needed to ensure that each bucket is

properly randomly shuffled. Each bucket can only be touched

at most S times before early reshuffle or eviction because,

after S accesses to a bucket, all dummy blocks have been

invalidated. Early reshuffle operation reads and writes buckets

that have been accessed S times and reset the metadata fields.

C. Basics of DRAM

The structure of the DRAM-based main memory system is

as shown in Figure 3. In modern DRAM, a bank is the finest

granularity that can be accessed in parallel (referred to as bank-

level parallelism [26]). A group of banks in different DRAM

chips consist of a rank and operate in lockstep. Finally, several

banks are organized into one channel, which shares one set of

physical links (consisted of command, address, data buses) to

communicate with the memory controller. Note that the banks

in different channels can be accessed in parallel (referred to

as channel-level parallelism), while the banks in one channel

have contention at the physical link.

The top-right portion of Figure 3 (in the blue box) shows

the structure of a bank. In each bank, a two-dimensional

array of DRAM cells is used to store data, and a row buffer

16

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

consisting of several amplifiers is connected to the array. The

array includes a series of rows, each of which can be selected

via a wordline. The array also has multiple columns, and the

memory cells in each column are connected to an amplifier

in the row buffer via a shared bitline. The wordlines and the

bitline together determine the data to be read or written.

The middle-left portion of Figure 3 (in the green box)

presents the basic structure of the memory controller. In the

memory controller, one read queue and one write queue are

allocated for each channel. The memory access requests from

the Last Level Cache (LLC) are stored in the corresponding

queues according to their target addresses and issued when

the target DRAM bank is idle. Note that, once the read/write

request queues are full, the memory controller stops to receive

the incoming requests, which probably causes the pipeline stall

at the processing core [27].

To serve the memory requests, the memory controller issues

different commands to a bank according to its status. The

commands are defined as follow:

• Activate(ACT): selects a row and copies the entire row

content to the row buffer.

• Read/Write(RD/WR): accesses the data in the row buffer

according to the column address.

• Precharge(PRE): de-activates the row buffer and copies

its data back to the array.

Note that, the ACT command can only be sent to a bank

in a precharged state, i.e., the previous row buffer content is

cleared. In general, there are two types of schemes for bank

access: the close-page policy and the open-page policy. With

the close-page policy, the PRE command is sent immediately

after the RD/WR is done. Such a method removes the PRE

command from the critical path, but it also misses the op-

portunity of utilizing the locality at the row buffer. On the

contrary, the open-page policy allows the row buffer to keep

its data after the RD/WR commands. In this way, consecutive

requests to the same row can be served one after another

without PRE and ACT. However, if the request is a row buffer

miss, the PRE and ACT must be sent before the data can be

accessed. Such a worst-case situation is referred to as a row

buffer conflict. Although the open-page policy may cause more

latency for the worst-case access, it also has the opportunity

to accelerate memory access if the row buffer conflict rate is

low. In this paper, we assume that the DRAM modules use

the open-page policy.

III. MOTIVATION

In this section, we first discuss the inefficiency of Ring

ORAM when it is implemented on DRAM-based system in

the perspective of low space utilization and high performance

overhead. Then we present our observations and the optimiza-

tion opportunity for Ring ORAM.

A. Memory Space Waste Due to Dummy Blocks

As we introduced earlier in Section II-B, the memory orga-

nization with ORAM protection is padded with dummy blocks.

The excessive dummy blocks in the memory are needed

Config-1 Config-2 Config-3 Config-4
0

20
40
60
80

100

C
ap

ac
ity

 (
G

B
)

Dummy Blocks Real Blocks

Z A X S

Config-1 4 3 2 5

Config-2 8 8 4 12

Config-3 16 20 7 27

Config-4 32 46 12 58

Fig. 4. The memory space utilization of Ring ORAM [17] with different
configurations. The height of the ORAM tree is 23 (L = 23), and each block
is 64 Byte.

to hide where real data blocks are stored. As a result, the

overall memory space utilization is reduced. We calculate the

occupied capacity for real and dummy blocks in different Ring

ORAM settings, as shown in Figure 4. Here, the definition of

parameter Z , S, and A are described in Section II-B, which

refer to the number of real blocks in a bucket, the number of

dummy blocks in a bucket, and the eviction frequency. The

relationship between S and A is theoretically defined by the

equation S = A + X (X ≥ 0) in [17]. With a larger S

than A, we can ensure the early reshuffle operations don’t

happen too frequently. All configurations have been proved to

meet the security requirements of Ring ORAM and are most

theoretically bandwidth-efficient [17]. To quantitatively show

the capacity overhead of dummy blocks, we set the height of

the ORAM tree as L = 23, and block size as 64 Byte. We

observe the following rules from the experimental analysis:

1) The real blocks capacity grows linearly from Config-1 to

Config-4, with the Z value increase from 4 to 32, and the

actual capacity grows from 4GB to 32GB. This is because the

definition of Z decides how many real blocks are stored in

the ORAM tree.

2) The dummy blocks capacity grow above linearly from

Config-1 to Config-4, due to the S value increase from 5 to 58.

The reason for the S value needs to be this large is because

of the equation defined above. Theoretically, these A and S

pairs can achieve the best overall bandwidth [17]; however,

the memory space waste is unacceptable – with Z = 32 and

S = 58, the ORAM tree requires 58GB extra memory space

for dummy blocks to provide 32GB capacity for real blocks.

Such a configuration only has a memory space efficiency of

35.56% (proportion of real blocks capacity over total memory

capacity allocated to the ORAM).

