
1

Trident: the Acceleration Architecture for
High-Performance Private Set Intersection

Jinkai Zhang, Yinghao Yang, Zhe Zhou, Zhicheng Hu, Xin Zhao, Liang Chang, Hang Lu, Xiaowei Li, Senior
Member, IEEE

Abstract—Private Set Intersection (PSI) is imperative in
discovering the properties of the same data owned by two
competitive parties, without revealing anything else of their
respective data asset. Existing PSI solutions such as APSI and ORI-
PSI suffer from severe communication and computation overhead
due to inefficient communication and FHE polynomial evaluation,
which hinders their deployment in practice. This issue is evident
in both the upper-level protocol and the lower-level hardware
platform. In this paper, we propose a novel software/hardware
co-design acceleration architecture for PSI, termed as “Trident”,
which includes two tightly coupled segments: from the protocol
perspective, we investigate existing bottlenecks and propose a
new PSI protocol with significantly less communication and
computation under the security guarantee; besides, we re-architect
the hardware platform by designing a PSI-specific accelerator,
implemented with both FPGA and ASIC, targeting the key
operations in the proposed protocol. We build a real-world
experimental environment with two instantiated parties to verify
the acceleration architecture, and highlight the following results:
(1) up to 130×/145× speedup for the computation of receiver
and sender parties; (2) up to 37× reduction of communication
overhead. (3) up to 93,651× and 74,326× higher energy efficiency
over the CPU-based ORI-PSI and APSI, respectively.

Index Terms—Private set intersection (PSI), fully homomorphic
encryption (FHE), FPGA accelerator, privacy computing

I. INTRODUCTION

PRIVATE Set Intersection (PSI hereafter) is a privacy-preser-
ving technique that enables two mutually untrusted parties

to compute the intersection of their data assets, without giving
up on their individual privacy. The result is the data that
both parties share. The PSI concept is illustrated in Figure
1. Two parties apiece own the private data asset about the
customer personal information, some of which overlap with
each other. However, they focus on different attributes of the
same customer (e.g., Alice in the figure). Usually, the party
with fewer data assets that issues the PSI is regarded as the
”receiver”, e.g., party B, while the party with much more data
assets that responds to the PSI request from the receiver is
regarded as the ”sender”, e.g., party A. The set intersection
could be used for the receiver to extend its business, e.g.,
providing more personalized medical service to Alice. PSI has
been very widely used in privacy-critical scenarios and industry
[1], [4], [12], [26], [30]; for example, Google utilizes PSI as

Jinkai Zhang and Yinghao Yang contributed equally to this work.
Corresponding authors are Jinkai Zhang and Hang Lu. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62172387; in part by the Youth Innovation Promotion Association of
Chinese Academy of Sciences (CAS) under Grant 2021098; in part by the
Open Research Fund of the State Key Laboratory of Blockchain and Data
Security, Zhejiang University.

Name Weight Smoker

Alice 66kg No

Name Height
Blood

Pressure

Alice 176 cm O Positive

Name Weight Smoker

Alice 66kg No

Height

176 cm

Blood

pressure

O Positive

Party A
(Sender)

Party B
(Receiver)

1. send request and data after

homomorphic encryption

Joe 73kg Yes Bob 182 cm B Negtive

2. compute the

set intersection

4. Decrypt and

output

3. return the encrypted result

Private Set Intersection

Fig. 1. General concept of Private Set Intersection (PSI).

a Chrome extension to check if a username and password
entered on a website has been compromised [26]. Alibaba Inc.
utilizes PSI in its ”datatrust” platform providing multi-lateral
data analytics and training to startups [1].

The first-order principle of PSI is the guarantee of privacy
and the privacy is twofold. Party A (the sender) must keep
its exclusive data (like Joe in the figure) secret, while party B
(the receiver) needs to encrypt all the data that are transferred
to the party A for computing the set intersection. Thus, two
parties perform the PSI without learning the exact data under
computation, which preserves the privacy.

The limitations of prior PSI. In general, PSI is very
computation-and-communication intensive. The most state-
of-the-art PSI protocol - APSI [10] requires 53 hours of
computation and 578GB of data communication for the two
parties to complete the PSI. The huge overhead hinders PSI in
realistic industrial deployment. The reason is that PSI usually
handles huge amount of data asset - from tens of millions to
even hundreds of billions. To make things worse, the data must
be encrypted to preserve the receiver’s privacy that further
exacerbates the communication and computation burden.

Existing PSI protocols consistently abide by the principle
of encrypting all the data assets before transferring out of
the domain. This “complete-data-encryption” paradigm is
undoubtedly able to guarantee the privacy of the data owner;
the performance of the PSI however, is compelled to the
pressure of ciphertext handling. In specific, the existing PSI
solutions can be categorized as Table I shows, according to the
underlying cryptography - Oblivious Pseudo-random Function
(OPRF hereafter) and Fully Homomorphic Encryption (FHE
hereafter). These PSI protocols are secure against semi-honest
sender and malicious receiver. Many works like [15] and [20]
utilize OPRF as a central primitive in PSI to strengthen the
security against malicious receiver. Cryptographic primitives
in these works include ECC [20], LOWMC-GC [20], etc.
OPRF requires computing the encryption parameters and the

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

2

TABLE I
EXISTING PSI SOLUTIONS AND OURS. THE DATA ASSET FOR COMPUTING PSI IS 10 BILLION AND 100 MILLION 64-BIT ID NUMBERS RELEASED BY THE

INDUSTRY FOR THE sender AND receiver RESPECTIVELY. THE EXPERIMENTAL SETUP IS CONSISTENT WITH SECTION V.

PSI Solutions Feature Platform Datascope Cryptography Comp. Comm. Overall Time
LOWMC-GC-PSI [20] Protocol Only CPU (0, 264) OPRF, LowMC-GC 136,521s 3,072GB 388,196s

ECC-NR-PSI [20] Protocol Only CPU (0, 264) OPRF, NR-ECC 143,796s 775GB 207,351s
ORI-PSI [6] Protocol Only CPU (0, 232) OPRF, FHE 159,744s 614GB 210,003s
APSI [10] Protocol Only CPU (0, 232) OPRF, FHE 144,077s 578GB 191,460s

Trident (ours) Protocol &
Hardware Accelerator (0, 232) OPRF, PoM-FHE FPGA: 735s

ASIC: 221s 17GB FPGA: 2127
ASIC: 1613s

APSI [10] Protocol Only CPU arbitrary OPRF, FHE 555,458s 2290GB 743,054s
MT-PSI [31] Protocol Only CPU arbitrary OPRF, FHE 555,458s 578GB 602,808s

Trident (ours) Protocol &
Hardware Accelerator arbitrary OPRF, PoM-FHE FPGA: 2800s

ASIC: 842s 42.4GB FPGA: 6273s
ASIC: 4315s

negotiation between the two parties, which is one of the most
time-consuming and communication-intensive procedures in
PSI. For instance, LOWMC-GC-PSI [20] incurs more than 3
TB transmission between the two parties. Huge communication
induces a significantly increased overall PSI time (108 hours).
This limitation motivates the community to explore the more
advanced PSI solution to optimize the communication overhead.
FHE is regarded as an efficient way to alleviate this problem.
It batches the data during encryption so the ciphertext of the
sender are much less in volume than the non-FHE based
cryptography. By introducing FHE in PSI protocol, [6] reduces
the total communication to 614 GB. On top of [6], [10]
further leverages OPRF, enables arbitrary datascope and the
communication is reduced to 578 GB. MT-PSI [31] proposes
the virtual Bloom filter (VBF) and polynomial links (PoL)
techniques for long item situation, where VBF encodes long
item into several independent shorter items and PoL slices
long item into shorter pieces and build links between them.
Within the APSI framework, it uses a hybrid scheme of
VBF and PoL to optimize the balance between sender offline
preprocessing time and total communication overhead. In the
long item situation, MT-PSI achieves up to a 1712 GB reduction
in communication overhead compared to APSI. These FHE-
based PSI require the receiver and the sender to encrypt and
transmit a large number of FHE ciphertexts, resulting in a
total communication overhead that can reach several hundred
GB. In these FHE-based PSI protocols, both computation and
communication overhead are performance bottleneck.

