
2654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Architecting Effectual Computation for
Machine Learning Accelerators

Hang Lu , Mingzhe Zhang , Member, IEEE, Yinhe Han , Senior Member, IEEE, Qi Wang,

Huawei Li , Senior Member, IEEE, and Xiaowei Li , Senior Member, IEEE

Abstract—Inference efficiency is the predominant design con-
sideration for modern machine learning accelerators. The abil-
ity of executing multiply-and-accumulate (MAC) significantly
impacts the throughput and energy consumption during infer-
ence. However, MAC operation suffers from significant inef-
fectual computations that severely undermines the inference
efficiency and must be appropriately handled by the accelera-
tor. The ineffectual computations are manifested in two ways:
first, zero values as the input operands of the multiplier, waste
time and energy but contribute nothing to the model inference;
second, zero bits in nonzero values occupy a large portion of
multiplication time but are useless to the final result. In this
article, we propose an ineffectual-free yet cost-effective com-
puting architecture, called split-and-accumulate (SAC) with two
essential bit detection mechanisms to address these intractable
problems in tandem. It replaces the conventional MAC opera-
tion in the accelerator by only manipulating the essential bits
in the parameters (weights) to accomplish the partial sum com-
putation. Besides, it also eliminates multiplications without any
accuracy loss, and supports a wide range of precision con-
figurations. Based on SAC, we propose an accelerator family
called Tetris and demonstrate its application in accelerating
state-of-the-art deep learning models. Tetris includes two imple-
mentations designed for either high performance (i.e., cloud
applications) or low power consumption (i.e., edge devices),
respectively, contingent to its built-in essential bit detection mech-
anism. We evaluate our design with Vivado HLS platform and
achieve up to 6.96× performance enhancement, and up to 55.1×
energy efficiency improvement over conventional accelerator
designs.

Index Terms—Accelerator architectures, neural network hard-
ware, multiplying circuits.

Manuscript received February 15, 2019; revised June 19, 2019; accepted
September 22, 2019. Date of publication October 11, 2019; date of cur-
rent version September 18, 2020. This work was supported in part by the
National Natural Science Foundation of China under Grant 61432017, Grant
61602442, Grant 61834006, and Grant 61876173, in part by the National Key
Research and Development Project under Grant 2018AAA0102700, in part
by the Beijing Municipal Science and Technology Commission under Grant
Z181100008918006, and in part by the Strategic Priority Research Program of
Chinese Academy of Sciences under Grant XDPB12. This article was recom-
mended by Associate Editor C. Coelho. (Corresponding authors: Hang Lu;
Mingzhe Zhang; Xiaowei Li.)

The authors are with the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China (e-mail: luhang@ict.ac.cn;
zhangmingzhe@ict.ac.cn; yinhes@ict.ac.cn; wangqi08@ict.ac.cn;
lihuawei@ict.ac.cn; lxw@ict.ac.cn).

Digital Object Identifier 10.1109/TCAD.2019.2946810

I. INTRODUCTION

DEEP convolutional neural networks (DCNNs) have
driven significant progress in machine learning appli-

cations, such as real-time image recognition and detection,
neural language processing, etc. In order to bolster the increas-
ing accuracy demand, state-of-the-art DCNN models embrace
more complex connections and ever increasing number of neu-
rons and synapses to deal with complicated machine learning
tasks. DCNN is composed of multiple consecutively connected
layers, from tens [1]–[4] to even hundreds [5], [6], and in each
layer, the input feature activations and weights perform con-
volutions for each channel in filters, which takes nearly 98%
computations in the overall DCNN, accompanied by nonlinear
activations, such as ReLu and pooling. Therefore, improving
the computational efficiency of convolutions without compro-
mising the robustness of the learning model is a critical step
to enable efficient inference, especially on lightweight devices
with limited resources and power budget like smartphones and
autonomous robotics.

Given the limitations of the conventional general-purpose
architectures, many researchers propose specialized acceler-
ators targeting convolutions. Conventionally, a plethora of
techniques are proposed to utilize the irrelevance of each
weight-activation pair, seeking to mine the potentials of
multiply-and-accumulate (MAC) operations that could be exe-
cuted in parallel, for as many as possible to attain an optimal
computational throughput of the accelerator [7]–[9]. However,
due to the characteristics of DCNNs, inference efficiency is
susceptible to substantial ineffectual computations [10], [11],
which lies in two aspects: first, the zero operands, in both
weights and activations generated in the previous layer, are
accepted as input for MAC operations in the current layer.
These zero values are multiplied and added together with
other nonzero operands, wasting time and energy but con-
tribute nothing to the final output feature map. To address
this issue, some approaches leverage the sparsity of the input
data by intentionally skipping zero values [11]–[14] or prune
away near-zero values at the software level [15]–[18] as an
easy way to reduce the computational intensity without hurt-
ing accuracy. Despite these effective solutions targeting zero
values, the “zero-valued bits,” as the second form factor, how-
ever, also occupies a large fraction of the input data set,
and its consequence to the inference efficiency is not easy
to be mitigated. The reason is that the structural and func-
tional design of DCNNs relies on the multiplication and takes
it as one portion to form the final partial sum. Zero values

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0002-6440-7550
https://orcid.org/0000-0003-0904-6681
https://orcid.org/0000-0001-8082-4218
https://orcid.org/0000-0002-0874-814X

LU et al.: ARCHITECTING EFFECTUAL COMPUTATION FOR MACHINE LEARNING ACCELERATORS 2655

could be conveniently ignored at the input of the multiplier;
zero-valued bits, however, cannot be directly skipped over in
performing multiplications in the multipliers. Following this
computing paradigm, modern accelerators allocate plenty of
multipliers in the processing elements (PEs) to maximize the
throughput [19], but according to our exploration in Section II,
nonessential bits (or zero bits) in the parameters contribute
as high as 68.9% ineffectual computations, which further
exacerbates this problem.

Targeting this formidable challenge, in this article, we
propose a novel computing architecture for accelerating convo-
lutions, termed as split-and-accumulate (SAC), in replacement
of the widely used “MAC” in modern accelerators. As a new
computing paradigm, it rearchitects the computation by only
embracing the essential bits (bit “1 s”) in the parameters to
obtain the final output activations. By decomposing the fixed-
point multiplication, it accumulates the segment summation
of each bit lane in advance by manipulating the essential bit,
instead of direct multiplying the weight and activation pair as
in MAC operation. SAC does not entail any multiplication, but
replaces it with segment adding and final shifting, only once, to
obtain the output activations so the inference efficiency is sig-
nificantly boosted at a wide range of precision configurations,
i.e., fixed point 16 (fp16), integer 8 (INT8), etc.

Besides, we implement an accelerator family, called Tetris,
to mine the maximum potential of SAC. As an accelerator
family, Tetris involves two implementations designed for dif-
ferent purposes, marked by its built-in essential bit detection
mechanism, namely, weight kneading and check window (CW)
sliding. The first one reserves the essential bits by “knead-
ing” a batch of weights in each lane to eliminate zero bits,
and the second one instantiates a CW that tries to frame the
essential bits at the maximum probability at each time. Each
implementation has its own pros and cons: the first one empha-
sizes high throughput during inference that thereby could be
used in cloud datacenters, but compromises the storage and
further—the energy consumption; on the contrary, the sec-
ond one focuses on higher energy efficiency that is imperative
for edge devices, but with the cost of moderately degraded
throughput. We issued wide-scale design space exploration for
the two Tetris implementations, and evaluated them via high-
level synthesis tool to prove its efficacy compared with the
canonical state-of-the-art accelerator designs.

The rest of this article is organized as follows. Section II
quantitatively illustrates the ineffectual computation problem
by presenting its existence in the parameters of various DCNN
models. Section III elaborates our methodology, including
the weight kneading mechanism and SAC micro-architecture.
Section IV, on top of Section III, elaborates the CW mech-
anism, including the potential design tradeoff and how it
affects the performance and energy consumption. Section V
details the implementation of the Tetris accelerator, including
the backbone and INT8 mode acceleration. Section VI gives
the evaluations, in terms of the parameter scaling, inference
throughput, power efficiency, and area overhead. Section VII
concludes the whole article.