B. Row Buffer Conflicts with Selective Read Operation

Ring ORAM utilizes a tree-based logical structure to ensure

its theoretical security and efficiency. When the logical tree is

mapped to the physical DRAM memory space, we need to

consider how to utilize the parallelism in the memory system

during an ORAM access. Also, different address bit stripping

schemes could result in distinct path access patterns. Subtree

layout [19] is considered as the most efficient address mapping

for tree-based ORAM organization, which maximizes the row

buffer utilization, especially for full path accesses (such as

Path ORAM). The core idea of subtree layout is to group

the data blocks in a subtree and map them to row buffer as

a whole. As shown in Figure 5(a), the 4-level ORAM tree

is horizontally divided into two layers of subtrees. Assuming

17

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

(a) An example 4-level Ring ORAM with subtree layout.

black
face ferret

fluid freq leslie
libq mummer

stream
swapt

GEOMEAN

0.0
0.2
0.4
0.6
0.8
1.0
1.2

R
ow

 B
uf

fe
r

C
on

fli
ct

 R
at

e Read Path Eviciton

(b) Row Buffer conflict rate for Ring ORAM with subtree layout.

Fig. 5. The ineffectiveness of sub-tree layout for Ring ORAM.

that each subtree’s blocks are in the same row, then accessing

a full path can be translated into 2 row accesses (16 memory

accesses in total). In this case, only 2 of them are row buffer

misses, and the remaining 14 blocks are all fast row buffer

hits. The row buffer conflict rate is relatively low in this case.

Although Ring ORAM is also tree-based, the unique read

path operation degrades the benefits of the subtree layout.

Only one block per bucket is fetched each time, so the total

data blocks transferred are reduced. Considering the same

tree configuration, as shown in Figure 5(a), a Ring ORAM

read operation will bring only 4 blocks in total. In this case,

half of the accesses are row buffer hits, and the other half

are row buffer misses. Therefore the row buffer conflict rate

is increased. Such a scenario would be exaggerated when

we have a multi-channel multi-bank memory system. Our

experiment found that on a four-channel memory system,

the row buffer conflict rate during the selective read path

operation is significantly higher than the full path eviction

operation. Figure 5(b) illustrated the biased locality on row

buffer during these two distinct phases. During the read path

operation, the row buffer conflict rate is around 74%; however,

the full path eviction operation has a much lower conflict

rate of 10%. Therefore, we find that the subtree layout is

exceptionally effective for full path operation, but not enough

for accelerating the selective read path operation in the Ring

ORAM. The read path operation is always a critical operation

during the execution, so its performance impact is obvious.

C. Idle Bank Time with Transaction-based Scheduling

Next, we discuss how ORAM accesses are translated into

DRAM commands and scheduled by the DRAM memory con-

troller. After checking the position map, the ORAM controller

will generate the physical addresses of the data block to be

fetched along the selected path. The memory controller then

actually translates the access sequences into memory requests

that contain memory commands and addresses that memory

DIMMs are capable of understanding. For conventional pro-

Precharge Activation Read/Write Idle Time

Bank 0

Bank 1

Bank 2

Bank 3

Oram Access

Transaction 1

Oram Access

Transaction 2

Oram Access

Transaction 3

Fig. 6. The illustration of the idle time for the ORAM based on a 4-bank
DRAM.

Algorithm 1: Transaction-based scheduler algorithm

Input: i: current ORAM access transaction number

n: current cycle

Output: Issue command to the DRAM module

1 while not end of the program do

2 if memory controller can issue command at cycle n

then

3 check memory command queue;

if has commands ∈ transaction i then

4 issue the command based on FR-FCFS;

5 else

6 Continue;

7 end

8 end

9 if no commands ∈ transaction i then

10 i++;

11 end

12 n++;

13 end

grams without ORAM’s protection, once the requests are in

the memory controller’s queue, the PRE, ACT, or RD/WR

can be freely scheduled based on the bank or channel idleness

to maximize the performance. However, one single ORAM

access now consists of multiple data block accesses, and

they must be issued to the memory in-order and atomically.

We refer to such scheduling as transaction-based scheduling

[28], where the transaction means all the memory requests

for the same ORAM operation. Figure 6 shows the example

of three ORAM accesses to multiple memory banks. Within

each ORAM access transaction, the commands include not

only the actual RD/WT commands but also the PRE and ACT

commands due to the bank conflicts.

As a result, when the memory controller is issuing the

memory requests, it has to follow the transaction-based timing

constraints. The transaction-based scheduling algorithm is

described in Algorithm 1. The i + 1-th ORAM access must

wait for the i-th access completion before it is scheduled

out to the memory. We can observe mixed commands sent

to random memory channels and banks within each ORAM

18

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

transaction due to the random selective read path operation.

Since the ACT and PRE are also attached to their own ORAM

transaction, such commands can only start at the beginning of

each transaction when there is a bank conflict. The simple

transaction-based scheduling would cause abundant wasted

time on memory banks. We define the memory bank idle time

as the average duration each bank stops receiving memory

command due to the transaction-based scheduling barrier. In

Figure 6, we can observe that when some memory banks have

a higher workload than the others, although the idle banks are

ready to issue the ACT or PRE commands, they are not able

to do so, such as bank 1 in ORAM access 1, and bank2 in

ORAM access 2.

To summarize, we identify that current ORAM transaction-

based scheduling can cause significant bank idleness, espe-

cially when the read path operation causes a high row buffer

conflict rate, as explained in the prior section. The PRE and

ACT commands do not return any data back to the processor.

Therefore, if we can free the scheduling of them from the

transaction, we can significantly improve the memory bank

utilization and overlap the row buffer conflicts.

D. Design Opportunities

Based on the three observations above, we identify the

following design opportunities:

1) Typically, the Ring ORAM requires that the S � A , which

provides abundant dummy blocks for the read path operations

at the cost of storage waste. If we can reduce the S and

allow part of real blocks to be accessed as dummy blocks,

the memory space efficiency can be improved significantly.