Our contribution. Considering the two-sided overhead,
the desirable PSI solution should be designed with less
communication as its first-order design goal, and simultaneously
avoid the computation bottleneck caused by the key techniques
like FHE and OPRF. This requires a software/hardware co-
design approach for PSI. However, existing solutions all focus
on the software level, that is, trying to minimize the complexity
on the protocol level to decrease the communications. Despite
the insufficient communication reduction, none of them has
ever considered re-architecting the existing hardware platform
to collaborate with the optimized PSI protocol, which makes
the deployment of PSI very difficult; For example, it takes
58 hours for Origin-PSI (ORI-PSI hereafter), 53 hours for
APSI, 57.5 hours for the non-FHE based ECC-PSI to compute
the intersection only once on commercial off-the-shelf servers.
Therefore in this paper, we propose a software/hardware co-
design acceleration architecture, termed as “Trident”, to achieve

efficient PSI. Trident involves two tightly coupled segments:
(1) A novel PSI protocol, termed as “Trident-PSI”. As

the topmost novelty, we use “ciphertext digest” under the
privacy guarantee, instead of the “full ciphertext” manner
widely adopted in existing PSIs. “Full ciphertext” encrypts
complete data while “ciphertext digest” encrypts some data
completely and uses cryptographic hash to generate digest for
the other data. Due to this substitution, we propose Differential
Sharing, Trident Initialization and Trident Evaluation which
reduce the contribution of the ciphertext transmission to the
communication. Moreover, our protocol decreases the FHE
ciphertext multiplications, replaced by the plaintext NTT
(Number Theoretic Transform) operations on the polynomials.
We call this step as Trident PoM (Trident Polynomial Modifi-
cation). Therefore, Trident-PSI alleviates the communication
and computation in tandem on both parties.

(2) A practical PSI accelerator, termed as “Trident-
accelerator”. It targets the specific computation bottleneck
introduced by PoM-FHE and OPRF. Based on commercial
FPGA, we implement all the hardware acceleration modules
needed by the Trident-PSI protocol. We also implement the
Trident accelerator ASIC using 7nm technology node.

We highlight the following results: (1) Protocol performance:
communication in total is reduced from 614 GB to 17 GB
(21.6× and 43.2× for the receiver and sender party, respec-
tively); (2) FPGA Accelerator performance: it outperforms CPU
by 130× and 145× on both parties, and achieves 5× to 10×
performance improvement than other FPGA-based accelerators;
(3) Overall PSI performance: up to 98.7× speedup via 100M
Ethernet connection; (4) Efficiency: the sender and receiver
party is improved by 93,651× and 1,102,960×, respectively;
(5) Software/Hardware ablation study: we accumulatively verify
the key steps in Trident-PSI to prove its efficacy; (6) ASIC
performance: the Trident accelerator ASIC achieves 433× and
486× speedup on the receiver and sender compared with CPU.

II. BACKGROUND AND MOTIVATION

In this Section, we introduce the basic framework of PSI
with FHE (Section II-A), analyze the communication and com-
putation bottlenecks in PSI (Section II-B), and summarize the
acceleration opportunities for PSI (Section II-C). Abbreviations
and explanations are summarized in Table II.

A. PSI Formulation

In classic two-party PSI, the sender holds the data asset
X of size NX , while the receiver holds the data asset Y

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

3

TABLE II
ABBREVIATIONS AND EXPLANATIONS.

Params Description
Protocol
NTT Number Theoretic Transform.
RNS Resident Number System.
OPRF Oblivious Pseudo random Function.
ORI-PSI Origin PSI [6].
PoM Polynomial Modification.
DPD Data Partitioning and Differential Sharing.
TIE Trident Initialization, PoM and Evaluation.
Hardware
BRAM Block Random Access Memory.
DRAM Dynamic Random Access Memory.
SRAM Static Random Access Memory.
DDR Double Data Rate DRAM.
HBM High-Bandwidth Memory.
PCIe Peripheral Component Interconnect Express.
XDMA Xilinx Direct Memory Access.
MA/MM Mod Add/Multiplication.
SM Shared mod.
HMult/HAdd Homomorphic Multiplication/Addition.
EC Elliptic Curves.
ECMult scalar multiplication on elliptic curves.
LD Lopez&Dahab.
FSM Finite state machine.
BMult Binary finite field multiplication.
BSqr Binary finite field square.
BModInv Binary finite field modular inverse.
EDP Energy Delay Product.
DSP Digit Signal Process.
RTL Register Transfer Level.

of size NY . According to [10], data asset in X and Y are
assumed to be uniformly distributed random variables. After the
receiver encrypts Y = {y1,y2, . . . ,yNY } as Y ′ = {c1,c2, . . . ,cNY }
(possibly using FHE), the sender generates a non-zero random
number ri for each ci ∈Y ′ and computes di = ri ∏x ∈ X (x− ci).
By iterating over x∈X , the resulting di constitutes an encrypted
PSI result indicating whether the plaintext in ci from the
receiver matches any element of the sender’s data asset X . After
transferring the ciphertext d1, d2,. . . , dNy back to the receiver,
it decrypts each di for the plaintext. If the plaintext of some di
equals to 0, yi will appear in X ∩Y . Encrypting the receiver’s
data asset using FHE not only provides security against the
sender but also enables arithmetic operations on ciphertexts
for computing the intersection polynomial and obtaining the
PSI result d.

OPRF. To further protect the sender’s data asset from
malicious receiver, OPRF must be employed [13], [15], [20].
[6], [10], [31] employ Diffie-Hellman-based OPRF in PSI. It
enables the receiver to get SY = {H (y)β : y ∈ Y} secretly and
the sender to get SX = {H (x)β : x ∈ X}, where β is secret key
of the sender and H (.) is a random oracle hash. After OPRF,
SX and SY are encrypted under β . According to [6], from the
receiver view, the distribution of the sender’s data after OPRF
is indistinguishable from a uniformly random distribution. Thus,
OPRF protect the sender from malicious receiver.

In order for the receiver to get SY secretly, the receiver
needs to generate a key α and encrypt their dataset to get
Y ′ = {H(y)α : y ∈ Y}. After sending Y ′ to the sender, the
sender re-encrypts Y ′ using β to get Y ′′ = {(H(y)α)β : y ∈ Y}
and sends it back to the receiver. Finally, the receiver decrypts
it to obtain S′′Y = {(H(y)αβ)1/α : y ∈ Y} = {H(y)β : y ∈ Y}.

APSI
96.12

Trident-PSI

0% 20% 40% 60% 80%

ORI-PSI
102.9 GB(100%)

68.3 GB(66.4%)

4.8 GB(4.7%)
100%

3.89

OPRF Evaluation

94.145.86

84.18 15.82

(a) Sender to Receiver

510.6 GB(100%)

APSI

99.22
0.78

Trident-PSI

0% 20% 40% 60% 80%

ORI-PSI

510.1 GB(99.9%)

OPRF

11.8 GB(2.3%)

Windowing

100%

0.78
99.22

66.1333.87

(b) Receiver to Sender
Fig. 2. Communication breakdown of PSI protocols.

129950 s(100%)
APSI

27.78 69.23
2.99

3.15

Trident-PSI 3.76

0% 20% 40% 60% 80%

0.05

ORI-PSI

115420 s(88.8%)

OPRF

103099 s(79.3%)

FHE Powers Generation Trident PoM Evaluation

100%

79.74 16.45

32.64 64.21

Trident-FPGA
707 s(0.5%)

Trident-AISC
212 s(0.16%)

0.0002

0.000004
0.0030.004

0.0010.001
0.000001

0.00006

(a) Sender

APSI
11.12 82.356.53

4.25

Trident-PSI 89.75
0.09

0% 20% 40% 60% 80%

ORI-PSI
29796 s(100%)

28679 s(96.3%)

3651 s(12.3%)

100%

OPRF Windowing FHE Decryption

11.56 84.19

10.15
Trident-FPGA

28 s(0.1%)
Trident-AISC

9 s(0.03%)

0.00000002

0.0003

0.006 0.001

0.002
0.000000006

(b) Receiver
Fig. 3. Time breakdown of PSI protocols. ORI-PSI, APSI and Trident-PSI are
evaluated on CPU. The data of Trident-FPGA and Trident-ASIC are normalized
to Trident-PSI.
Trident also employs Diffie-Hellman-based OPRF. Section III-B
describes more details about the OPRF in Trident.

B. Bottlenecks in Computation and Communication

The difficulty of PSI deployment stems from the intrinsic
bottleneck in existing protocols and hardware platform em-
ployed. As two baseline PSI representatives, we profile the
characteristics of the PSI protocol proposed in [6], [10], referred
to as ORI-PSI and APSI respectively, from two aspects:

Communication. Huge communication forms the bottle-
neck in PSI and must be optimized according to Section
I. We establish the sender and receiver party on our real-
world experimental platform (see Section V), and profile the
communication actions during PSI. As shown in Figure 2,
the communication of the data assets after FHE may attain
even 431.67 GB from the sender to the receiver and 22.55
GB from the receiver to the sender for APSI. “Windowing”
serves to compute the “powers” of the receiver’s data needed
by FHE and send these powers to the sender in the ciphertext
format. The two baselines all follow “full ciphertext”, so this
step exhibits significant communications. “Evaluation” issues
the actual intersection computation, in which it segments the
high-degree polynomial into multiple low-degree polynomials,
performs PSI and then sends the result back to the receiver. The
result is still in ciphertext that leads to high communication.