II. BACKGROUND AND MOTIVATION

A. Ineffectual Computations

Convolution calculus is all about performing MACs in
DCNN models. In order to accelerate this kind of operation,

Fig. 1. Temporal overhead of 16-bit fixed point adder w/ varied input
operands, versus 16-bit fixed point multiplier with only two operands. The
data is obtained from RTL simulation of Xilinx Z7020 FPGA using Vivado
HLS tool.

TABLE I
FRACTION OF ZERO-VALUED WEIGHTS AND ZERO BITS IN ALL WEIGHTS

classic machine learning accelerators are architected by
deploying multipliers and adders at each activation and weight
lane [11], [12], [20], [21]. The multiplications could be
either for floating-point 32 operands or, in most modern
accelerator designs, 16-bit fixed point or even lower preci-
sions to acquire a balanced inference efficiency and accu-
racy [22]–[26]. Compared to the fixed point adder, multiplier
dominates the critical path of MACs. For a 2-operand mul-
tiplying, it takes 12.3% more time over the adder with even
16 adding operands as demonstrated in Fig. 1. The latency
stems from the shifting of weights iteratively from the LSB of
the activation till the MSB during multiplication, and worse
still, different DNN models have various precision require-
ments at even a per-layer basis, so the multiplier designed for
MAC must be able to cover the worst-case latency, even for
most of the time, the shifting and summation of intermediate
values are not always contributive to the final result, also
known as ineffectual computations.

As the major problem of MAC, ineffectual computations
could be manifested in two aspects: the operands are zero val-
ues or including a large portion of zero bits. Compared with
zero bits, zero values occupy a trivial slice of input weights,
as shown in Table I. These small portion of 0 s can be eas-
ily avoided as the input of the multipliers through advanced
micro-architectural design, or compression techniques at the
memory level [16]. However, in fixed-point multiplication,
shifting to obtain each intermediate segment is agnostic of
the zero-valued bits, another major source of the ineffectual
computation. Table I shows that compared with the essential
bits (or 1 s), the fraction of zero bits is as high as 68.9% on
average, which means avoiding the impacts of zero bits could
have potentials in boosting the inference efficiency in both
performance and power, significantly.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

2656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 2. Essential bit (1 s) distribution, across bit position 0∼15 for
fp16 weights extracted from 500 kernels of four DCNN models.

In order to minimize the zero-bit computation, some prior
approaches suggest to use bit-level serialization to perform
MACs in a more fine-grained manner [10], [27], taking advan-
tage of the feature that fixed point multiplication could be
decomposed into a series of shifts and additions of single-bit
multiplications and only the essential bits are involved in com-
puting MACs. However, the essential bit may emerge at any
location of a parameter value, so such bit-serialized computa-
tion scheme must rely on large shifters that must be capable
to step over a series of zero bits and cover the worst-case
position of the essential bit “1 s,” i.e., the 16th bit in fixed
point 16 (“fp16” hereafter) weights. Different values may yield
unpredictable latencies in approaching the essential bits, so it
requires the hardware design can also tackle this unbalanced
scenario that not only increases the design complexity but also
suppresses the frequency potentials of the accelerator.

B. Harnessing Slacks

Conventional CNN accelerators seek to process a series of
weights and activations in the lane in batches by allocating
a certain amount of PEs capable of absorbing as large as
256 weight/activation pairs in total [19]. Each pair is feed into
its PE and finishes MAC within one cycle, with ineffectual
computation of zero bits also accounted. If we could make
use of the time allocated for ineffectual computation but use
it for essential computation, it would be definitely beneficial
for the throughput. In this article, we term the zero bits in
weights as slacks hereafter for simplicity.

In Fig. 2, we evaluate the proportion of essential bits across
the entire bit positions in the weights of four commonly
used DCNN models. We selected 500 convolutional kernels
across different layers and found that the distribution of 1 s
demonstrates two similar behaviors: 1) the portion of essen-
tial bits remains nearly identical at each bit location, around
50%∼60%, which also means 40%∼50% portion are slacks
at these locations. No bit position exhibits radical spikes of
essential bits and 2) certain bit positions exhibit a large por-
tion of slacks. For example, position 3∼5 only have less than
1% essential bits. The “cliff” at these positions indicates that it
is almost composed of slacks in this bit lane, but the multiplier
does not differentiate them with essential bits when perform-
ing MAC. If we want an augmented inference efficiency, the
slacks must be harnessed.

The stable distribution of essential bits in Fig. 2 provides
a unique opportunity to squeeze out the slacks at a per-bit
level. In specific, if the slacks presented in previous weight
could be replaced by essential bits (1 s) of the subsequent
weight, we could replace the ineffectual computations with
essential contributive computations and process multiple pairs
in one cycle. Fig. 2 has proved the headroom of acceleration
could be as high as 50%, and it does not emerge any roofline
at any bit position so the overall weights could be compressed
into nearly half of their initial volume. In other words, we
could save 50% time during inference. However, it would be
tricky to achieve this goal because we need to modify the exist-
ing computational architecture originally designed for MAC,
and rearchitect it to support new computing patterns. In the
next section, we will elaborate how our scheme is designed
for this purpose.

III. ENFORCING EFFECTUAL COMPUTATION

A. Prerequisite

As described in many previous [10], [27], fixed point multi-
plication could be decomposed into a series of shift-and-adds,
governed by the following:

A × W =
B−1∑

b=0

2b × (A × Wb). (1)

If we have B length fixed point weight (W), the activa-
tion (A) is shifted b bits at each addition. The summation of
these intermediate shifting segments denotes the final result.
Similarly, we could extend this equation to multiple A/W pairs

N−1∑

i=0

Ai × Wi =
B−1∑

b=0

2b ×
N−1∑

i=0

(Ai × Wb
i). (2)

In the above (2), we first add all N number of As according
to the bth bit of Ws, which could be either 0 or 1, and then per-
form shift-and-accumulate for the final summation. As can be
seen, the value of Wb

i determines if the summation of Ai is an
ineffectual computation or vice versa. We aim to replace these
ineffectual bits with the essential bits of subsequent weights as
described in Section II-B, but first, we must be able to detect
the essential bits in the weights, which will be specified in the
next section.

B. Weight Kneading

Following the (2), if the bth bit of weight Wi is a slack, we
seek to explore subsequent weight in the lane, i.e., Wj, and if
its bth bit is an essential bit, the slack is replaced with Wb

j , and
make the corresponding activation Aj contribute to the current
summation within the same cycle. In other words, effectual
computation is also enforced at the maximum possibility.

Fig. 3 shows the general concept of this method. If we group
six weights as a batch, conventionally it will take six cycles to
accomplish six weight/activation MACs, because they are fed
to the PE one after another from the on-chip eDRAM. Many
previously proposed designs follow this paradigm [19], [21].
If we further interpret the weights and blind the zero bits,
the slacks emerge at two orthogonal dimensions: 1) in the
intraweight dimension, i.e., w1 and w6, slacks demonstrates
arbitrary distribution and 2) on the other hand, the slacks also

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ARCHITECTING EFFECTUAL COMPUTATION FOR MACHINE LEARNING ACCELERATORS 2657

Fig. 3. Weight Kneading. The design philosophy lies on squeezing the slacks in consecutive weights. (a) Scenario of input weights w/ zero slacks before
kneading; eliminating slacks and only essential bits are left in (b); weights after kneading is shown in (c); various equivalents of (c) are shown in (d); and
(c) and (d) have equal computing cycles after kneading.