2) Subtree layout can significantly promote the access ef-

ficiency under the open-page policy for full path read or

write operation. However, it is not efficient for selective read

path operation. Therefore, if we can change the row buffer

management scheme for the read path, we are able to minimize

the performance impact of high row buffer conflict rate and

long critical path delay.

3) Transaction based ORAM scheduling technique ensures the

correctness of ORAM protocol; however, when it comes to

the command-level scheduling, we find it is less desired to

group the PRE and ACT within the current ORAM access

transaction. If we can schedule such commands earlier, we

have a higher chance to utilize the idle bank and hide the

latency caused by row buffer conflicts. In this case, without

reducing or changing the number of row buffer conflicts,

we preserve the security and correctness of ORAM while

improving the performance.

The mentioned approaches, in turn, improve the efficiency

of ORAM access from spatial and temporal aspects. The next

section describes the details of our spatial optimization through

a compact ORAM bucket design and temporal optimization

with a proactive bank management scheme.

IV. DESIGN

Our ORAM framework, String ORAM, reduces the wasted

memory space, the average memory request queuing time,

and the row buffer pollution. The framework consists of: a)

a compact ORAM bucket organization and updated access

protocol; b) a new scheduler aiming at reducing bank idle

time caused by transaction based scheduling; c) an integrated

architecture that can support efficient memory utilization and

access for ORAM.

A. Compact Bucket (CB): A Compact ORAM Organization

and Access Protocol

Based on our motivations in Section III-A, the majority of

the allocated space for the ORAM protected program stores

dummy data blocks, which significantly reduces the usability

of the limited main memory space. As shown in Figure 7 (a),

Ring ORAM reserves S dummy blocks per data bucket so that

it can support at most S dummy accesses before a reshuffle

operation. Meanwhile, the rest of Z real blocks may remain

untouched, if there is no real data access in this bucket.

(b) Green Dummy bucket organization

Dummy/Real Valid

Real

Real

Real

Real

Dummy

Dummy

Dummy

Dummy

1

1

1

1

1

0

0

0

Z

S

(a) Ring ORAM bucket organization

Z

S

Y

Dummy/Real Valid

Real

Real

Real (Green)

Real (Green)

Dummy

Dummy

1

1

1

0

0

0

Green Block Counter 1

Fig. 7. The equivalent Compact Bucket design

Ideally, we want to minimize the dummy blocks in the

bucket. A simple take is to reduce the value of S directly.

However, if we only have a few dummy blocks per bucket,

the reshuffle would happen very frequently, and the overhead

would be significant. To reduce the value S, and ensure the

reshuffles happen at a similar frequency, our idea is to borrow

the real blocks that are already in the bucket, and treat them

as green blocks, as shown in Figure 7 (b).

The Compact Bucket(CB) organization in Figure 7 (b) can

support equivalent accesses to the bucket, compared with (a).

Here, we reduce the number of reserved dummy blocks to

S−Y , where Y is the number of real blocks in the bucket that

can be served as dummy data during a read path access. We

define such blocks as green blocks, and value Y as CB rate.

Therefore, with the help of Y green blocks, we can achieve

the same number of operations per bucket as in Figure 7 (a).

In this example (Z = 4, S = 4, Y = 2), we limit the number

of real data blocks that can be fetched as dummy blocks to

2. And with the additional 2 dummy blocks reserved in the

bucket, this bucket can still support up to 4 accesses before

path eviction or early reshuffle.

ORAM accesses with CB. To facilitate the accesses to CB,

we slightly modify the metadata in the bucket. In the original

Ring ORAM, we use a counter per bucket to hold how many

accesses have been made to the bucket, and one bit per block

to record whether it is a real or dummy block. As we need to

limit the number of green blocks in a bucket, we need to have

19

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

a green block counter to record how many green blocks have

been touched. The counter size is comparably small, which

is at log2(Y). When there is a read path operation, the block

selection can freely choose a dummy block in the bucket or

a real block if the green counter value is less than Y . During

the eviction and reshuffle, the green counter values are reset,

just like other metadata in the bucket.

Choosing the right Y and managing the stash overflow.

The following questions arise when we modify the Ring

ORAM into a compact format. First, can we set the value

of Y as big as possible? Second, what is the consequence

of setting a big Y ? Third, how do we determine the best Y

for a given ORAM configuration? Clearly, with CB, we are

bringing more than one real block per read path operation,

and this adds the burden on the stash. With the same size of

stash, using an aggressive CB configuration with a large Y

value can cause the stash fill quickly. To address the stash

overflow problem, we adopt background eviction [29], which

was initially proposed for Path ORAM. When the stash size

reaches a threshold, the background eviction is triggered, and

it halts the execution and starts to write blocks in the stash

back to the ORAM. However, at this point, we may not

meet the Ring ORAM eviction frequency A. If the ORAM

controller issues the eviction directly without following the

eviction frequency, it may leak information such as the stash

is almost full, as we see consecutive eviction patterns instead

of multiple read path then eviction pattern. Therefore, dummy

read path operations (reading specifically dummy blocks) have

to be issued until the desired interval A is reached and eviction

operation is called. In this way, our background eviction does

not change the access sequences and prevents such leakage.

Due to the high overhead of background eviction, it is

recommended to have a modest Y value that triggers less

or almost no background eviction. We analyze the tradeoffs

in the result sections with different Y selections and various

stash sizes.