Computation. PSI is computationally intensive. All steps
of ORI-PSI [6] and APSI [10] involve certain computations
to fulfill the whole protocol. However, the most significant
computation is also introduced by FHE. Figure 3 clearly proves
that the computation time is predominated by the steps that
entail FHE - around 97% in total. There are two factors that

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

4

ReceiverSender

ReceiverSender

Setup

O
ff

li
n

e
O

n
li

n
e

1 OPRF Online

2 Cuckoo Hashing

3 Windowing

7

FHE Decryption

4

FHE Powers Generation5

Trident Evaluation

8

Differential Sharing

Trident Initialization

Multi-hashing

Data Partitioning1

2

3

4

Input: Receiver inputs set Y ⊂ {0, 1}
σ
 of size NY; sender inputs set X ⊂ {0, 1}

σ
 of size NX. NX, NY, σ are public.

Output: Receiver outputs X ∩ Y.

𝛼 ← ℤ𝑞
∗

𝛽 ← ℤ𝑞
∗ 𝜃

Receiver and Sender agree on homomorphic encryption scheme, elliptic curve with order q.

Receiver: generates parameters of FHE, and samples private input .

Sender: samples private input . Set cuckoo table size m and =3 random hash functions.

Sender: For each subset , generates .

Receiver: For each subset , generates . H(.) is the random oracle hash function.

𝑆𝑋𝑖
= {𝐻 𝑥 β : 𝑥 ∈ 𝑋𝑖}

𝑌𝑖
′ = {𝐻 𝑦 α : 𝑦 ∈ 𝑌𝑖}

OPRF Initialization

Sender: Divides data asset into , then publish lower bound and upper bound of each subset.

Receiver: Divides data asset into according to boundary information according to Sender.

For each , builds up multi-hash table 𝓑i with rows, each has columns.

For each two multi-hash table 𝓑2j-1 and 𝓑2j , Splits 𝓑2j-1 and 𝓑2j vertically into parts.

For each row of each part , and for each , computes and .

𝑚 𝑛

δ
𝑣 𝑖 Δ ∈ 𝑍𝑝 𝐹𝑖,𝑗 ,v,Δ 𝑥 𝐷𝑖 ,𝑗 ,v,Δ

 𝜔0
𝜑1 𝑝 , 𝜔0

𝜑2 𝑝 , … , 𝜔0
𝜑 |𝜑 | 𝑝 For , selects the powers set and calculate the encrypted .φ 𝑆𝑌0

For the first two sets , , sends FHE ciphertexts and to sender.
Else, sends and to sender.

𝑆𝑌0
 𝑆𝑌1
 ω1 − ω0 𝑝

 ω2𝑗 − ω0 𝑝
 ω2𝑗 +1 − ω2𝑗 𝑝

𝑌𝑖
𝑋𝑖

𝑋1, 𝑋2 … , 𝑋Γ
𝑌1, 𝑌2 … , 𝑌Γ

𝑆𝑋𝑖

During the j-th iteration of the online step, intersection is computed on , and , , concurrently.𝑋2𝑗 +1 𝑌2𝑗 +1 𝑋2𝑗 𝑌2𝑗
Sends and , receives and .

Then generates and .

𝑌2𝑗 +1
′ 𝑌2𝑗

′ ′ = { 𝑦′ 𝛽 : 𝑦′ ∈ 𝑌2𝑗
′}

𝑆𝑌2𝑗
= { 𝑦′ ′ 1/𝛼 : 𝑦′ ′ ∈ 𝑌2𝑗

′ ′ } 𝑌2𝑗
′ 𝑌2𝑗 +1

′ ′ = { 𝑦′ 𝛽 : 𝑦′ ∈ 𝑌2𝑗 +1
′}

𝑆𝑌2𝑗+1
= { 𝑦′ ′ 1/𝛼 : 𝑦′ ′ ∈ 𝑌2𝑗 +1

′ ′ }
Builds up Cuckoo hash table 𝓒2j and 𝓒2j+1 with rows.

Then extracts these tables into one-dimensional vector and .

𝑚
ω2𝑗 ω2𝑗 +1

If j=0, generates all powers of of the receiver according to Paterson-Stockmeyer algorithm.

For each part , generate polynomial set and detection set according to and .

Batch into FHE plaintext polynomials, denoted as .

For each , evaluate using Paterson-Stockmeyer algorithm.

Send and to sender.

𝑖

𝑃𝑖
′ 0 , 𝑃𝑖

′ 1 , …, 𝑃𝑖
′ 𝑛/δ

𝑧𝑖 ← ω1
𝑘 ∙

𝑛/δ

𝑘=0

𝑃𝑖
′ 𝑘 𝑃𝑖

′

𝑧

Decrypts the ciphertexts and puts the intersection result into set . S

𝐻𝑖 ,∗ 𝐷𝑒𝑓𝑒𝑐𝑡𝑖 ,∗

𝐻𝑖 ,∗

𝐷𝑒𝑓𝑒𝑐𝑡

 𝜔0
𝜑1 𝑝 , 𝜔0

𝜑2 𝑝 , … , 𝜔0
𝜑 |𝜑 | 𝑝

 ω2𝑗 − ω0 𝑝
 ω2𝑗+1 − ω2𝑗 𝑝

6 Trident PoM

ω0

Fig. 4. Trident-PSI protocol. The protocol significantly reduces the communication by Data Partitioning step and Differential Sharing step, and FHE operations
by Trident Initialization, PoM and Evaluation.

form such huge proportion. The 1st one is the explosion of the
ciphertext. The more significant 2nd factor is the plenty of extra
special operations introduced by FHE, which is not involved
in the plaintext execution. As bottleneck on computation side,
it is hence imperative to optimize FHE computation in PSI.
C. Acceleration Opportunities

According to the above analysis, FHE induces both signif-
icant communication and computation overhead in existing
PSI protocols. Intuitively, using a specific FHE accelerator
might be the solution. However, it only partially alleviates
the computational bottleneck but does not solve it at the
root. Firstly, although FHE induces significant computation
overhead, FHE is only part of the protocol. APSI [10], MT-
PSI [31], and Trident-PSI also include OPRF. Although the
percentage of OPRF is only around 3% and 11% in each
party, the actual time consumed is very large. For example,
it consumes 3,315s (nearly 1 hour) for the receiver in APSI.
In addition to OPRF, Trident-PSI also involves unique PoM
operations. It is the computational bottleneck in Trident-PSI.
OPRF and PoM operations are complex and involve irregular
memory access patterns. If the hardware cannot support fast
OPRF and PoM, PSI will still suffer from these bottlenecks.
General-purpose computing platforms such as GPU are better
suited for highly parallel and memory-simple floating-point
operations, making them unsuitable for accelerating OPRF and
PoM. Existing FHE accelerators [3], [18], [19], [27], [28], [33]
only target FHE, so OPRF and PoM can only resort to CPU.
Therefore, these accelerators are not suitable for PSI regarding
both computation performance and efficiency, let alone the
communication overhead imposed by FHE. Besides, existing
FHE accelerators aim at general-purpose algorithm acceleration
like CKKS, BFV, and TFHE. However, PSI imposes some

restrictions on the choice of FHE schemes. APSI [10], ORI-
PSI [6], and MT-PSI [31] all resort to BFV because they
comply with the exactly precise decryption of the plaintext,
while CKKS adheres to approximate decryption with acceptable
precision loss, which makes it inefficient to implement PSI
that requires a very precise intersection result, and TFHE
is designed for bitwise logical operations, which makes it
inefficient to implement arithmetic operations. Besides, PSI
only involves leveled ciphertext multiplication, so bootstrapping
is unnecessary as well.

The oracle acceleration solution should consider two perspec-
tives: (1) from the protocol level, re-architect the communica-
tion intensive procedures like FHE evaluation and windowing
(Figure 2). We propose Trident PoM, Differential Sharing,
etc. to optimize overhead in these part; (2) from the hardware
level, design specific PSI accelerator for the optimized protocol
to speed up its inner computation intensive procedures; we
propose the Trident accelerator tailored for PSI, equipped with
both customized PoM-FHE cores and OPRF cores. In total, it
reduces the communication from 614 GB to 17 GB, and the
computation from 159,745s to only 735s.

III. TRIDENT-PSI PROTOCOL

A. General Concept

The proposed Trident-PSI protocol, as shown in Figure 4,
consists of two indispensable and associated phases - online and
offline. In the offline phase, the data processed by the receiver
and the sender is independent of the other party. Therefore,
operations in offline phase only need to be executed once. The
data obtained by both parties in offline phase can be used in
current and future PSI online phases without modification.

Trident proposes several new components compared to the
APSI framework, including Data Partitioning (step ①), Trident

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

5

item item item item item item

item item item item item item

Cuckoo hash table

Sender

Receiver

item item item

1 Data Partition

Precondition: Sender and Receiver finish the Setup step.