Algorithm 1 Weight Kneading Mechanism. The Goal Is
Squeezing Out the Slacks in Each Bit Column, Only Leaving
the Essential Bits

Require: ks number of original weights: W=[w0, w1,. . . , wks−1],
with precision B (B could be either fp16 or INT8, etc);

Ensure: n number of kneaded weights: W’ = [w’0, w’1, . . . ,
w’n−1], n = ks; and indices: P = [p0, p1, . . . , pn−1];

1: n = 0; b = 0; i = 0; //initializations
2: 1foreach bit b in B { //iterate each bit column in Figure 3(a)
3: foreach weight wi in W {//iterate each weight in the bth
4: //column
5: if (wi[b] == 1) {//identify essential bit
6: w’n[b] = 1; //store essential bit in the kneaded weight
7: pn[b] = i; //store the index indicating the
8: //corresponding activation
9: n++; //accumulate the index of the kneaded weight

10: }//end if judgement
11: }//end each weight in W
12: n = 0; //reset the index for the next bit column
13: }//end all bit columns
14: Output: P and W’; //we only need the kneaded weights
15: //and the indices

1The outer “foreach” loop is actually executed in parallel in
hardware.

show up at interweight dimension, i.e., w5, who is an all-zero-
bit (zero-value) weight, so it does not emerge at Fig. 3(b). If we
elevate the essential bits taking the space previously occupied
by the slacks, the computation cycles of six MACs will be
decreased to only three cycles, as shown in Fig. 3(c). This time
we obtain w’1, w’2, and w’3, but each one is combined with
the essential bits of previous w1∼w6. w’3 has slacks because
we only take 6 weights as the example. If we allow more
weights involved, these filled zero bits are likely to be replaced
by more essential bits, and we term this whole operation as
Weight Kneading in this article.

Obviously, the benefits of weight kneading are, on one side,
it automatically eliminates the impact of zero values before
feeding them into PE, without introducing extra operations
or specialized hardware. As a small slice of total weights, the
accelerator does not need to specifically deal with zero values,
so the design complexity has the opportunity to decrease. On
the other side, zero bits are also replaced by essential bits after
kneading, so it avoids the impact of slacks at two dimensions
within one mechanism. However, kneaded weights indicate the
current summation is a combination of multiple correspond-
ing activations instead of one activation alone, so the Ai in (2)

must be able to reference a set of activations according to
the bth bit of w’i. For example, if we configure six kneaded
weights, then six corresponding activations must be reachable
even if each kneaded weight may not need all of them, as
Fig. 3(c) shows: w’1 only needs A1, A2, and A4. The num-
ber of weights for kneading is a design parameter, termed
as kneading stride (KS) and we will evaluate its scaling to
the inference efficiency in our evaluation section. Algorithm
1 details the weight kneading procedure. It is worth mentioning
that in line 2 the outer foreach loop depicts the procedure for
each bit column, while in practical hardware implementation
such procedure could be issued in parallel in each weight lane.
After kneading all columns, we get P indicating the indices
matrix and W’ indicating the kneaded weights matrix.

C. Split-and-Accumulate

Equation (2) indicates that we could only account for the
essential-bit related activations in computing the partial sum,
and the result is the same. Therefore, having introduced our
mechanism for detecting the essential bits in the previous
section, we propose the key micro-architecture designed to
support such highly efficient computation.

Intuitively, the computing architecture might be significantly
distinct with conventional ones performing classic MACs,
because in here it must be capable to manipulate the individ-
ual bit, rather than the entire weight datum. Re-examining (2),
we can see that there are two “�”s in the equation on the
right-hand side, with the first one responsible for “shift-and-
add” based on index b and the second one for adding contribu-
tive “Ai” on the bth position for all the weights. Since accu-
mulating “Ai” is independent, we can parallelize the second �

using “B” number of adders, and perform the first � right after
we obtain B number of summations (

∑N−1
i=0 (Ai × Wb

i)). This
induces our proposed computing architecture that is different
from the conventional MAC and canonical bit serialization
schemes [10], [27], and we term it as “SAC” in this article.

SAC denotes “Split-and-ACcumulate,” and Fig. 4 shows the
architecture of SAC. An SAC operation first splits the kneaded
weight, references the essential activations and finally accumu-
lates each activation to the certain segment registers “S.” SAC
targets each bit in the weight, not the whole value so it does
not involve multipliers in its architecture; instead, it instanti-
ates a “splitter” according to the precision of the weight: if
we use fp16 precision for each weight, we need 16 segment
registers (p = 16 in the figure) together with 16 adders with
two input ports each. Typically, the splitter is responsible for

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

2658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Algorithm 2 CW Mechanism. The Goal Is Identifying the
Essential Bit Framed by the CW

Require: ks number of original weights: W = [w0, w1, . . . ,
wks−1], with precision B (B could be either fp16 or
INT8, etc); check window size: ck; Activations:
A = [A0, A1, . . . , Aks−1];

Ensure: the chosen activation in the window: Y, and the starting
point of the next cycle: start;

1: start = 0; //initialization
2: 1foreach bit b in B {//iterate each bit column in Figure 5
3: 2while(start = ks-ck){X = 0; //reset the flag
4: for (i = start; i < start + ck; i++) { //within ck
5: if (wi[b] == 1) {X = 1; Y = Ai; break; }
6: }
7: if (X == 1) {X = 0; //reset the flag
8: for (i = i+1; i < start + ck; i++) {
9: if (wi[b] == 1) {X = 1; start = i; break; } //Case A

10: }
11: if (X == 0) { start = start + ck;} //Case B
12: } else {Y = 0; //Case C
13: start = start + ck; //update the starting point of
14: //the check window
15: } //end if - else judgement
16: Output: Y and start;
17: } //end while loop
18: start = 0; //reset the starting point for the next column
19: } //end all bit columns

1The outer “foreach” loop is actually executed in parallel in
hardware.

2The inner “while” loop dominates the critical path.

dispersing each activation to its corresponding adder as gov-
erned by (2); for example, if the second bit of a weight is
detected as an essential bit, activation is delivered to S1 in the
figure. The same operation applies to other bits.

After “splitting” this weight, subsequent weights are han-
dled in the same way, so each segment register S is accu-
mulated with new activation if its associate weight has an
essential bit. After dealing with the lane outright, subsequent
adder tree performs shift-and-add, once and for all, to obtain
the final partial sum. Different from MAC, SAC does not per-
form any shifting to obtain the intermediate pair-wise A/W
multiplication. The reason is that in the real CNN model, the
output feature map only accounts for the “final” partial sum,
that is, the convolution of all filter channels and its corre-
sponding input feature map. As for the intermediate partial
sum, the value is not that useful so it is totally superfluous
to waste time and energy procuring these useless values as
conventional MAC does. SAC relies on this fact and move all
shifting operations to the rear adder tree, so it also shortens the
critical path thereof and the main frequency of the accelerator
has the potential to increase.

The splitter for weight kneading is also shown in Fig. 4.
Weight kneading requires the splitter could accept a set of acti-
vations for one kneaded weight, and each essential bit must
be recognizable to indicate the relevant activation within the
KS. Therefore, we use <w’i, p> tuple in the splitter to rep-
resent the essential bit and its index (p). The bit-length of p
is a proxy of KS, i.e., 4 bits p refers to a KS of 16 weights.
It allocates one comparator to determine if the input bit of
a kneaded weight is zero, because it is possible that some bit
positions are still ineffectual even after kneading, i.e., w’3 in

Fig. 4. SAC. Differed from MAC, it does not aim at the exact pair-wise
multiplications; instead, it first splits the weight in the splitter, and the activa-
tion is summed in the corresponding segment adders. Final shift-and-add for
a partial sum is performed at the rear adder tree, after addable pairs accomplish
splitting and accumulating.

Fig. 3(c). If it is a slack, the multiplexer after the comparator
(“=”) will output zero to the fully connected fabric. Otherwise,
it will decode p and output corresponding activation among
A0∼Aks−1.

IV. OPTIMIZATIONS FOR ENERGY AND STORAGE

In weight kneading mechanism, the generated kneaded
weight w’ is a combination of essential bits that previously
belong to the original weights. Still taking w’1 as the example,
when b = 0, Ai in (2) then indicates A1, but w’1 cannot rec-
ognize it because all the bits are the same bit “1.” That is why
we must allocate “indices” to each bit for this purpose. As the
additional enrolled factor, if we use KS = 6 as the example in
Fig. 3, 3 bits are enough to represent the indices: A1 could be
represented as “000” and A2 “001,” etc. The indices are used to
decode the activations when performing (2). Obviously, when
KS is set larger, the newly introduced indices will consume
larger storage as well, i.e., 4 bits for KS = 16, 5 for KS = 32,
which also means the storage resources must be expanded to
4 times in order to store the kneaded weights. Assuming that
weight kneading could reduce 50% of the original weights
(2× storage reduction), the indices, however, expand 4× the
storage so the overall storage still increases 2×. Increased stor-
age inevitably leads to an increased power consumption, so in
this section, we specify how to optimize this parameter and
propose the CW mechanism for the essential bit detection.