CB benefits summary. As the spatial optimization in our

framework, the space efficiency brought by CB is obvious. If

we reserve Y real blocks in one bucket as green blocks, we

can reduce the space overhead by Y blocks per bucket. If the

value of Y is properly chosen (without triggering too many

background eviction), the additional benefits of this scheme are

that the number of dummy blocks that need to be read and

written during the eviction/reshuffle phase is reduced, as well

as the number of blocks per path that needs to be permuted.

Thus, the time spent on eviction and reshuffle is reduced, and

this can in turn accelerate the read path operation. ORAM

accesses will experience much shorter request queuing time

in the memory controller.

B. Proactive Bank (PB): A Proactive Memory Management

Scheme for ORAM Scheduler

As reported in section III-B, the read path and eviction op-

eration in Ring ORAM show distinct memory access locality.

The selective block read cannot fully leverage the locality

benefits from the subtree layout, therefore, a large portion

of the memory accesses during the read path phase are row

buffer conflicts. This means the row buffer inside each memory

bank needs to be closed then opened frequently with PRE and

ACT commands. Moreover, we find that due to the transaction-

based scheduling, the PRE and ACT cannot be issued ahead

of each transaction.

We propose a proactive bank (PB) scheduler that separates

the PRE and ACT commands from the ORAM transaction

during the command scheduling. Algorithm 2 shows our

modified scheduling policy. Instead of staying idle and waiting

for all commands for the current transaction i finished, the PB

scheduler scans the memory command queue to see if any PRE

or ACT coming from i+ 1 can be issued ahead. In this case,

when the current transaction is finished, the next transaction

can directly start with RD or WR. In other words, the long

row buffer miss penalty is hidden through latency overlapping.

Algorithm 2: PB scheduler algorithm

Input: i: current ORAM access transaction number

n: current cycle

Output: Issue command to the DRAM module

1 while not end of the program do

2 if memory controller can issue command at cycle n

then

3 check memory command queue;

if has commands ∈ transaction i then

4 issue the command based on FR-FCFS;

5 else if has command ∈ transaction i+1 then

6 if meet inter-transaction row buffer conflict

and the command is PRE or ACT then

7 issue the command;

8 end

9 else

10 Continue;

11 end

12 end

13 if no commands ∈ ORAM transaction i then

14 i++;

15 end

16 n++;

17 end

By revisiting the example in motivation, with PB scheduler,

some of the PREs and ACTs can be issued by the memory

controller ahead of the current ORAM transaction, as shown

in the Figure 8. These commands are marked with a red

outline. Clearly, the reason that such PREs and ACTs can

be done ahead is that such row buffer conflicts are inter-

transaction. As a result, whenever these ORAM transactions

are in the memory request queue, the PREs and ACTs are

able to be issued. Our PB scheduler does not fetch the PREs

and ACTs that are caused by intra-transaction conflicts to

the same bank. For example, in ORAM access 2, the second

set of PRE and ACT are still issued in-order. As we do not

change the access sequences for each ORAM access, such

20

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

Bank 0

Bank 1

Bank 2

Bank 3

Oram Access

Transaction 1

Oram Access

Transaction 2
Oram Access

Transaction 3

Time

Saving

Precharge Activation Read/Write

Idle Time
Original

Finish Time

Current

Finish Time

Fig. 8. The illustration for the timing behavior of PB.

Stash

(with CB

support)

Pos. Map Addr. Logic

E/D Logic

Memory

Controller

ORAM

Controller

Channel 0

Channel N

Channel 1

To

Channels

To/From

Channels

PB

Logic

Channel 0

From Addr. Logic

From E/D Logic

To E/D Logic

To/From

Main

Memory

To LLC

From

LLC

Read Queue

Write Queue

Modified Logic

To Memory

To Memory

To Memory

Fig. 9. The architecture overview.

intra-transaction conflicts are inevitable.

Impact on access sequence. By scheduling the memory

command PREs and ACTs out of ORAM transaction, these

commands’ issue time will be earlier than the original time. PB

scheduling only affects when such commands are issued, but

not changing the command order or causing asynchronous data

read or write. The actual RD and WR commands that carry

data are still obeying the transaction-based access sequences.

Besides, the row addresses associated with PRE and ACT are

public information, scheduling them ahead does not change

original addresses nor leak any information.

PB benefits summary. PB optimizes the Ring ORAM ac-

cesses in the temporal aspect. We separate the non-data related

commands from the original transaction through proactive

command scheduling, hence utilizing the bank idle time to

prepare fast data access for the next ORAM transaction. The

row buffer miss latency can be hidden through a multi-channel

multi-bank memory system. Not only do we reduce the idle

time on the memory system, but also shorten the read path

latency.

C. Architecture Integration

To support the proposed spatial and temporal optimizations,

we slightly modify the ORAM interface, bucket structure,

and the DRAM command scheduler. Figure 9 shows the

overall hardware architecture of our proposed framework. We

highlighted the modified changes on the ORAM controller and

memory controller.

For the CB scheme, we modify the bucket structure and

add the green block counter to record how many green block

accesses have been made to the bucket and limit the maximum

to Y . In addition, the ORAM controller needs to be able

to issue background eviction to mitigate the potential stash

overflow caused by an aggressive Y value.

For the PB scheme, there are no modifications to the DRAM

interface or DIMM side. The modification is a very lightweight

scheduling policy that can be incorporated with the DRAM

controller. The PB scheduler in the DRAM controller only

needs to work with the ORAM interface to know the current

ORAM access number and scan the command queue to decide

which command to be issued.

V. SECURITY ANALYSIS

In this section, we discuss the security implications of our

proposed performance optimization framework.