Postcondition: In the following offline steps, if not specified, every set will be

operated in each of the following offline steps.

Procedure:

(1) Sender and Receiver jointly agree on pairs of integers. They are the

lower bound and upper bound of parts. Denotes th part as , with lower

bound of and upper bound of . are the same with each other.

Since data in X and Y are randomly uniform, these lower bound and upper

bound information will not reveal any data information of either Sender or

Receiver.

(2) Sender and Receiver partition X and Y respectly into parts according to

lower bound and upper bound information.

Γ

Si
𝐿𝑖 𝑅𝑖

𝑖

Γ

item itemitem

item item

item

item itemitem

item item

item

item itemitem

item

item item

Multi-hash table

Sender

Receiver

Γ

𝑅𝑖 − 𝐿𝑖

Fig. 5. Data Partitioning. We divide the data asset of both party into subsets,
each of which has similar volume.

RSRS

Setup

O
ff

li
n

e
O

n
li

n
e

1 OPRF Online

2 Cuckoo Hashing

3 Windowing

7

FHE Decryption

4

FHE Powers Generation5

Trident Evaluation

8

Differential Sharing

Trident Initialization

Multi-hashing

Data Partitioning1

2

3

4

OPRF Initialization

6 Trident PoM

PoM-FHE OPRF

M
A

/

M
M

C
o

re

P
o

M

C
o

re

P
o

M

C
o

re

M
A

/

M
M

C
o

re

E
C

C
o

re

E
C

C
o

re C
u

c
k

o
o

h
a

s
h

in
g

RSRS

Fig. 6. The steps accelerated by each computational unit of the Trident-
accelerator.
Initialization (step ④), Differential Sharing (step ❹), Trident
PoM (step ❻) and Trident Evaluation (step ❼).

The Data Partitioning step in the offline phase is proposed
to segment the data assets into subsets in both sender and
receiver as the basis to support other subsequent steps.

OPRF is introduced in both phases to improve protocol
security against malicious receiver, according to Section II. We
extract the parts of OPRF that do not require participation from
the other party as OPRF Initialization and process it offline.

We adopt Cuckoo hashing & Multi-hashing mechanisms
based on the blake2b cryptographic hashing used in APSI [10].
Multi-hashing can be completed without the participation of
the receiver, so it can be processed offline. Cuckoo hashing
is processed after the OPRF online step, so it can only be
processed online.

Built upon Data Partitioning, the Differential Sharing step
in the online phase is proposed to enable the transfer of the

difference between the cryptographic hash digest of the first
subset and the cryptographic hash digest of the subsequent
subset, which reduces the communication significantly from
the receiver to the sender.

The Trident PoM step is proposed to modify the polynomial
of the sender. By enforcing this step, we can transform the
burdensome FHE operations of the ciphertext into light-weight
plaintext NTTs, which greatly decreases the computation time
on the sender party.

In Trident Initialization, the sender pre-processing the
polynomial used in Trident Evaluation. The Trident Evaluation
step proposes a novel intersection method that embeds the PSI
results of two subsets into one ciphertext polynomial, which
directly obtains 50% communication reduction from the sender
to the receiver.

The Trident-accelerator provides acceleration for both offline
and online phases of Trident-PSI. Figure 6 shows the role and
function of each computational unit of the Trident-accelerator.
Step ① ❹ involve simple computations with little computational
overhead. Therefore, Trident-accelerator does not support the
acceleration of them. The PoM Core is implemented for
accelerating steps ④ and ❻ of the Trident protocol. It is
also reused to accelerate FHE operations in conjunction with
the MA/MM Core. The EC Core and Cuckoo hashing are
implemented to accelerate steps ② ③ and ❶ ❷, respectively.

B. Procedures

Data Partitioning: In FHE, one ciphertext polynomial with
certain degree is able to encrypt multiple plaintext data. It is
beneficial to generally reduce the ciphertext size. [10] indicates
that for large-scale PSI, the sender has to read all data assets
and maintain a huge multi-hash table, which demands more
DRAM than the system can provide. This leads to excessive
paging and a significant reduction in computation speed. One
feasible solution from [10] is to partition the sender’s data
asset into multiple subsets and let receiver compute the set
intersection with all the segments of the sender party. However,
this approach may cause the protocol parameters to exceed the
reasonable range and may increase the communication from
the sender to the receiver.

The aim of Data Partitioning is to divide the data asset
of both parties into subsets with each one having the same
data range. Therefore, the intersection of the two parties is
computed in multiple rounds. In each round, the receiver’s
subset only computes PSI with the corresponding subset of
the sender, instead of with all the subsets. Figure 5 shows
an example of Data Partitioning. In this example, the receiver
and the sender each divide their items into three subsets and
perform the intersection using the corresponding subsets.

The partition step is shown in Figure 5. The Sender and
the Receiver partition X and Y into Γ subsets respectly. These
subsets have the same data ranges, ensuring that the data in X
and Y are uniformly partitioned. As stated in Section II, the data
are uniformly distributed. Hence, after Data Partitioning, the
distribution of each subset is consistent with that of the original
data asset. Neither party can learn any information about the
data distribution from the lower and upper bounds of each
subset. Following the step of Data Partitioning, the parameters

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

6

4 Differential Sharing

Δ ∈ 𝑍𝑝

𝐵1

𝐵2

Since the sender cannot get Δ from the receiver in offline step, for

each , the sender generates F(x) and D.

1st round

∆

a

b

Receiver

2

4

32

2

256

∆= 4 − 2 = 2

32

2

256

𝐷𝑒𝑓𝑒𝑐𝑡 ← 𝐷 = {… }

1 21 2

3 53 5

𝑃1(𝑥) = 𝑥 − 1 𝑥 − 2

𝑃2(𝑥) = 𝑥 − 3 𝑥 − 5

𝑎 = 1||2 → 𝑃1 𝑎 = 0

𝑏 = 3||5 → 𝑃2 𝑏 = 0

Trident Initialization3 Trident Initialization3

Foundational PSI

𝐵1

b-Δ=a 𝐵2

a 1 21 2

3-Δ
(1)

5-Δ
(3)

3-Δ
(1)

5-Δ
(3)

∆= 2 𝑎𝑠 𝑒𝑥𝑎𝑚𝑝𝑙𝑒

𝑄 = 𝑃1𝑃
2

2 = 𝑥 − 1 𝟑(x − 2)𝟏 𝑥 − 3 𝟐

𝑎 = 1 → 𝑃1 1 = 0 & 𝑃2 1 = 0
a 1 a+Δ=b 1+Δ=3a 1 a+Δ=b 1+Δ=3

Φ(𝑥) = 32770𝑥2 − 32775𝑥 + 8

 1,3 , 2,1 , (3,2)

Φ 1 = 3, Φ 2 = 1, Φ 3 = 2
Ψ(𝑥) = 𝑥 − 1 𝟏(x − 2)𝟏 𝑥 − 3 𝟏

𝐹 𝑥 = Φ 𝑥 + r ∗ Ψ 𝑥

𝑎 = 2 → {𝐹 𝑎 = 1, 𝑎 ∉ 𝐷} → 𝑎
𝑎 = 3 → {𝐹 𝑎 = 2, 𝑎 ∉ 𝐷} → 𝑏

𝑎 = 1 → {𝐹 𝑎 = 3, 𝑎 ∉ 𝐷} → 𝑎, 𝑏
𝑎 = 2 → {𝐹 𝑎 = 1, 𝑎 ∉ 𝐷} → 𝑎
𝑎 = 3 → {𝐹 𝑎 = 2, 𝑎 ∉ 𝐷} → 𝑏

𝑎 = 1 → {𝐹 𝑎 = 3, 𝑎 ∉ 𝐷} → 𝑎, 𝑏 𝑃1 = 𝑥 − 1 𝑥 − 2 𝑃2(𝑥) = 𝑥 − 1 𝑥 − 3

𝑃1 = 𝑥 − 1 𝑥 − 2 𝑃2(𝑥) = 𝑥 − 1 𝑥 − 3

𝑃1 = 𝑥 − 1 𝑥 − 2 𝑃2(𝑥) = 𝑥 − 1 𝑥 − 3

Determines the

intersecting element

belongs to B1 or B2

Indicates whether

the intersection is

successful 𝐷 = {𝑥: 𝐹(𝑥) ≤ 3 & Ψ ≠ 0}

𝑃1 𝑥 = 𝑥 − 1 𝑥 − 2

SenderSender

7

12

∆= 12 − 7 = 5

Diff

= 7 – 2 = 5

ReceiverReceiver 2nd roundReceiverReceiver

∆= 2

𝐷𝑖𝑓𝑓 = 0

𝐹 𝑥

𝐺(𝑥) = 𝐹 𝑥 + 0

(Cipher)

1

(Cipher)

2

(Cipher)

4

(Cipher)

8

(Cipher)

16

(Cipher)

32

(Cipher)

64
……

𝐺(2)(𝐶𝑖𝑝ℎ𝑒𝑟)

∆= 5

𝐷𝑖𝑓𝑓 = 5

𝐷𝑒𝑓𝑒𝑐𝑡 ← 𝐷

𝐺(𝑥) = 𝐹 𝑥 + 5

𝐺(2)(𝐶𝑖𝑝ℎ𝑒𝑟)

𝐹(𝑥)

+ 6 Trident PoM and Evaluation 76 Trident PoM and Evaluation 7+ 6 Trident PoM and Evaluation 7

Decryption

PoM

SenderSender

Used in first round in online step 5 to

generate all powers of ciphertext

𝑃2 𝑥 = (𝑥 − 1)(𝑥 − 3)

2

ω0

ω1

ω2

ω3

Fig. 7. The details of key steps - Trident Initialization, PoM, Evaluation and Differential Sharing.

for intersecting the subsets within each group will be identical
and within reasonable range. Additionally, Data Partitioning
serves as a fundamental step for subsequent optimization steps.