A. Check Window Sliding

Weight kneading could eliminate the slacks, and the final
cycles consumed for computing the partial sum within KS is
decided by the bit column with the maximum essential bits.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ARCHITECTING EFFECTUAL COMPUTATION FOR MACHINE LEARNING ACCELERATORS 2659

Fig. 5. Concept of CW Sliding. Red line frames the bits in the current
computing cycle, while the blue line frames the bits of the next cycle. The
chosen output activations are marked by the red blocks.

Still taking Fig. 3 to exemplify this statement, 3 cycles in
Fig. 3(c) are concluded by the rightmost or the leftmost bit
columns. The bit columns in between all demonstrate two
cycles with an extra slack. When computing this group of
kneaded weights, actually we do not need to care if the former
bit 1 s in the middle lanes are computed in the first, second, or
the third cycle, because anyway the total computing cycles are
3, dominated by the side columns. In other words, the slack bit
could bubble up to the top w’1 or the middle w’2 while kick-
ing down the essential bit to w’3. Even if the first cycle might
compute a slack, but the overall computing cycles remain the
same, as shown in Fig. 3(d).

With this mindset, we seek to alleviate the tight constraint
a little bit in the previous weight kneading, that is, squeez-
ing out all the slacks and leaving the irremovable slacks at
the rear of the column. Instead, we try our best to output
the essential bit to SAC for each column within the current
computing cycle, but still allow in some of the cycles that it
outputs a slack, and the overall computing cycles are governed
to be nearly identical to the strict weight kneading mecha-
nism. In specific, we introduce a new paradigm in Fig. 5:
there are three scenarios indicating three different bit columns
and before kneading, we can see that slacks are arbitrarily
located and interleaved with essential bits (bit 1 s). Instead of
direct kneading, we assign a CW that is able to slide in the
lane, from the top to the bottom within a certain range. The
bits framed within the window could be referenced within one
clock cycle. Intuitively, we want these bits most possibly con-
tain an essential bit just like in weight kneading. However, it is
also highly possible that the window contains only slacks. For
example in Fig. 5(a), the window with a length of 4 (marked
in red line) frames 4 bits, with the first bit an essential bit, so
it outputs this bit in current computing cycle. However, in case
B, the first bit is a slack, but there is an essential bit in the
second place within the CW, so this bit can also be selected

and output by the window. For the extreme case C, the 4 bits
are all slacks, so in this computing cycle, it can only output
a slack, but in our CW mechanism, we allow this scenario to
happen but control it as minimum as possible.

B. Design Tradeoff

If we want to maximally output essential bits in the same
cycle, it imposes two requirements to the mechanism. First,
the window must be capable to reference all the bits within its
frame, which is just the greatest benefit of the scheme because
the CW inherently recognizes the location of the essential bit.
It references the bit one after another so it is totally unneces-
sary to record the indices. Still taking case B as an example,
when the window recognizes that the second bit is 1, it directly
outputs the second activation in accordance with the posi-
tion of this essential bit. In previous weight kneading, it only
needs to reference one bit in the kneaded weight within one
cycle, but this time it needs to traverse multiple bits, up to the
length of the CW. The prolonged clock cycle influences the
main frequency and cripples the model inference speed. This
is a tradeoff between storage and computation speed during
inference. For some cases (i.e., computing huge DNN model
like object detection and semantic segmentation), speedup is
the predominant design constraint so we could allow the mod-
erate increase in storage in exchange of fast inference, but in
other scenarios, power consumption is the predominant factor
and we cannot tolerate sharp increase in memory especially
in battery-powered edge devices like security cameras and
robotics, because the increased storage inevitably leads to an
increased power consumption. This flexibility also provides
a unique feature that is apart from existing DCNN acceler-
ators. The user is able to choose if the accelerator works at
high-performance mode, i.e., in the cloud, or power-efficient
mode, i.e., in edge devices. The former could configure the
accelerator using weight kneading, while the latter could use
fixed-length CWs.

The mechanism should not only precisely identify output
activations but also determine the sliding of the CW. Therefore,
the second requirement is supposed to be fixing the starting
point of the window for the next computing cycle. In Fig. 5,
the windows marked in blue denote the framed bits of the next
cycle. We stipulate the starting point is the second essential bit
in the previous red window. Otherwise, if there is no second
essential bit, i.e., case B, or no essential bit at all in the entire
window, i.e., case C, the starting point is stipulated to be the
first bit beyond the window length, as demonstrated in Fig. 5.
The activation selecting procedure is totally identical for the
current cycle. The sliding control logic works iteratively until
the end of the bit column. We could also use the parameter KS
to indicate the maximum range that the CW could slide, but
this time it does not mean the stride of kneading but the stride
of sliding. Algorithm 2 details the procedure of this detection
mechanism. Three cases elaborated in Fig. 5 are involved in
the algorithm. Apart from weight kneading (Algorithm 1), the
algorithm outputs no weight matrix, but directly outputs the
target activation denoted by the essential bit in the window,
and the starting point for the next cycle. The inner while loop
determines the critical path in the practical hardware imple-
mentation, which also reflects the design tradeoff as mentioned
above. Upon its significance, a feasibility analysis is necessary.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

2660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 6. Feasibility analysis. We characterize the behavior of slack continuity,
which means the number of zero bits that are continuous in this lane. We
analyze the continuity ranging from 1∼32. The mesh plot of 4 DCNN models
exhibits similar behavior. Higher proportions concentrate at slack continuity
from 1 to 3 across almost all the bit lanes, followed by a relatively plain
area from 5∼32.

C. Feasibility Analysis

Even though we do not need to record the indices in the
CW mechanism, but the risk is the output bit is not guaranteed
to be essential. The window length (ck in Algorithm 2) has a
significant impact on this concern and should be appropriately
configured off-line making the slack output as minimum as
possible. Intuitively, it is preferable that the CW frames at
least one essential bit at each cycle, but the distribution of the
slacks is highly unpredictable and might be different across
the bit columns. It is possible that setting the size too short
makes the output almost slacks and further undermines the
effectual computation goal; on the other side, setting it too
long will elongate the traversal time, and as the critical path, it
may potentially drag down the main frequency the accelerator
could attain.

To explore the proper configurations, we seek to figure
out the distribution of contiguous slacks, that is, the num-
ber of slacks that are contiguous in the column dimension and
its emergence. For example, if we find that eight contiguous
slacks are the mostly observed case for each lane, the window
size could be set to 9 or 10. That is because if the window
encounters an 8-slack case, the window is large enough to
step across all the slacks in one cycle and absorb the essential
bit at the highest probability. Even if we cannot completely
avoid the slack output, we could decrease this scenario to the
minimum. Concretely in Fig. 6, we explore each bit column
using fp16 precision (x-axis), and stat the continuity of slacks
ranging from 2∼32 (y-axis), for 4 state-of-the-art DNN mod-
els. The z-axis indicates the proportion of continuous slacks
over all the cases. Starting from VGG-16, we find there is
a cliff across bit 8∼15 and slack 0∼3. The top proportion
of the cliff stables at nearly 25%, while the proportion of
the plain area however is around 1% for y-axis scaling from
8∼24. It means a continuity of 0∼3 dominates the distribution,
which also provides a vital evidence in setting the CW size.
Supposing we set the window size equals to 4 or 5, for most
of the cases, the window will frame an essential bit. Another

observation in Fig. 6(a) is a sharp spike at 27 on the y-axis. The
proportion is around 85% at bit lane 0∼2, but other columns
do not exhibit this phenomenon. Similar scenario also shows
in Fig. 6(b) for VGG-19. Setting the window size around this
value is supposed to be more appropriate for these bit columns,
but increased window size also harms the critical path delay
as mentioned, and a majority of columns do not benefit from
large window size because they must wait for the worst-case
scenario even if an essential bit has been identified already,
wasting the rest of the time in the computing cycle. For the
NiN and GoogleNet model, the cliff is more obvious with no
spikes at larger continuity. We will show in Section VI-A that
the configuration of window size and its impact on the accel-
erator performance is highly aligned with the observations in
Fig. 6. We can also conclude from the uniform behavior of
various DNN models: CW mechanism is feasible in detect-
ing essential bits, by setting the same window size across bit
columns.