Claim 1: CB does not leak access pattern information or cause

stash overflow. Compact Bucket (CB) aims at reducing the

bucket size and allows real blocks to be used as dummy blocks

during the read path operation. Therefore, it is possible to

bring more than one real data block into the stash, which is

different from the original Ring ORAM’s protocol. The stash

is within the security boundary, therefore the extra real data

block inside of the stash does not leak any information. If the

additional real blocks brought into the stash are serviced by

other memory requests before eviction, the timing differences

of execution the program may differ. We argue that this is not

a critical issue since the prior ORAM prefetch work [29] also

brings more than one real block per read request. Moreover,

without the superblock scheme, in our experiment, it is rare to

see the green blocks brought into stash will be consumed by

other memory requests before eviction. To completely remove

such leakage potential, we can force the green blocks not

to be directly fetched by other requests from the stash. The

other issue is the filling speed for the stash could be faster

and cause stash overflow. We discuss that through leakage-

free background eviction (use dummy read path operations to

reach the eviction interval), we can keep the stash occupancy

low. The relationship between stash size, CB rate(Y) and

performance are presented in Section VII.

Claim 2: PB does not leak access pattern information during

the scheduling. Proactive Bank (PB) is a lightweight memory

scheduler that is easy to implement and only modify the

issue time of non-data related commands(PREs and ACTs)

on the memory bus. The memory access sequences on the

bus, including the number of requests/commands, the order

of requests/commands, are entirely remained unchanged with

PB scheduler. The addresses associated with PRE and ACT

are public information: PRE closes a bank and only contains

the last accessed bank information, which is known since the

bank has been previously accessed; ACT contains the row

address for next transaction’s access, which is also public

as long as the path id is determined. Whether an ORAM

21

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PROCESSOR CONFIGURATION

Frequency 3.2GHz

Cores 4

Core 5-stage pipeline, OoO execution support
ROB size: 128; Retire width: 4; Fetch width:
4

Last Level Cache 4MB

Cacheline Size 64B

TABLE II
MEMORY SUBSYSTEM CONFIGURATION

Memory Controller

Memory Channel 4

Read Queue 64 entries

Write Queue 64 entries per channel

Address Mapping row:bank:column: rank:channel:offset

DRAM Module

Specification DDR3-1600

Memory Capacity 8GB (per channel)

Ranks per Channel 1

Banks per Rank 8

Rows per Bank 16384

Columns (cachelines) 128 per row

Row Buffer Capacity 4KB

transaction can be accelerated depends on the bank idleness

and the transaction access distribution, which is also random

and public. Therefore, the memory access pattern is still

computationally indistinguishable for the attacker.

Claim 3: Combining CB and PB does not leak information.

Combining both schemes does not introduce additional infor-

mation leakage. CB and PB try to streamline Ring ORAM

accesses from two distinct directions, and combining them

will only increase the performance benefits from the spatial

and temporal aspects.

VI. METHODOLOGY

We implement our proposed String ORAM framework on

USIMM [30], which supports cycle-accurate simulation for a

detailed DRAM-based memory system. Based on this plat-

form, we simulate a CMP system with the parameters of the

state-of-art commercial processor, and the detailed configura-

tions are as shown in Table I. For the memory subsystem,

we follow the JEDEC DDR3-1600 specification to simulate

a DRAM module with 4 channels, and each channel has 8

banks. The total capacity of the DRAM module is 32GB. The

address mapping follows the order of “row:bank:column:

rank:channel:offset”,which follows the subtree layout

to maximize the row buffer locality [19]. The detailed param-

eters for the memory subsystem are shown in Table II.

We use 10 memory-intensive applications for the evaluation.

The applications are selected from PARSEC 3.0, SPEC and

BIOBENCH. For each benchmark, a methodology similar

to Simpoint is used to generate the trace file consisted of

500 million instructions out of 5 billion instructions. The

applications and corresponding traces are also used in the MSC

contest [31]. The applications are described as Table IV.

TABLE III
THE DEFAULT String ORAM CONFIGURATIONS

Inherited ORAM Model Ring ORAM [17]

Stash Size 500

Data Block Size 64Byte

Binary Tree Levels (L+1) 24

Tree Top Cache Levels 6

Real Blocks per Bucket (Z) 8

Dummy Block per Bucket (S) 12

CB Rate (Y) 8

The configuration of ORAM in our framework is shown in

Table III. The ORAM tree is set as Z = 8, S = 12, Y = 8, and

L = 23, with a total size of 20GB and fits into our simulated

memory system. The default stash size is set at 500. In Section

VII, we will provide further discussion on the impact of the

stash size and the CB Rate(Y).

TABLE IV
WORKLOADS AND THEIR MPKIS.

Suite Workload MPKI Workload MPKI

PARSEC

black 4.58 face 10.37

ferret 10.42 fluid 4.72
freq 4.42 stream 5.57

swapt 5.16

SPEC leslie 9.45 libq 20.20

BIOBENCH mummer 24.07

VII. RESULTS

To evaluate the String ORAM, we conduct a series of ex-

periments. We first compare the performance of our proposed

schemes with the baseline Ring ORAM, both in execution

time, memory request queuing time and bank idle time. After

that, we provide a sensitivity study on the CB rate with

a thorough impact analysis on stash size and background

eviction rate. Lastly, we discuss the broader applicability of

our proposed schemes.

A. Performance

black
face ferret

fluid freq leslie
libq mummer

stream
swapt

AVG

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

Read Eviction Reshuffle Other 1. Baseline 2. CB 3. PB 4. ALL

Fig. 10. Normalized execution time.

We use the total execution time (including all operations:

read path, eviction, early reshuffle, and other related opera-

tions) to denote the system performance. As shown in Figure

10, the individual CB scheme improves the performance by

11.72% as the average. This is because the CB scheme reduces

the number of total blocks on the path so that eviction

operations take a shorter time to finish. Besides, the PB

provides a more significant performance improvement than

CB. On average, the execution time is decreased by 18.87%.