OPRF Initialization & OPRF Online: In each round
during the OPRF Initialization and OPRF Online, the sender
and receiver obtain SX and SY , respectively, as described in
Section II. The sender can calculate SX independently, so the
computation of SX can be performed in OPRF Initialization.
On the other hand, the receiver generates a secret key α

and precomputes Y ′ = {H (y)α : y ∈ Y} offline, which is sent
to the sender during the online phase. Upon receiving Y ′,
the sender computes Y ′′ = {(y′)β : y′ ∈ Y ′} using secret
key β and sends it back to the receiver. Finally, the receiver
computes SY = {(y′′)1/α : y′′ ∈ Y ′′}= {H (y)β : y ∈ Y}. The
receiver is capable of computing Y ′ independently, therefore
the computation of Y ′ can be performed in OPRF Initialization,
while the remaining computation can be performed in OPRF
Online. SX and SY are used as inputs to perform the final PSI.
To enhance the efficiency of OPRF Initialization and OPRF
Online, we have designed an optimized H (.) function on an
elliptic curve over a hardware-friendly binary finite field.

Trident Initialization and Evaluation: In Section II, We
specify that the transmission of homomorphic ciphertext from
sender to receiver forms a significant proportion of the
total communication, emphasizing the need to optimize this
component. In order to prevent polynomial evaluations from
reaching the noise overflow threshold, the sender splits each
multi-hash table into δ parts. Finally, the sender transmits δ

homomorphic ciphertexts to the receiver, resulting in a total
of Γ∗δ homomorphic ciphertexts being transmitted.

We propose Trident Initialization (offline step ③) and Trident
Evaluation (online step ❼). In general, following the Data
Partitioning step, it achieves two rounds of PSI result through
one round of PSI only. The design concept of the Trident
process is similar to keyword-PIR in APSI [10]. It queries

the result of two rounds of PSI by evaluating an interpolated
polynomial F . Figure 7 shows a naive example of Trident
process. For ease of understanding, all Cuckoo hash tables
and Multi-hash tables have only one row, and δ = 1. The
core of Trident Initialization and Evaluation is to construct new
polynomials F and evaluate them. According to the construction
method shown in Figure 7, we construct new polynomial F
containing intersection information of subsets of two rounds.
Informally, the value of F(a) is 3, 1 or 2, which implies
that intersection set contains both a and b, only a or only b
respectively. Using this property, Trident computes two rounds
of PSI in one time. Compared to the polynomial constructed in
the foundational formulation, the degree of the new polynomial
is doubled, without causing an overflow of the noise level.

Trident PoM (Polynomial Modification): Starting from the
second round of PSI, Trident PoM (online step ❻) enables the
sender to adjust F according to Di f f by applying Differential
Sharing procedure and use ω0 for polynomial evaluation. In
practice, the Trident PoM procedure can be performed using
NTT of length less than 256, so the Trident accelerator needs
to effectively accelerate NTT with small length. As shown
in Figure 7, the sender needs to evaluate F(x + 5) in the
second round. The sender computes G(x) = F(x+5), which
can be achieved by applying NTT, and uses powers of the
receiver’s ω0 to evaluate G(x) to get ciphertext result of
F(x+5). Since generating powers of ω2 is unnecessary, the
sender can skip step ❺ and avoids the complex FHE ciphertext
multiplication operations. The modification of G for each row
of each part can be computed by NTT with a time complexity
of O((n/δ)log(n/δ)) and a space complexity of O((n/δ)).

Windowing and FHE Powers Generation: We employ the
Paterson Stockmeyer algorithm to construct the power set ϕ

such that the sender can evaluate all powers of the receiver’s ω0
with multiplication depth of at most 3-4 without bootstrapping,
following the approach in [10].

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

7

TABLE III
INPUT AND OUTPUT OF receiver AND TWO FUNCTION. OUTPUT1 IS THE OUTPUT OF OPRF ONLINE PROCEDURE OF THE FIRST ROUND. OUTPUT2 AND

OUTPUT3 ARE OUTPUTS OF THE DIFFERENTIAL SHARING PROCEDURE OF THE FIRST ROUND. OUTPUT4 IS THE OUTPUT OF THE OPRF ONLINE
PROCEDURE OF THE SUBSEQUENT ROUND. OUTPUT5 IS THE OUTPUT OF THE DIFFERENTIAL SHARING PROCEDURE OF THE SUBSEQUENT ROUND. THE

SYMBOLS USED ARE CONSISTENT WITH THOSE USED IN FIGURE 4.

Character Input View1 View2 View3 View4 View5

receiver X , Y , FHE params,
OPRF params Sy′′0 , Sy′′1 [ω0

ϕ]p [ω1 −ω0]p Sy′′2∗I
, Sy′′2∗I+1

[ω2∗I −ω0]p,
[ω2∗I+1 −ω2∗I]p

SIMA
X , Y , FHE params,

OPRF params
random values of
size |Sy′′0 |+ |Sy′′1 |

[ω0
ϕ]p

[ω1 −ω0]p
from I(β)

random values of
size |Sy′′2∗I

|+ |Sy′′2∗I+1
|

[ω2∗I −ω0]p,
[ω2∗I+1 −ω2∗I]p

from I(β)

SIMB
X , FHE params,
OPRF params

random values of
size |Sy′′0 |+ |Sy′′1 |

FHE encryptions of
|ϕ| random vectors
on Zp of size |ω0|

[ω1 −ω0]p
from I(β)

random values of
size |Sy′′2∗I

|+ |Sy′′2∗I+1
|

[ω2∗I −ω0]p,
[ω2∗I+1 −ω2∗I]p

from I(β)

Differential Sharing: Based on Data Partitioning, we enroll
Differential Sharing (formally described in the online step ❹
in Figure 4) to further reduce the communication overhead.
Figure 7 shows an example of the Differential Sharing step in
the same scenario as Trident Initialization, PoM and Evaluation.
In general, the receiver only transmit ciphertext 2, 32, 256 and
∆ = 2 to the sender in the first round. In the subsequent rounds,
the receiver computes the differential vector(denoted as Di f f)
and ∆, then sends them. We adopt cryptographic hashing as
random function, so Di f f and ∆ follow a uniform distribution
over Zp. Since SY∗ follows uniform distribution, the sender
is not able to get statistical information by analyzing Di f f
and ∆. Besides, both Di f f and ∆ are values that have been
hashed by blake2b. Di f f and ∆ cannot obtain their preimages
by reversing blake2b. Therefore, the sender cannot learn useful
information by analyzing Di f f and ∆.

C. Security Proof
Security model: Trident-PSI is secure against malicious

receiver and semi-honest sender. This security setting is widely
adopted by state-of-the-art PSI protocols such as [20] and [10].

Proof: We use the same proof idea in [6] to prove that Trident
is secure against a malicious receiver. We use a general proof
idea according to [22] to prove that Trident is secure against a
semi-honest sender.

We prove that Trident is secure against malicious receiver
as the first step. Since the malicious receiver may deviate from
protocol to get advantage, the receiver can send arbitrary data
to the sender. There is no difference between the behavior of
the malicious receiver in Trident and in APSI because both
protocol use OPRF as first online step. Therefore, we define
the same ideal PSI functionality (see [6], Figure 3.) and adopt
the same approach of proving Theorem 1 in [6].

We prove that Trident achieves simulation-based security
against semi-honest sender as the second step. The proof idea
is to construct a simulator to simulates the view of sender.
Compared to protocols such as [20] and [10], the sender’s
view in Trident includes additional access to Di f f and ∆. The
sharing of Di f f and ∆ reduces communication and computation
overhead, but it also provides auxiliary information of {H(y) :
y ∈ Y∗} to the sender. However, according to Section III-B,
Di f f and ∆ are the differences of the values after the data is
cryptographically hashed, so the sender cannot learn useful
information from them.