D. Micro-Architecture Support

In terms of the hardware design, it is slightly different from
the weight kneading. The indices are no longer stored in the
throttle buffer because the CW could reflect the chosen acti-
vation. As shown in Fig. 7, the input activations are still
constrained by the KS parameter for the least modification of
the hardware. “Wck” in the figure denotes the input weights
in each lane, and its length is consistent with KS as well.
Omega module (“�”) is specially designed for the CW slid-
ing logic and starting point selection logic, which could be
implemented using cost-effective combinatorial circuits. The
output of � is twofold: 1)the selector of the decoder for this
bit column (also the “Y” in Algorithm 2), used for select-
ing the target activation based on the essential bit framed in
the CW and 2) if the CW outputs a slack, the enabler (also
the “X” in Algorithm 2) bans the activation and outputs 0 to
the fully connected fabric.

The implementation details of � only involve several AND
and NOT gates, which aims to select the first and second essen-
tial bit from I0∼Ick, denoted by the output Y. The first bit is
used to select the target activation, and the second bit is to
identify the starting point after sliding for the next computing
cycle. If all the input Is are slacks, the enabler is 0, denoted
by X in the figure. Although � is very cost-effective and com-
posed of only combinatorial circuits, it is crucial to explore its
impact on the main frequency because selection and control
logic will, to some extent, increase the critical path latency
and as the key design tradeoff, we will thoroughly evaluate it
in Section VI-A.

V. TETRIS ACCELERATOR

A. Backbone

For the practical accelerator design, it should leverage the
essential bit detection mechanisms, weight kneading or CW
sliding, combined with their respective hardware architec-
ture to achieve highly efficient inference. In this section,
we elaborate our Tetris accelerator design, which includes
two implementations with respect to the built-in detection
mechanism differentiated by the splitter. Fig. 8 shows the
backbone of Tetris. Each SAC unit accepts addable A/W
lane. Specifically, the accelerator consists of symmetric SAC

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ARCHITECTING EFFECTUAL COMPUTATION FOR MACHINE LEARNING ACCELERATORS 2661

Fig. 7. Splitter micro-architecture for the CW mechanism. “�” is the newly introduced module that has two purposes: the first one is selecting a target
activation (Yn) or slack (enabler X) according to the input “I” with “ck” length. “ck” is also the length of the CW; X Y here is consistent with Algorithm 2;
the second one is to identify the starting point of the window for the next cycle. “�” is purely combinatorial logics.

Fig. 8. Tetris accelerator architecture. Each backbone SAC unit is composed of 16 parallel organized splitters accepting a series of (kneaded) weight and
activation batches denoted by parameter KS, and the same number of segment adders as well as a rear adder tree are responsible for calculating the final
partial sum.

units, connected with the throttle buffer accepting a series
of (kneaded) weights from the on-chip eDRAM. Each unit
contains 16 splitters comprising a splitter array, if we use fixed
point 16 weights. Each splitter is able to reference multiple
impending activations according to the parameter KS. There
are 16 output data paths in each splitter for the activation to
reach its target segment register S, so it forms a fully connected
fabric between the splitter array and segment adders. For each
segment adder, it receives activations from all 16 splitters for
adding, as well as the values from the local segment register.
The intermediate segment sum is stored in S0∼S15 register,
and once all addable channel lanes are accomplished, “pass
control signals” inform the multiplexer to pass each segment
values to the rear adder tree. The last level of the adder tree
generates the final partial sum and passes it on to the nonlinear
activation function and pooling. In the throttle buffer shown in
the figure, the pass mark denotes the end of the addable A/W
pairs, which will be notified to the pass detector in each SAC
unit. If all the pass marks reach the end, the rear adder tree is
valid for the shifting summation to obtain the final partial sum.

Since we use KS as a parameter to control the number
of weights in the lane for the two mechanisms (though for

different purposes), different lanes will have different num-
ber of left weights because we cannot guarantee the essential
bits are spawned in synchronization for each lane, so the pass
marks, for most of the time, are not synchronized as well
and may reside at any location of the throttle buffer. We can
allow new addable A/W pairs filled into the throttle buffer
once it is empty and do not need to wait for other lanes to
finish, so this load imbalance does not impact the calculation
of each segment partial sum. Quite on the contrary, it pipelines
the memory accesses and benefits the throughput enhancement
compared with the strictly synchronized MAC.

B. 8-Bit Quantization Acceleration

Tetris is capable of precision tunable acceleration—another
benefit brought by SAC. Some prior work has proved the accu-
racy and precision of the DCNN model demonstrate a tradeoff,
and a graceful accuracy degradation is acceptable when the
precision is tuned and decreased a little bit for each layer [27].
Tetris does not need to modify its intrinsic architecture to ful-
fill this purpose, because the contributive activations are bit
dependent instead of value-dependent. If we shrink the length

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

2662 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 9. Modification of the splitter for accelerating INT8 inference. Differed from fp16 mode, the splitter is halved into two parts with each one handling
an 8-bit width weight. The figure employs the splitter designed for the CW mechanism. For the weight kneading-based Tetris, the design concept is similar,
following Fig. 4.

of weights from fixed point 16 to arbitrary lengths, i.e., 8, 9 or
even 4 bits, SAC operates itself in the same way as fp16, with
only one distinction that not all the adders after fully con-
nected fabric are active. If we use 4-bit weight, only adder0
∼adder3 in Fig. 8 remain activated because they accumulate
segment 0 to 3 according to the weight precision.

In recent years, 8-bit integer quantization (INT8 hereafter)
is proved to be amenable to high throughput inference and
even training. Many deep learning frameworks like Tensorflow
and Caffe tends to incorporate INT8 arithmetic as the basic
operation in stochastic gradient descent calculation. It is also
leveraged by many types of GPUs and software programmable
engines like TensorRT [28] to accelerate the inference of
DCNN models. As the unique feature of Tetris, it could pro-
vide a theoretically doubled inference efficiency compared
with fp16 mode which makes Tetris promising in deploying
DCNN models in lightweight devices. By simply configur-
ing the splitter array and segment adders, Tetris could be
configured to INT8 mode as Fig. 9 shows. The fundamental
architecture of the SAC unit remains nearly unchanged except
for the splitter. The splitter is first divided into two halves,
with each half accepting one weight. It turns out that the upper
eight adders will deal with the upper half activations, similar
for the lower eight adders. Besides, only the last level of the
rear adder tree needs to be configured to distinguish between
the two modes. By this manipulation, the segment adders and
rear adder tree are both sufficiently utilized without idle com-
ponents. Since each splitter accepts two weights as input, the
throughput of the SAC unit is also doubled under the same KS
setting, which means with the same amount of activations, the
inference efficiency would also become twice in theory com-
pared with fp16 mode. Note that INT8 acceleration could be
supported in both weight kneading based (Fig. 4) and CW-
based version of Tetris (Fig. 9), with the only difference in
the splitter design.

VI. EVALUATION

In this section, we evaluate the proposed detection mecha-
nisms, the SAC architecture and the Tetris accelerator family.
The evaluations are issued based on the following aspects.

1) DNN Models: The DNNs and their pretrained parame-
ters are obtained from Caffe Model Zoo. Tetris embraces
the model trained with any batch size. We quantize the
initial floating point 32 weights into fixed point 16 and
integer 8 precision. Then, we fine-tune the weights using
framework Caffe [29] to maintain the Top-1 classifica-
tion accuracy. The obtained fp16 and INT8 weights are
used in evaluating the inference efficiency under various
DNN models.