Such improvement is achieved by moving ACT and PRE

command from future ORAM access to occupy idle bank

while waiting for current ORAM access finishes. Finally,

22

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

when we consider the combination of CB and PB, the total

performance improvement achieves 30.05%.

In addition, Figure 10 also shows that the CB, PB, and

CB+PB schemes provide similar performance improvement

range across different applications (the variation of all results

is less than 0.38%). This indicates that our proposed schemes

work for different applications and prevent information leak-

age from the execution time variance.

B. Queuing Time

black
face ferret

fluid freq leslie
libq mummer

stream
swapt

GEOMEAN

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

Q
ue

ui
ng

 T
im

e

Baseline CB only PB only ALL

(a) Read Queue.

black
face ferret

fluid freq leslie
libq mummer

stream
swapt

GEOMEAN

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
or

m
al

iz
ed

Q
ue

ui
ng

 T
im

e

Baseline CB only PB only ALL

(b) Write Queue.
Fig. 11. Normalized request queuing time.

Figure 11 presents the memory request queuing time of dif-

ferent schemes. We can see that CB provides similar queuing

time reduction for the read queue (10.41%) and write queue

(11.83%). The reason is that CB alleviates the access overhead

to the memory channel by reducing the number of memory

accesses in eviction operation, which allows both queues

to have more opportunities to service read path operation.

On the other hand, the queuing time reduction of the read

queue caused by PB is higher than the write queue (22.53%
vs. 19.46%). Because PB directly reduces the performance

overhead of read path operations, as the read requests can be

completed more quickly. Since write operations only happen

during eviction and reshuffle, the queuing time reduction of

the read queue indirectly helps the write queue to gain benefit.

Overall, the CB and PB scheme together reduce the queuing

time of the read queue & write queue by 32.87% and 31.30%.

C. Bank Idle Time Reduction

Figure12(a) shows the average bank idle time before and

after applying PB scheme. Originally, as discussed in previous

sections, DRAM banks suffer from an imbalanced workload,

causing bank idleness while waiting for other banks to finish

current ORAM access. This idle time takes up 65.99% of the

total execution time. Through the PB scheme, the idle time

of the bank is greatly reduced to 40.72% of execution time,

enabling bank to serve more requests than before.

Our experiments also suggest that 59.31% PRE and 56.93%
ACT can be issued earlier than its own transaction, as shown

in Figure12(b). These commands were overlapped with the

critical path in each transaction, and as a result, data blocks

black
face ferret

fluid freq leslie
libq mummer

stream
swapt

GEOMEAN

0.0
0.2
0.4
0.6
0.8
1.0
1.2

A
ve

ra
ge

 B
an

k
Id

le
 T

im
e

P
ro

po
rt

io
n

Baseline PB

(a) Average bank idle time proportion.

black
face ferret

fluid freq leslie
libq mummer

stream
swapt

GEOMEAN

0.3
0.4
0.5
0.6
0.7
0.8

P
B

 O
pe

ra
tio

n
P

ro
po

rt
io

n PRE ACT

(b) PB operation proportion.
Fig. 12. Bank idle time and PB proportion.

TABLE V
CB CONFIGURATIONS AND CORRESPONDING SPACE SAVING.

(Z = 8, S = 12, L = 23)

CB rate Total Memory Dummy Block
Space (GB) Percentage

Baseline Y = 0 20 60%

Config-1 Y = 2 18 55.6%

Config-2 Y = 4 16 50%

Config-3 Y = 6 14 42.9%

Config-4 (default) Y = 8 12 33.3%

can be read directly at the beginning of the transaction. The

remaining commands that cannot be fetched earlier are mainly

caused by intra-transaction bank conflicts.

D. CB Sensitivity Analysis

We further evaluate the effectiveness of CB with different

configurations of Y . As shown in Table V, the five config-

urations represent different compact rates corresponding to

different memory space efficiency. A higher compact rate can

reduce the occupied total memory space significantly, as well

as the dummy block percentage. If we want to have extreme

storage efficient ORAM construction, we may choose a higher

Y value, at the cost of more frequent background evictions.

While CB is not performance optimization oriented, we can

still observe some performance gain through a more compact

bucket design. The performance gain of CB mainly comes

from the eviction phase, as we reduce the number of blocks

that need to be read and written. We show the performance

with different CB rates in Figure 13. When the stash size is

at 500, which does not cause additional background eviction,

Config-4 with Y = 8 achieves the best performance. The CB

scheme with Y = 2 to 8 has a total execution time reduction

from 2.02% to 11.72%. When combining the PB scheme, the

performance improvement between Y = 2 to 8 increases from

20.79% to 30.05%.

Figure 13 also shows the green blocks fetched per read.

With CB, 0.17 ∼ 3.26 green blocks are brought into the stash

per read path, on average. Therefore, Y cannot be set too

aggressively if we don’t want the stash to be filled too quickly.

In the next section, we study the stash fill rate with different

stash sizes.

23

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

CB ALL
0.6

0.8

1.0

1.2
N

or
m

al
iz

ed
E

xe
cu

tio
n

T
im

e

Baseline Config-1 Config-2 Config-3 Config-4

Green Blocks
Fetched Per
Read

Config-1 0.167

Config-2 0.652

Config-3 1.638

Config-4 3.255

Fig. 13. The sensitivity study to the CB compact rate.

 200 300 400 500
0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e

Baseline Config-1 Config-2 Config-3 Config-4

 200 300 400 500
0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

E
vi

ct
io

n
N

um
be

r1.
62

1.
28

2.
19

1.
39

 (a) Performance (b) Eviction Number

Fig. 14. Stash size v.s performance.