For ease of writing, we define [ω0
ϕ]p = {[ω0

ϕ1]p, [ω0
ϕ2]p,

. . . ,
[
ω0

ϕ|ϕ|
]

p}. By Sy′′2∗I
, Sy′′2∗I+1

, [ω2∗I −ω0]p and [ω2∗I+1−

ω2∗I]p, we mean Sy′′2∗i
, Sy′′2∗i+1

, [ω2∗i −ω0]p, [ω2∗i+1 −ω2∗i]p
respectively for each i ∈ [2,⌈Γ/2⌉] in order.

To model the sharing of Di f f , ∆ in simulation-based security
proof, we provide an interface I, which can query the ideal
functionality for Di f f and ∆. The definition of I is as follows:

I(β): Input β offered by simulator, compute SYi = {H(y)β :
y ∈ Yi} for i ∈ Γ, and then compute ω0, ω1,. . . , ωΓ. Return
[ω2∗I −ω0]p as Di f f and [ω1 −ω0]p, [ω2∗I+1 −ω2∗I]p as ∆.

Since Di f f and ∆ are public, both the simulator and the
adversary can access the interface I. We define two simulators:
SIMA, SIMB. Table III shows the input and view of two
simulators. (1) Although the adversary can learn from interface
I, by the assumption that One-More-Gap-Diffie-Hellman [23]
is a hard problem, replacing Sy′′∗ with uniformly random
elements is computationally indistinguishable even though
{H(y) : y ∈Y∗} is given. Therefore given auxiliary information
of {H(y) : y ∈ Y∗}, View1, View4 given by SIMA and receiver
are still computationally indistinguishable with each other. (2)
By the semantic security of FHE, the output of SIMA and
SIMB are computationally indistinguishable with each other.
According to (1) and (2), the view given by the receiver and
SIMB are computationally indistinguishable with each other.
SIMB is the desired simulator.

Therefore, Trident is secure against malicious receiver and
semi-honest sender.
D. Discussion

Incremental Querying. The sharing of Diff and ∆ can be
conceptualized as a form of incremental querying. After OPRF,
the receiver encrypts and transmits Cuckoo hash table of the
first subset. For the remaining subsets, the receiver only needs
to guide the sender on incrementally modifying this ciphertext
to complete PSI, without re-encrypting and re-transmitting it.

Although this incremental query is protected by crypto-
graphic hashing and it is secure according to Section III-C,
it does indeed provide auxiliary information about data asset
of the receiver to the sender. Its benefits are also evident, as
it significantly reduces communication overhead. Differential
Sharing (online step ❹) significantly reduces the amount
of data transmitted from the receiver to the sender, from
⌈Γ/2⌉ ∗ (Σ ∗ |ϕ|+ n ∗ 32bit) to Σ ∗ |ϕ|+ (Γ − 1) ∗ n ∗ 32bit
where Σ is the data size of the ciphertext after FHE and n
is the number of plaintext data in a ciphertext polynomial.
Besides, Differential Sharing replaces ciphertext-ciphertext
multiplication with modification to polynomial set H. Trident
Initialization (offline step ③) and Evaluation (online step ❼)

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

8

In
p

u
t
m

e
m

o
ry PoM

core
PoM

core

O
u

tp
u

t
m

e
m

o
ryPoM

core
PoM

core

...

Stage5

...

MA/

MM

core

MA/

MM

core

MA/

MM

core

MA/

MM

core

...

...

BRAM
Register

Files

EC

core

EC

core

EC

core

EC

core

...

...

OPRF

Hashing

Input Buffer Output Buffer

Address Logic

Stage1 Stage2 Stage3 Stage4

batch

data*256

batch

data*256

PoMPoM

FHE
In

p
u

t
m

e
m

o
ry

PoM

core
PoM

core

O
u

tp
u

t
m

e
m

o
ry

PoM

core
PoM

core

...

Stage5

...

MA/

MM

core

MA/

MM

core

MA/

MM

core

MA/

MM

core

...

...

Shared Mod

BRAM
Register

Files

EC
core

EC
core

EC
core

EC
core

...

...

OPRF

Cuckoo hashing

Input Buffer Output Buffer

Address Logic

Stage1 Stage2 Stage3 Stage4

batch

data*256

batch

data*256

PoM-FHE

Fig. 8. The overall micro-architecture of the Trident-accelerator.

achieve two round of PSI result through one round of PSI,
thus reducing the communication overhead from the sender to
the receiver to half of the original.

Optimization on computation: Trident PoM (online step
❻) avoids complex FHE ciphertext multiplication according
to Section III-B. It involves NTT of length less than 256.
Therefore, the architecture of the hardware accelerator needs
to effectively accelerate small length NTT.

IV. TRIDENT ACCELERATOR
A. Overall Accelerator Architecture

The overall architecture of the accelerator is shown in
Figure 8. It primarily includes the computational cores (i.e.,
the elliptic curve (EC) cores and hash cores for OPRF, PoM
cores, MA/MM cores and shared mod (SM) cores for FHE),
the on-chip memory system (i.e., the input/output memory
and intermediate data buffers), and the address access control
logic. In the accelerator, the input memory is used to store
the data from the off-chip memory system. To improve the
data-level parallelism, each core (i.e., PoM core, MA/MM
core and EC core) has its own buffer to store the polynomial
coefficients from the input memory. In each cycle, 256 operands
are loaded from the input memory to the core and written to the
output buffer after computation. We use multiple BRAMs and
register files as scratchpad to cache the intermediate results
and support the parallel read/write of the required data for
each computational core in our FPGA-based evaluations. As
shown in Figure 8, the accelerator works in a 5-stage pipeline
to maximize the parallelism:

❶ Input. The accelerator fetches the data from the off-chip
memory system to the on-chip input memory. ❷ Preprocess.
In this stage, the data are classified and transferred to the
corresponding input buffers. ❸ Execution. This is the main
stage of computing PSI. The OPRF cores and FHE cores work
in collaboration, following the steps of the Trident protocol. ❹
Result collection. After the computation, each core writes the
results to its corresponding output buffer. ❺ Output. In this
stage, the computation results are wrapped up and are written
back to the off-chip memory system.

In the design, the host directly transfers the data to the
memory on the accelerator side via XDMA and PCIe Gen 4
interface. During the computation, the accelerator computes
with the segment-wise data and hides the transfer delay by
overlapping the transfer and the computation, since the input

FSM

FSM

k[162:0] x[162:0]
y[162:0]

COMB._LOGIC

f 2

f 2

f -1f 2

COMB._LOGIC

f 2

C
O
N
TR

O
L_LO

G
IC

Fig. 9. EC core micro-architecture in the Trident-accelerator. The operators
marked in green are the operators on binary finite fields.

data of PSI protocol is well segmented. As the bandwidth of
PCIe interface is 16 GB/s, the overlapping mechanism also
ensures that the communication between the built-in memory
of the FPGA platform and the host will not be a bottleneck.

B. OPRF

The basic operation of OPRF is the scalar multiplication
of data points on elliptic curves (ECMult hereafter), and
we accelerate the OPRF by instantiating the EC cores in
the accelerator. Because of the independence of input data,
multiple EC cores can process the elliptic-curve encryption in
parallel. Cuckoo hashing is needed online, so we implement
it conjunction with the EC cores, while we do not focus the
offline Multi-hashing because the computation requires only
once and can be completed with little overhead in the CPU.

EC Core: In order to avoid the division operation brought
by affine coordinates [5], EC core uses projected coordinates
to implement ECMult. The LD (Lopez&Dahab) coordinate
[21] is selected, and the Montgomery Algorithm [16] is used
to implement ECMult. The advantage is that the unique LD
projection coordinate formula [25] for point doubling and point
addition can be used. As shown in Figure 9, the input of each
EC core is a 163-bits privacy key k, and the output is a single
coordinate (x,y). In order to balance the high-frequency work
and resource consumption of the system, we use the finite state
machine (FSM in Figure 9) to schedule the delicate binary
finite field operators: binary finite field multiplication (BMult
hereafter), binary finite field square (BSqr hereafter), and binary
finite field modular inverse (BModInv hereafter). We deploy
three BMult units, four Bsqr units, and a high-speed BModInv
unit in the EC core to balance the speed and resources.

Hashing: Trident-accelerator adopts blake2b cryptographic
hashing as the hash function of Cuckoo hash, which is a
fast and well-tested cryptographic hash function that mainly
utilizes data rotation and multiplication operations. According
to this feature, we implement full-pipelined blake2b operators
by instantiating shift registers and DSPs on the FPGA.