2) Baselines: In recent years, many literatures leverage
the sparsity in the parameters and intend to skip the
zero value operands before computing the partial sum.
Almost all of them strive to eliminate zeros right before
the operands are handed to the multiplier. For instance,
cnvlutin [11] optimizes both zero values and near-zero
activations based on a DaDianNao [19] alike accelera-
tor. Also based on the DaDianNao, Stripes [27] further
transforms the parallel partial sum computation into
the bit-serial manner. Its design goal is accommodat-
ing different per-layer precision requirements of DNNs.
PRA [10] further improves the stripes design by only
counting on the pragmatic essential bit, but still ties to
the bit-serial design concept. There are also accelera-
tors that are not based on the DaDianNao backbone. For
instance, EIE [14] is specially designed for accelerating
the compressed DNN models, by avoiding the arithmetic
of zero activations and pruned weights. SCNN [12] fur-
ther eliminates the zero activations in addition to the
zero weights. The fundamental design includes a scatter
on-chip network and a tiled architecture. Although these
works are effective in reducing the ineffectual zero-value
computations, the acceleration, however, is disabled fac-
ing zero bits. Therefore, we employ two baselines in
our evaluations: a) DaDianNao [19] and b) PRA [10],
because first, the backbone of Tetris is based on
DaDianNao, also allocating weight/activation lanes sym-
metrically, and second, Tetris also solves the bit-level
ineffectual computation which is also the same problem
PRA intends to tackle. We implement Tetris with two
configurable precision modes, fp16 and INT8, as men-
tioned in Section V. The weight kneading-based Tetris

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ARCHITECTING EFFECTUAL COMPUTATION FOR MACHINE LEARNING ACCELERATORS 2663

Fig. 10. Performance under different KS configurations for fp16 (left) and INT8 (right) mode. We use Tks/Tbase in plotting this figure, where Tks is the
time consumed after kneading KS number of weights, while Tbase is the time that weight kneading is not applied.

is termed as Tetris-KN, as the representative of high-
performance DCNN acceleration, while the CW-based
Tetris is termed as Tetris-CW, as the representative of
power-efficient DCNN acceleration.

3) Platforms: We employ Vivado HLS (v2016.2) to con-
duct C simulation and C/RTL hybrid simulation to
extract the inference time of various DCNN mod-
els. For area evaluation, we compile our design using
Synopsys Design Compiler [30] with TSMC 65 nm
technology library. For power/energy measurement, we
use PrimeTime tool [31] after HLS for the intrinsic
components of Tetris and the baselines.

4) Design Specifics: For the design parameter KS, we
choose 16 weights to be kneaded in Tetris-KN, in other
words, the input splitter could reference 16 activations
at one time according to the input kneaded weight. This
design parameter is also evaluated to explore the sen-
sitivity of Tetris-KN to the inference speedup. We use
16 PEs, and for Tetris-KN and the baselines, each PE is
clocked at the same frequency referenced in HLS simu-
lation for Xilinx Z7020 FPGA that fp16 multiplication
could be accomplished within one cycle. The practical
frequency for our proposed Tetris-KN is possible to be
tuned higher because the replacement of multipliers with
multioperand adders (SAC) provides abundant timing
intervals which could be utilized to boost the inference
frequency, but in this article, we keep the frequency
constant for fair comparison in evaluating the actual
inference time. However for Tetris-CW, it is a little bit
tricky because different window sizes will influence the
main frequency, due to the critical path delay introduced
by the � module. Therefore, we set the frequency to
cover the worst-case scenario, that is, the time spent on
traversing the entire CW for the essential bit and the
next starting point, and explore its performance under
different window size and frequency configurations.

A. Parameter Scaling Analysis

KS: In Tetris-KN, as the major design parameter, it affects
the runtime inference speedup because the performance pri-
marily depends on the amount of weight/activation pairs
computed. Intuitively, the more weights kneaded, the more
speedup obtained. That is because more kneaded weights will
lead to more opportunities to fill up zero slacks that further

increases the effectual computations and hence the through-
put. Besides, more kneaded weights reduce the operations of
computing the partial sum, so it shortens the inference time
that further contributes to more energy savings. Our evaluation
proves this notion as shown in Fig. 10. We scale the KS from
small (10 weights) to large (32 weights) and evaluate the infer-
ence time reduction at each step. The total time is saved to
75.1% for AlexNet at KS = 10, and further reduced to 64.2%
at KS = 32. Other DNN models exhibit similar behaviors at
fp16 mode. For INT8 mode, the data are ranged randomly
between ∼48% and ∼50%, and it shows an obvious satura-
tion across the employed DNNs. The reason is that the slacks
are fewer compared with fp16 mode because INT8 has fewer
bits in nature and enlarging KS will not significantly improve
the inference time. Even so, INT8 mode is also much faster
because Tetris accelerates this mode by halving its splitter in
Fig. 9.

On the other hand, we cannot naively set KS as large as pos-
sible because more interleaved essential bits also lead to wider
decoders in the splitter, and will inevitably increase the stor-
age intensity due to the larger indices, i.e., KS = 32 requires
5 bits for each <p> in Fig. 4. In order to acquire a bal-
anced design complexity and inference speedup, we choose
KS = 16 in conducting subsequent evaluations, but note that
this design parameter could be dynamically configured con-
sidering different speedup, storage, and power consumption
constraints.

CW Size: In Tetris-CW, the length of CW predominates
efficiency. Proper setting should make the window frame as
many essential bits as possible and make the slack output as
minimum as possible in each cycle. At the same time, we
cannot blindly pursue this objective by enlarging the window
size at all costs, because the combinatorial circuits in � also
scale larger along with the window size, introducing addi-
tional critical path latency overhead. Therefore, we evaluate
this parameter from two aspects.

1) The first one only considers the increment of inference
cycles, without taking the path delay of � into account.
Since Tetris-KN ensures the output at each time for SAC
is an essential bit, it could be regarded as the theoretical
upper bound, so the increment of inference cycles under
different window size settings of Tetris-CW over Tetris-
KN hence reflects the magnitude of the slack output.
Obviously, the less the increment, the better the setting.

2) The second one involves the critical path delay on top
of the inference cycles to explore the actual inference

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

2664 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 11. Window size scaling and its impact on inference cycles. We stat
the cycle increment proportion over Tetris-KN with a KS of 16 under fp16
and INT8 precision.

time. The proportion of increased inference cycles is
just one metric reflecting the slack output induced by the
mechanism. However, the actual inference time is also
contingent on the hardware latency introduced by �.

In Fig. 11, we plot the cycles increment (in percentage)
over Tetris-KN, with the left y-axis for fp16 precision, and the
right y-axis for INT8. For various DNN models, we observe
an extremely similar behavior. All the models demonstrate
a “hockey” curve, with the inflexion point nearly identical
on the x-axis. For example, VGG-16 and VGG-19 exhibit
7.21% and 7.27% increment for fp16 at CW size = 2, while
0.89% and 0.85% at CW size = 4, respectively. For size scal-
ing from 4∼16, the data become pretty stable, less than 0.5%
increment for each case. Similar for GoogleNet and Nin, the
inflexion also emerges at CW size = 4 with 2.21% and 1.43%
increment, after which the data also become stable at nearly
1.8% and 1.2% increment. For INT8, all the evaluated DNN
models demonstrate tiny increment with CW size scaling, i.e.,
around 0.02% for VGG series, even 0.002% for GoogleNet.
We can draw two conclusions from the above-observed results:
1) small window size does result in increased inference cycles,
and the inflexion point is uniformly at CW size = 4 and
2) large window size settings do not lead to minimized infer-
ence cycles, which further proves that there exists an upper
limit in configuring the window size. Exceeding this limit does
not bring more headroom in accelerating model inference for
Tetris-CW.