E. Stash Size v.s. Eviction Overhead

We further analyze the relationship between the stash size

and additional background eviction operations with the CB

scheme. Figure 14 and 15 show additional eviction operations

with different stash sizes and the dynamic stash occupancy

with different Y . Clearly, a smaller stash can be filled faster

by the additional fetched real blocks, yet a larger one can

mitigate this issue.

From the results, we observe that, although the stash oc-

cupancy increases with the Y value, in practice, the stash is

not blown up with effective reverse lexicographical eviction

scheme. By properly selecting the stash size, we can mitigate

the background eviction overhead when the Y is large. For

example, when the stash size is too small, i.e., 200, Y ≥ 6
starts to cause background evictions. However, when we have

a relatively large stash size, such as 500, even with Y = 8,

the background eviction is not triggered during the simulated

time. The enlarged stash size is still considered very small

(64B × 500 = 32KB) and bounded.

VIII. RELATED WORK

We see an increasing number of architectural optimizations

on ORAM recently. Firstly, since ORAM protocols generate

massive data movement, with trusted ORAM logic closer to

the memory, we can significantly reduce the data movement

between the processor and the memory. For example, Se-

cureDIMM [20] implements a PIM-like structure that mit-

igates the transfer overhead by adding ORAM logic to the

DRAM module. D-ORAM [21] moves the ORAM controller

on board and minimizes the bandwidth interference with other

applications. Secondly, the effective data fetch per ORAM

access can be improved by locality-aware schemes. PrORAM

[29] dynamically merges or separates the consecutive data ac-

cesses with superblocks and then implements a locality aware

prefetcher for ORAM. Multi-range ORAM [32] proposes to

store range data within a path and reduce the required accesses.

Thirdly, the dummy blocks in ORAM protocols have a high

impact on the overall performance. Fork Path [18] focuses

on the overlapped data during the path ORAM accesses and

proposes to cache the content instead of writing them back.

0 5000 10000 15000 20000

0

100

200

S
ta

sh
O

cc
up

an
cy

Baseline Config-1 Config-2 Config-3 Config-4

Stash Size

(a) Stash Size = 200.

0 5000 10000 15000 20000

0

150

300

S
ta

sh
O

cc
up

an
cy

Baseline Config-1 Config-2 Config-3 Config-4

Stash Size

(b) Stash Size = 300.

0 5000 10000 15000 20000

0

200

400

S
ta

sh
O

cc
up

an
cy

Baseline Config-1 Config-2 Config-3 Config-4

Stash Size

(c) Stash Size = 400.

0 5000 10000 15000 20000

0

250

500

S
ta

sh
O

cc
up

an
cy

Baseline Config-1 Config-2 Config-3 Config-4 (Default)

Stash Size

(d) Stash Size = 500.
Fig. 15. Run-time stash occupancy with different stash size configurations

Similarly, Shadow Block [28] utilizes the dummy blocks to

store the additional copies of the real data, which transforms

the dummy accesses to the prefetching for real blocks. The

Relaxed hierarchical ORAM [33] reforms the ORAM to a

layered construction and uses small ORAM as the cache of

full ORAM. Lastly, efficient ORAM scheduling schemes have

been explored to maximize memory system utilization. For

example, CP-ORAM [34] focuses on fairness between ORAM

applications and normal applications through an application-

aware scheduler. A channel imbalance-aware scheduler [35]

was proposed to minimize the channel imbalance for Ring

ORAM read operation. Our proposed String ORAM is a

new framework focusing on the memory space waste due

to dummy blocks and memory idle time due to ineffective

locality improvement schemes designed for Path ORAM.

Instead of using ORAM, other memory access pattern ob-

fuscation techniques are proposed to achieve lower overhead.

InvisMem [23] and ObfusMem [22] use the logic layer on

HMC and the bridge chip on NVM to implement the memory

obfuscation function and reduce the overhead of issuing mul-

tiple dummy accesses per memory request. Note that, such

implementations require the memory device to be partially

trusted. Memcloak [36] claims to store the same data block

multiple times at different addresses to achieve the obfuscated

memory accesses. Compared to our design, we limit the TCB

boundary while improving memory space utilization instead

of storing multiple copies of real data around.

24

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

IX. CONCLUSIONS

In this paper, we present String ORAM, a framework that

accelerates the Ring ORAM accesses through an integrated

architecture with spatial and temporal optimizations. Through

extensive experiments, we identify that dummy blocks in

Ring ORAM protocols cause significant memory space waste.

Further, we find that current locality optimization schemes are

less effective for Ring ORAM read operation. Therefore, we

first present a compact ORAM bucket design (CB), which

brings two folds of benefits: reduced memory space with fewer

dummy blocks, and reduced evict path overhead with fewer

blocks to shuffle. Then, we present a proactive ORAM access

scheduler (PB) on the DRAM controller, which minimize

the bank idle time without modifying the access sequences

of ORAM. Next, we show the integrated String ORAM

architecture that supports our designs. Lastly, we evaluated our

proposed framework in terms of security, performance gain,

queuing time reduction, memory bank idle time reduction.

REFERENCES

[1] S. Bajikar, “Trusted platform module (tpm) based security on notebook
pcs-white paper,” Mobile Platforms Group Intel Corporation, vol. 1,
p. 20, 2002.

[2] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” Acm Sigplan Notices, vol. 35, no. 11, pp. 168–177, 2000.

[3] D. Grawrock, The Intel safer computing initiative: building blocks for

trusted computing. Intel Press Hillsboro, 2006, vol. 976483262.

[4] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel®
software guard extensions: Epid provisioning and attestation services,”
White Paper, vol. 1, pp. 1–10, 2016.