C. PoM-FHE

PoM cores: PoM core is implemented for accelerating the
step ④ and ❻ of Trident protocol. In the process, the sender
party uses the NTT algorithm [11] to modify the intersection
polynomial concurrently when it receives the next round of
intersection messages from the receiver party. Similarly, the
PoM core is also used to accelerate FHE process of Trident,
which involves NTT as well. Since NTT is time-consuming
and frequently used operation in PSI, the design of PoM cores
significantly impact the performance of the accelerator.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

9

w1 w2 w3 w4 a2 a3 a4 a5 a6 a7 a8

w11

w113 w111

w23

w34

w134

w13

w14

a8w111a2w1a3w1a4w11 a5w1 a6w11a1

a1

a7w11a5w3a6w13a7w13a8w113 a3w3 a4w13 a5w4 a6w14 a7w34 a8w134

A4

Merged

w5

w7
w8

w6

Twiddle factor

Data Buffer

 Address Logic

Data Buffer

Control Logic

...

 NCPoM

MUX

DEMUX

8

* NCPoM

8
8

output buffer

w buffer

W

input buffer

......

Shared Mod

MM/MA

(a) PoM Core (b) Access Pattern

MM/MA MM/MA

PoM

core

PoM

core

PoM

core

PoM

core

... ...

A1A5 A7 A2 A8 A6A3
...

Fig. 10. PoM-FHE micro-architecture in the Trident accelerator. The PoM cores support a parallelism of 256 to match the PoM operation exactly, with fewer
iterations and a fully pipelined design to efficiently support the PoM operation in Trident-PSI.

op

u

Result

q

CMP

M
U

X

CMP

M
U

X

Uper half

Lower half

Barrett

op

u

Result

q

CMP

M
U

X

CMP

M
U

X

SM

SM

SM

SM

...

Operands

Uper half

Lower half

q & u
SM

Fig. 11. Shared Mod. It hard codes the Barrett Reduction algorithm.

We improve the throughput of PoM core by merging multiple
iterations of NTT into a single iteration. Using this method,
one iteration can complete the computation process of multiple
iterations that can improve the acceleration efficiency. We set
the merging parameter to 3 in our design, which transforms
the conventional 3-phase NTT into the 1-phase. As shown in
Figure 10 (a), the PoM core takes 8 polynomial coefficients
and the associate twiddle factors as input. We can see that
only one modulo operation is required due to the single phase
after merging. In addition, because of the exponential nature of
the twiddle factors, we can take the newly generated twiddle
factors as input (i.e., w5 ∼ w8 in the figure), which can be
pre-computed. Therefore, the PoM core costs fewer multipliers
compared to the general handling process; only the blue ones
in the Figure 10 (a) are involved. Fewer hardware resources
are required to enable more PoM cores in the accelerator. We
deploy 32 PoM cores to support the parallelism of 256, which
fully matches the PoM operation of Trident-PSI.

In Figure 10 (b), to support pipelined execution of PoM cores,
we allocate BRAM blocks as the input buffer for each PoM
core and use ping-pong operation to overlap the data read/write
delay between NTT iterations. PoM cores read operands and
twiddle factors from BRAMs, and write the results to the
corresponding BRAMs under the control of address logic.

FHE cores (MA/MM): Since the PSI protocol requires
a shallow multiplication depth and a small FHE parameter
setting, the accelerator does not need to support the ciphertext
refresh operation, i.e., bootstrapping. We only need three basic
operators, i.e., ModMult (MM), ModAdd (MA) and NTT
which can be accelerated by PoM cores mentioned above. The
combination of these three operators supports all the required
FHE operations in PSI, i.e. Homomorphic Multiplication
(HMult), Homomorphic Addition (HAdd). HMult includes

relinearization (or keyswitching) and modulus switching. In
Table 3, We use HMult and HAdd for the comparison of
computation performance. Notably, because we employ the
RNS-based FHE scheme, and each RNS component modulus
is 32 bits, the maximum bit width supported by all computing
cores is a uniform 32 bits. For two polynomials c0 and
c1, ModAdd returns a polynomial c = c0 + c1, where the
operator “+” represents the element-wise addition of the two
polynomials. Since FHE is performed on the “polynomial
ring”, the addition result equals to the modular addition, i.e.,
c0 + c1 = (c0,i + c1,i) mod q, where q is the modulus. The
modular multiplication (ModMult for clarity) operation of the
polynomial is similar to ModAdd, which formally described as
c0 × c1 = (c0,i × c1,i) mod q. ModMult is more complex than
ModAdd. Usually, modulo operation requires the division to
get the quotient which is not FPGA friendly, so selecting
a proper method for the modulo operation is crucial for
accelerator design. Since the modulo operation is used not
only in ModMult, we set up a dedicated modulo unit i.e.,
Shared Mod (SM) that can be time multiplexed by different
computational cores to efficiently use hardware resources.

Shared Mod (SM): The modulo operation is the most
complex mathematical operation in PSI, and the hardware
overhead is relatively high, so we instantiate a shared modulo
unit to reduce the consumption of FPGA resources. We employ
the Barrett Reduction algorithm [14], which simplifies the
modulo process by introducing the precomputed parameter
u. As shown in Figure 11, the entire modulo process is
accomplished using multipliers, adders and selectors.

D. Memory System

The on-FPGA memory system comprises register files and
BRAMs. The accelerator also leverages the abundant off-FPGA
bandwidth provided by HBM to accelerate the data movement.
The HBM architecture involves two HBM2 stacks, and each
stack has 16 channels. Each channel is 64 bits of data, and
data bits can be transferred up to 1800 Mbps, which can
provide a theoretical bandwidth of 460 GB/s. The initial data
is loaded from the host DDR to the HBM of the U280 via the
PCIe interface and sent to the register file or BRAM directly
connected to the computation cores. The computation cores
get the data from the scratchpad to complete the calculation

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

10

Trident-PSI

Vitis &

Vivado

XRT &

OpenCL

Host CPU

PCIe

AXI

Xilinx U280

PoM

MM

SM

BRAM

&

Register

Files

Control

&

Inter-

connect

HBM
CPU

Core:

Frequency:

Threads:

TDP:

12-core Intel Xeon

E5-2650 v4

2.2 GHz

24

105 W

DRAM

Capacity:

Interface:

Frequency:

64 GB x 4

DDR4

2666 MHz

SSD

Capacity:

Interface :

256 GB

SATA 3.0

HDD

Capacity:

Interface:

4 TB

SATA 3.0

MA

OPRF

Hash

Trident PSI Acceleration

Architecture

Sender:

10 billion data

Receiver:

100 million data

FE

connection

sender & receiver configuration

sever-s

sever-r

Fig. 12. Trident acceleration architecture overview. We experiment the full system by instantiating the sender and receiver parties located in different places
connected by 100M public network. The Trident accelerator is deployed on both parties performing the Trident-PSI protocol.

and write back. In Section V, we employ Xilinx Alveo U280
[32] to implement the Trident accelerator.

V. EVALUATION
A. Experimental Setup

Platform. Trident is a practical PSI acceleration architecture.
We implement both Trident-PSI in software and the Trident
accelerator hardware, and we build a real-world experimental
platform as shown in Figure 12. The accelerator is implemented
using Xilinx U280 FPGA and deployed on both parties
performing Trident-PSI. The host software interacts with the
Xilinx Runtime (XRT) [2] environment and OpenCL framework
to interact with U280 through PCIe. For ASIC implementation,
we use a 7nm FinFET predictive process design kit [8], [9]
and model the scratchpad as SRAMs by [29] to synthesize
RTL implementation of Trident-accelerator ASIC.

PSI is adopted in a loan blacklist sharing scenario. The black-
list data includes identity information (such as ID numbers) and
loan information (such as personal assets) of blacklisted users.
The two parties involved in blacklist sharing encode identity
information and loan information of each blacklisted user into
a 64bit identifier. Each party holds 10 billion and 100 million
identifiers, respectively, and aims to identify common users
in their blacklists through loan blacklist sharing. We evaluate
the end-to-end performance of the system over a 100M public
network. The FHE algorithm we use is RNS-based BFV. The
polynomial degree is 8192, plaintext modulus and chipertext
modulus are 16 bits and 216 bits, and the parameter is 128-
bits security. The parameter configuration of Trident-PSI is in
consistent with the baseline for fairness.

Baseline. We compare Trident-PSI protocol with two base-
line PSI protocols, namely ORI-PSI [6] and the state-of-the-art
APSI [10] (see Table I). We evaluate performance of Trident-
PSI and the two baselines on CPU (implemented with Microsoft
SEAL Library [7]) and the state-of-the-art general-purpose FHE
accelerator FAB [3]. FAB is the latest FPGA-based pure FHE
accelerator, and we use single card version of FAB to compare
with Trident-accelerator. We use FAB to prove that pure FHE
accelerators are not suitable for accelerating PSI protocols.