As the second step, we scale the window size and stat the
overall inference time in each case. As illustrated in Fig. 12,
an interesting observation is that the evaluated DCNN models
still exhibit the hockey curve, but this time the bottom values

Fig. 12. Actual inference time with window size scaling. The latency of �

module is scaled with the window size, and further influences the frequency
of Tetris-CW. The larger the window size, the lower the frequency.

show up at small scale, i.e., CW size = 2∼4, and climb rapidly
when it scales up from 5 to 11, in sharp contrast to Fig. 11.
Also two conclusions here: 1) although small CW size brings
performance degradation in the absolute inference cycles, the
actual inference time, however, is definitively overwhelmed
by the hardware latency overhead and 2) selecting appropriate
CW size should bilaterally consider inference cycles increment
in Fig. 11 and the actual inference time in Fig. 12. Small size
setting has shortened inference time but undermines the energy
efficiency because of the increased slack output, while a large
size setting demonstrates optimal inference cycles but victim-
ized by the critical path delay. Comparatively, CW size = 4 is
an appropriate option that brings both less cycle increment and
actual inference time, and we will use this configuration in the
rest of the experiments. The conclusion is also in correspon-
dence with Fig. 6, in which the window size was suggested
to be slightly larger than the continuity of slacks, so size 4 is
supposed to be the best option as well.

B. Performance

Fig. 13 compares the inference speed of two Tetris imple-
mentations and the baselines, using real-world execution time
instead of the number of cycles in Vivado HLS simulation.
Here, we observe that by kneading weights Tetris-KN could
achieve 3.97× speedup for fp16 and 6.96× for its INT8 mode
over DaDN on average. For Tetris-CW with CW size = 4, the
speedup is 3.11× and 5.26×, slightly lower than Tetris-KN.
Comparatively, the other baseline PRA could achieve nearly
2.6× speedup. The benefits stem from enforcing effectual
computations by weight kneading or CW mechanism. By
deploying SAC instead of MAC in Tetris, these techniques

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ARCHITECTING EFFECTUAL COMPUTATION FOR MACHINE LEARNING ACCELERATORS 2665

Fig. 13. Performance comparison. We use absolute inference time consumed
as the representative. Lower is better.

Fig. 14. Speedup analysis for each Conv layer (normalized to DaDN) under
two KS configurations of Tetris-KN (fp16) and Tetris-CW (CK = 4).

are properly supported at the hardware level. Partial sum is
not computed at pair-wise pattern like in DaDN, and dealing
with activation data in batches significantly improves the infer-
ence throughput. PRA-fp16 is a bit-serial computing scheme
and it must traverse the entire weight to probe the essential
bit, and leverage large shifters via multiple synchronization
stages to accumulate the partial sum that significantly harms
the throughput. Since it also accounts for the essential bits,
model inference is also accelerated but only obtains limited
improvement. Tetris does not incur any of these problems.
Combined with the specialized INT8 acceleration mode, Tetris
further provides 1.75× and 1.68× speedup compared with
fp16 mode. Fig. 14 shows per-layer speedup analysis of VGG-
16 as a case study, in which we also present absolute number
of cycles (upper) as well as actual inference time (lower),
normalized to DaDN.

C. Energy and Efficiency

Furthermore, we evaluate the energy consumption as well
as the efficiency of Tetris and the baselines. For the energy

Fig. 15. Energy consumption, normalized to DaDN. Lower is better.

Fig. 16. Energy efficiency comparision. Also lower is better.

efficiency metric, we use the energy delay product (EDP) as
the representative. After DNN has finished the inference for
a single image, we record the total inference time together
with its energy consumption after synthesis to compute the
EDP values. To facilitate direct comparisons across all DNN
models and the baselines, we normalize the results to DaDN as
reported in Fig. 15. The average energy consumption is 2.81×
and 1.98× higher than DaDN for the Tetris-KN designs, the
increase in energy stems from the enlarged eDRAM for storing
the indices. For the Tetris-CW designs, the energy consump-
tion is 0.71× and 0.49× lower than DaDN. Therefore, we can
conclude that the indices consume a large fraction of energy.

From the energy efficiency perspective as reported in
Fig. 16, things are totally different: the improvement for Tetris-
KN is 1.41× for fp16 and 3.51× for INT8 over DaDN. For
Tetris-CW, the improvement even attains 4.37× and 10.52×.
The benefit of performance enhancement does not bring with
the cost of energy for Tetris. Tetris does not introduce com-
plex hardware architecture to fulfill SAC and on the contrary,
it simplifies the multiplier to pure adders. Tetris-CW does not
incur the storage overhead due to indices, so its efficiency
is much higher than Tetris-KN. For the bit-serial baseline,
it must enroll 16× more weight buffers to compensate the
throughput loss compared with DaDN, so its energy consump-
tion increases enormously and degrades the efficiency to only
19.1% of DaDN. This is consistent with the data reported in its
paper [10]. Tetris-CW outperforms PRA as 22.9× and 55.1×
for fp16 and INT8 mode, respectively.

Discussion: From experiments B and C, we find that the
two Tetris implementations have their own pros and cons.
If inference time or performance is the highest priority in
accelerating machine learning applications, i.e., in the cloud
datacenters, Tetris-KN is the first choice; in other scenarios,
i.e., in battery-powered edge devices, energy efficiency is the
major consideration, so Tetris-CW might be the better option.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

2666 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE II
AREA OVERHEAD COMPARISON. WE EVALUATE TOTAL AREA OF TETRIS AS WELL AS THE BASELINES,

TOGETHER WITH THE AREA BREAKDOWN OF 1 TETRIS PE

That also confirms the flexibility of our design discussed in
Section III-B.

D. Area Overhead

Table II lists the area of Tetris and two baselines. The overall
area overhead is 1.13× compared with DaDN, but Tetris has
a relatively smaller area compared to PRA. PRA suffers from
large weight FIFOs, because the bit serialization scheme can-
not match the throughput of bit-parallel schemes like DaDN
and Tetris, and large buffers must be enrolled to provide more
bit-level operations simultaneously. The overhead of 16 PEs
could reach 1.93× over DaDN. For the area breakdown, the
major contributor for Tetris is I/O activation/weight RAM
(68.24%) allocated per PE from the on-chip eDRAM, and
the throttle buffer (17.06%). For functional components, split-
ter array (9.7%, 15.08%) dominates the chip area. Segment
adders and rear adder tree do not occupy a large space with
only 0.1293 mm2 and 0.008 mm2 each.

VII. CONCLUSION

In this article, we proposed a novel computing
paradigm (SAC) as well as the associate accelerator
family with two practical implementations, targeting the
ineffectual computation problem in machine learning acceler-
ators. Differed from preconceived design philosophy, Tetris
does not resort to MAC operation to obtain the partial sums
at the cost of tedious multiplying and shifting, and most
critically oblivious to the zero bit slacks that undermine
the performance and energy. The two detection mechanisms
assure the essential bits involved in model inference and SAC
is designed to fulfill this purpose at the architectural level.
The Tetris family provide the user flexibility in selecting the
accelerator according to the application scenarios. We believe
that the techniques proposed in this article will motivate
a reconsideration of DCNN accelerator design, or could
even be applied to general-purpose computing engines like
GPGPUs in the future.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556v6.

[2] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013,
arXiv:1312.4400v3.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. Comput. Vision
Pattern Recognit., Las Vegas, NV, USA, 2016, pp. 2818–2826.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.,
Las Vegas, NV, USA, 2016, pp. 770–778.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. CVPR, Honolulu, HI, USA,
2017, pp. 2261–2269.

[7] M. Riera, J.-M. Arnau, and A. Gonzalez, “Computation reuse in DNNs
by exploiting input similarity,” presented at the 45th Annu. Int. Symp.
Comput. Archit., Los Angeles, CA, USA, 2018, pp. 57–68.

[8] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” presented at the 44th Annu. Int. Symp. Comput. Archit.,
Toronto, ON, Canada, 2017, pp. 1–12.

[9] W. Lu et al., “Promoting the harmony between sparsity and regularity:
A relaxed synchronous architecture for convolutional neural networks,”
IEEE Trans. Comput., vol. 68, no. 6, pp. 867–881, Jun. 2019.

[10] J. Albericio et al., “Bit-pragmatic deep neural network computing,”
presented at the 50th Annu. IEEE/ACM Int. Symp. Microarchit.,
Cambridge, MA, USA, 2017, pp. 382–394.

[11] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” presented at the 43rd Int. Symp. Comput. Archit., Seoul,
South Korea, 2016, pp. 1–13.