[5] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White

paper, 2016.

[6] “Introducing arm trustzone,” https://developer.arm.com/ip-
products/security-ip/trustzone, accessed: 2019-03-30.

[7] G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-chip
secure processor,” IEEE Design & Test of Computers, vol. 24, no. 6,
pp. 570–580, 2007.

[8] L. Ren, C. W. Fletcher, A. Kwon, M. van Dijk, and S. Devadas, “Design
and implementation of the ascend secure processor,” IEEE Transactions

on Dependable and Secure Computing, 2017.

[9] X. Zhuang, T. Zhang, and S. Pande, “Hide: an infrastructure for
efficiently protecting information leakage on the address bus,” in ACM

SIGPLAN Notices, vol. 39, no. 11. ACM, 2004, pp. 72–84.

[10] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in in

Network and Distributed System Security Symposium (NDSS. Citeseer,
2012.

[11] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood et al., “Deepsniffer: A dnn model extraction framework
based on learning architectural hints,” in Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2020, pp. 385–399.

[12] T. M. John, “Privacy leakage via write-access patterns to the main
memory,” 2017.

[13] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in Proceedings of the nineteenth annual ACM

symposium on Theory of computing. ACM, 1987, pp. 182–194.

[14] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: an extremely simple oblivious ram protocol,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security. ACM, 2013, pp. 299–310.

[15] C. W. Fletcher, L. Ren, A. Kwon, M. Van Dijk, E. Stefanov, D. Serpanos,
and S. Devadas, “A low-latency, low-area hardware oblivious ram
controller,” in 2015 IEEE 23rd Annual International Symposium on

Field-Programmable Custom Computing Machines. IEEE, 2015, pp.
215–222.

[16] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious memory
primitives from intel sgx.” IACR Cryptology ePrint Archive, vol. 2017,
p. 549, 2017.

[17] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk,
and S. Devadas, “Constants count: Practical improvements to oblivious
ram.” in USENIX Security Symposium, 2015, pp. 415–430.

[18] X. Zhang, G. Sun, C. Zhang, W. Zhang, Y. Liang, T. Wang, Y. Chen, and
J. Di, “Fork path: improving efficiency of oram by removing redundant
memory accesses,” in Proceedings of the 48th International Symposium

on Microarchitecture, 2015.
[19] L. Ren, X. Yu, C. W. Fletcher, M. Van Dijk, and S. Devadas, “Design

space exploration and optimization of path oblivious ram in secure
processors,” in Proceedings of the 40th Annual International Symposium

on Computer Architecture, 2013, pp. 571–582.
[20] A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li, “Secure dimm:

Moving oram primitives closer to memory,” in 2018 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 428–440.

[21] R. Wang, Y. Zhang, and J. Yang, “D-oram: Path-oram delegation for
low execution interference on cloud servers with untrusted memory,” in
High Performance Computer Architecture (HPCA), 2018.

[22] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “Obfusmem: A low-
overhead access obfuscation for trusted memories,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture,
2017, pp. 107–119.

[23] S. Aga and S. Narayanasamy, “Invisimem: Smart memory defenses
for memory bus side channel,” in Proceedings of the 44th Annual

International Symposium on Computer Architecture, 2017, pp. 94–106.
[24] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data

oblivious filesystem for intel sgx.” in NDSS, 2018.
[25] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro, “Taostore:

Overcoming asynchronicity in oblivious data storage,” in 2016 IEEE

Symposium on Security and Privacy (SP). IEEE, 2016, pp. 198–217.
[26] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving memory

bank-level parallelism in the presence of prefetching,” in 2009 42nd

Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO). IEEE, 2009, pp. 327–336.
[27] L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F. T. Chong,

“Mellow writes: Extending lifetime in resistive memories through selec-
tive slow write backs,” in 2016 ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 519–
531.

[28] X. Zhang, G. Sun, P. Xie, C. Zhang, Y. Liu, L. Wei, Q. Xu, and
C. J. Xue, “Shadow block: Accelerating oram accesses with data
duplication,” in 2018 51st Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). IEEE, 2018, pp. 961–973.
[29] X. Yu, S. K. Haider, L. Ren, C. Fletcher, A. Kwon, M. van Dijk, and

S. Devadas, “Proram: dynamic prefetcher for oblivious ram,” in Com-

puter Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International

Symposium on. IEEE, 2015, pp. 616–628.
[30] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,

A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah
simulated memory module,” University of Utah, Tech. Rep, 2012.

[31] “2012 memory scheduling championship (msc),”
http://www.cs.utah.edu/ rajeev/jwac12/, accessed: 2018-11-01.

[32] Y. Che and R. Wang, “Multi-range supported oblivious ram for efficient
block data retrieval,” in 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2020, pp. 369–
382.

[33] C. Nagarajan, A. Shafiee, R. Balasubramonian, and M. Tiwari, “Re-
laxed hierarchical oram,” in The 24th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems(ASPLOS), 2019.
[34] R. Wang, Y. Zhang, and J. Yang, “Cooperative path-oram for effective

memory bandwidth sharing in server settings,” in High Performance

Computer Architecture (HPCA), 2017.
[35] Y. Che, Y. Hong, and R. Wang, “Imbalance-aware scheduler for fast

and secure ring oram data retrieval,” in 2019 IEEE 37th International

Conference on Computer Design (ICCD). IEEE, 2019, pp. 604–612.
[36] W. Liang, K. Bu, K. Li, J. Li, and A. Tavakoli, “Memcloak: Practical

access obfuscation for untrusted memory,” in Proceedings of the 34th

Annual Computer Security Applications Conference. ACM, 2018, pp.
187–197.

25

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.