[12] A. Parashar et al., “SCNN: An accelerator for compressed-sparse con-
volutional neural networks,” presented at the 44th Annu. Int. Symp.
Comput. Archit., Toronto, ON, Canada, 2017, pp. 27–40.

[13] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit.,
Taipei, Taiwan, 2016, pp. 1–12.

[14] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Seoul, South Korea, 2016, pp. 243–254.

[15] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. Int. Conf. Comput. Vision (ICCV), 2017,
pp. 1398–1406.

[16] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv preprint arXiv:1510.00149.

[17] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
2016, arXiv preprint arXiv:1607.03250.

[18] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning
method for deep neural network compression,” 2017, arXiv preprint
arXiv:1707.06342.

[19] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,”
presented at the 47th Annu. IEEE/ACM Int. Symp. Microarchit.,
Cambridge, U.K., 2014, pp. 609–622.

[20] T. Chen et al., “DianNao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” presented at the 19th Int. Conf. Archit.
Support Program. Lang. Oper. Syst., Salt Lake City, UT, USA, 2014,
pp. 269–284.

[21] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” IEEE
Micro, to be published.

[22] E. Park, D. Kim, and S. Yoo, “Energy-efficient neural network accelera-
tor based on outlier-aware low-precision computation,” presented at the
45th Annu. Int. Symp. Comput. Archit., Los Angeles, CA, USA, 2018,
pp. 688–698.

[23] H. Sharma et al., “Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural networks,” presented at the 45th
Annu. Int. Symp. Comput. Archit., Los Angeles, CA, USA, 2018,
pp. 764–775.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

LU et al.: ARCHITECTING EFFECTUAL COMPUTATION FOR MACHINE LEARNING ACCELERATORS 2667

[24] B. Moons and M. Verhelst, “An energy-efficient precision-scalable
ConvNet processor in 40-nm CMOS,” IEEE J. Solid-State Circuits,
vol. 52, no. 4, pp. 903–914, Apr. 2017.

[25] H. Sim, S. Kenzhegulov, and J. Lee, “DPS: Dynamic precision scaling
for stochastic computing-based deep neural networks,” in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), San Francisco, CA,
USA, 2018, pp. 1–6.

[26] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: A
50.6TOPS/W unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in Proc. IEEE Int. Solid-State
Circuits Conf. (ISSCC), San Francisco, CA, USA, 2018, pp. 218–220.

[27] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” presented at the
49th Annu. IEEE/ACM Int. Symp. Microarchit., Taipei, Taiwan, 2016,
pp. 1–12.

[28] Nvidia. TensorRT, Programmable Inference Accelerator. Accessed:
Sep. 22, 2017. [Online]. Available: https://developer.nvidia.com/tensorrt

[29] Y. Jia. Caffe Deep Learning Framework. Accessed: Dec. 10, 2017.
[Online]. Available: https://github.com/BVLC/caffe/

[30] Synopsys. Design Compiler. Accessed: Nov. 4, 2015. [Online].
Available: http://www.synopsys.com/Tools/Implementation/RTL
Synthesis/DesignCompiler/Pages/default.aspx

[31] Synopsys. PrimeTime Static Timing Analysis. Accessed: May 2, 2018.
[Online]. Available: https://www.synopsys.com/implementation-and-
signoff/signoff/primetime.html

Hang Lu received the Ph.D. degree from the
University of Chinese Academy of Sciences,
Beijing, China, in 2015.

He is currently an Associate Professor with the
State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese
Academy of Sciences, Beijing. His current research
interests include high performance and power
efficient networks-on-chip architectures, many-core
processors, and domain-specific accelerators.

Mingzhe Zhang (M’18) received the Ph.D.
degree in computer architecture from the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China, in 2018.

He is currently an Assistant Professor with
the Institute of Computing Technology, Chinese
Academy of Sciences. His current research interests
include nonvolatile memory, near-data process-
ing, domain-specific accelerator, and emerging
technology.

Yinhe Han (SM’06) received the B.Eng. degree
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2001, and the
Ph.D. degree from the Institute of Computing
Technology (ICT), Chinese Academy of Sciences
(CAS), Beijing, China, in 2006.

He is currently a Professor with the State
Key Laboratory of Computer Architecture, ICT,
CAS. His current research interests include computer
architecture and chip design for intelligent robot. He
has published over 110 papers in the above areas,

including ISCA, HPCA, DAC, TC, and other top conferences and journals.
Prof. Han was the Program Chair of ATS’2014, the Finance/Publicity Chair

of HPCA’2013/17, the Program Co-Chair of WRTLT 2009, and served on
the Technical Program Committees of several IEEE and ACM conferences,
including DAC’17, PACT’14, and HPCA’13. He was the Chair of Young
Computer Scientists and Engineers Forum, China Computer Federation from
2016 to 2017. He is the Secretary General of CCF Technical Committee on
Fault-Tolerant Computing from 2016 to 2019.

Qi Wang received the Ph.D. degree in computer sci-
ence from the University of Chinese Academy of
Sciences, Beijing, China, in 2015.

She is an Associate Professor with the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing. In 2010, she received a 1-year
fellowship from INRIA under the joint program
with the Chinese Academy of Sciences to pursue
her research within the SWING team of INRIA,
CITI Laboratory, INSA, Lyon, France. Her cur-
rent research interest includes evaluation of wireless

networks for delay sensitive applications.
Dr. Wang was a recipient of the 2012 EIFFEL Doctoral Fellowship from

the French Ministry of Foreign Affairs.

Huawei Li (M’00–SM’09) received the B.S.
degree in computer science from Xiangtan
University, Xiangtan, China, in 1996, and the
M.S. and Ph.D. degrees from the Institute of
Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing, China, in 1999 and 2001,
respectively.

She has been a Professor with ICT, CAS since
2008. She visited the University of California at
Santa Barbara, Santa Barbara, CA, USA, from
2009 to 2010. She has published over 180 technical

papers, and holds 27 Chinese Patents. Her current research interests include
testing of VLSI/SOC circuits, design verification, design for reliability,
fault-tolerance, and approximate computing.

Prof. Li was a recipient of the 2012 National Technology Invention
Award of China. She has been served as an Associate Editor for the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS since 2015. She was the Technical Program Co-Chair of IEEE
Asian Test Symposium (ATS) in 2007 and 2018, and the General Co-Chair
in 2014. She was the Technical Program Co-Chair of IEEE International Test
Conference in Asia in 2018. She has served as the Steering Committee Chair
of IEEE Workshop on RTL and High Level Testing from 2014 to 2016, the
Steering Committee Vice Chair of ATS from 2017 to 2019, the Secretary
General from 2008 to 2015, and has been the Chair of the China Computer
Federation Technical Committee on Fault-Tolerant Computing, since 2016.
She has served on the technical program committees for several IEEE
conferences.

Xiaowei Li (SM’04) received the B.Eng. and
M.Eng. degrees in computer science from the
Hefei University of Technology, Hefei, China,
in 1985 and 1988, respectively, and the Ph.D.
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing, China, in 1991.

He was an Associate Professor with the
Department of Computer Science and Technology,
Peking University, Beijing, from 1991 to 2000. In
2000, he joined ICT, CAS, as a Professor, where he

is currently the Deputy Director of the State Key Laboratory of Computer
Architecture. He has coauthored over 280 papers in journals and international
conferences, and he holds 60 patents and 30 software copyrights. His current
research interests include VLSI testing, design for testability, design verifica-
tion, dependable computing, and wireless sensor networks.

Prof. Li has been the Vice Chair of the IEEE Asia and Pacific Regional Test
Technology Technical Council since 2004. He was the Chair of the Technical
Committee on Fault-Tolerant Computing, China Computer Federation from
2008 to 2012, and the Steering Committee Chair of IEEE Asian Test
Symposium from 2011 to 2013. He was the Steering Committee Chair of IEEE
Workshop on RTL and High Level Testing from 2007 to 2010. He services as
an Associate Editor for the Journal of Computer Science and Technology, the
Journal of Low Power Electronics, the Journal of Electronic Testing: Theory
and Applications, and the IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on November 29,2021 at 06:37:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