B. PSI Performance

Table IV shows the performance comparison of ORI-
PSI, APSI, and Trident-PSI on all the basic operations of
PSI protocols. On CPU, benefit from the PoM, Trident-PSI
performs fewer HMult and HAdd than ORI-PSI and APSI. In

addition, the Trident-PSI significantly reduces the overhead of
encryption and decryption operations. Hardware accelerators
can effectively improve the execution efficiency of PSI, but
there is an apparent gap between FAB [3] and PSI-specific
Trident-accelerator, especially on our Trident-PSI protocol. The
reasons are twofold: 1) FAB can not support the key operations
of PSI, i.e., OPRF and Hash. Although the performance on
FHE-related operations of the Trident-accelerator is close to
FAB, the Trident-accelerator outperforms FAB by over 5× on
the entire PSI protocols because the OPRF and Hash have to
rely on CPU in FAB. 2) FAB has inferior performance on PoM.
In Trident-PSI, PoM is a crucial procedure, in which the length
of polynomials is less than 256. Although the NTT unit in FAB
can accelerate PoM, the highly parallel NTT unit specifically
designed for FHE cannot be fully exploited and thus cannot
accelerate PoM efficiently. The PoM unit in Trident-accelerator
has fully matched parallelism and the merging feature, so it can
augment acceleration efficiency while fully utilizing hardware
resources, and outperforms FAB by about 11×. Therefore,
PSI necessitates a specialized accelerator and a generic FHE
accelerator cannot optimize the PSI effectively.

Table V compares the communication volume of different
PSI protocols. Trident-PSI optimizes the communication in
two directions compared to the ORI-PSI and APSI, obtaining
21.6 × and 43.2 × the traffic decreasing, which benefits from
protocol-level optimization, i.e., Differential Sharing and PoM.
C. Long-item PSI

Under the parameter setting of σ = 128, we compare the
performance of APSI [10], MT-PSI [31], and Trident-PSI. In
this long item situation, after OPRF, APSI slices each item in
Sx and Sy into 4 shorter items and uses these shorter items for
subsequent PSI steps. This results in a significant increase in
communication overhead. MT-PSI uses the PoL technique to
build links between each shorter item. The receiver only needs
to encrypt and transmit the first shorter item to complete the
PSI. MT-PSI also proposes a hybrid protocol that combines
the PoL technique with the VBF technique. This protocol
reduces offline preprocessing time at the cost of communication
improvement. To compare the optimal online performance of
each PSI protocol, we select MT-PSI with PoL only as our
baseline. As shown in Table VI, MT-PSI achieves 4× decrease
in communication overhead compared to APSI. The Trident
protocol uses APSI’s slicing method to handle the long item
situation. Thanks to Differential Sharing and PoM, Trident

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

11

TABLE IV
PERFORMANCE BREAKDOWN OF PSI PROTOCOL ON CPU, FAB, AND TRIDENT-ACCELERATOR (FPGA). THE DATA OF THE TRIDENT-ACCELERATOR IS

NORMALIZED TO CPU. SINCE FAB CAN NOT SUPPORT OPRF AND HASH, IT NEEDS RESORT TO THE CPU FOR THESE OPERATIONS.

Stage

Protocol ORI-PSI [6] APSI [10] Trident-PSI
CPU FAB [3] Trident-

accel.
CPU FAB [3] Trident-

accel.
CPU FAB [3] Trident-

accel.
OPRF & Hash (S,R) 7,192 s 7,192 s 46.8 s

(153×) 6,950 s 6,950 s 46.8 s
(148×) 7,153s 7,153s 46.8 s

(152×)

PoM (S) / / / / / / 82,233 s 1,014 s 403.9 s
(203×)

HMult & HAdd (S) 126,068 s 1,489 s 1,433 s
(87×) 111,780 s 1,546 s 1,483 s

(75×) 16,992 s 279.7 s 279.7 s
(60×)

Encryption (R) 1,946 s 10.2 s 8.8 s
(221×) 1,219 s 6.1 s 5.3 s

(230×) 0.0198 s 0.0001 s 0.00009 s
(220×)

Decryption (R) 24,536 s 112.2 s 137.4 s
(178×) 24,127 s 112.2 s 137.4 s

(175×) 370.8 s 3.5 s 4.3 s
(86×)

Sum 159,744 s 8,766 s 1,627 s
(98×) 144,077 s 8,819 s 1,673 s

(86×) 106,750 s 8,451 s 735 s
(145×)

TABLE V
THE COMMUNICATION PERFORMANCE OF PSI PROTOCOLS.

Stage
Protocol ORI-PSI

[6]
APSI
[10]

Trident-PSI
(ours)

R - S 102.9 GB 68.3 GB 4.75 GB
(21.6×)

S - R 510.6 GB 510.1 GB 11.81 GB
(43.2×)

TABLE VI
COMMUNICATION & COMPUTATION PERFORMANCE ON CPU &

TRIDENT-ACCELERATOR (FPGA) OF LONG-ITEM PSI PROTOCOLS.

Stage
Protocol APSI

[10]
MT-PSI

[31]
Trident-PSI

(ours)
Comm. 2289.6 GB 578.4 GB 42.4 GB

(54.0×)
Comp.
(CPU) 555,458 s 555,458 s 405,541 s

(1.4×)
Comp.

(Trident-accel.) 6551.6 s 6551.6 s 2799.6 s
(2.3×)

achieves 54× decrease in communication overhead compared
to APSI, and a 14× decrease compared to MT-PSI.

D. Energy

Energy Consumption and Breakdown. Besides the per-
formance, we evaluate the energy consumption of two PSI
baselines and Trident. Using the EDA tool Vivado, we obtain
hardware power consumption and combine it with “wall clock”
computation time to calculate energy usage. As shown in Figure
13, Trident consumes less energy than ORI-PSI and APSI by
significantly reducing FHE operations including HMult, HAdd,
encryption, and decryption. The memory access takes up most
of the share. Figure 13 shows the energy consumption of the
Trident accelerator across the three PSI protocols, analyzing
hardware units on the sender and receiver sides. On the sender
side, the energy consumption for OPRF is the same across
protocols, as they are computationally indistinguishable at
this stage. For MA, MM and memory access, the energy
consumption of Trident is significantly reduced compared to
APSI and ORI-PSI due to the fact that the Trident Initialization,
PoM and Evaluation of the protocol greatly reduces the
complexity of the intersection polynomial computation at the
sender side, which reduces the energy consumption of the
computational unit and also reduces accesses, thus bringing the
benefit of access to energy consumption. It is worth noting that

MA MM PoM OPRF Memory Access

51.3KJ

53.4KJ

26.8KJ

7.1KJ

7.0KJ

1.7KJ

(a) Sender

0.6

3.2

3.1

2.3

11.9

11.5

7.2

3.3

3.8

1.0

1.0

1.0

15.7

33.5

32.3

0KJ 10KJ 20KJ 30KJ 40KJ 50KJ 60KJ 70KJ

Trident

APSI

ORI-PSI

0.012

0.4

0.4

0.036

1.2

1.2

0.019

0.7

0.7

1.0

1.0

1.0

0.6

3.7

3.8

0KJ 1KJ 2KJ 3KJ 4KJ 5KJ 6KJ 7KJ

Trident

APSI

ORI-PSI

(b) Receiver

Fig. 13. Energy consumption and breakdown.
TABLE VII

EFFICIENCY EFFICIENCY. WE USE ENERGY DELAY PRODUCT (EDP) AS
THE METRIC (ENERGY × TIME). LOWER IS BETTER.

System

Stage Sender Receiver
EDP improvement EDP improvement

ORI-PSI [6]
1.77×
1012 1× 9.32×

1010 1×

APSI [10]
1.40×
1012 1.26× 8.63×

1010 1.08×

Trident 1.89×
107 93,651× 4.8×

104 1,102,960×

Trident incurs approximately double the PoM energy overhead
compared to the other two protocols, as Trident PoM uses PoM
core to modify the polynomial, leading to a higher energy cost.
On the receiver side, except for the same OPRF computation,
Trident obtains a significant energy advantage on all other
hardware units, especially on the computation related units, i.e.
MA, MM and PoM, with over 30× energy reduction due to
Differential Sharing and Trident PoM. The significant power
advantage validates the excellent performance of Trident over
other PSI protocols in hardware-software co-design.

Energy Efficiency. In addition to the energy consumption,
we also use Energy Delay Product (EDP hereafter) metric to
evaluate the energy efficiency. Similar to the energy consump-
tion, the EDP performance is also divided into two parts, i.e.,
the receiver and the sender. Table VII lists the comparison
result of three PSI system, Trident’s energy efficiency is far
superior to the other PSI systems, which outperforms APSI by
tens and hundreds of thousands on both sides, respectively.

E. Design Space Exploration

Data Asset Scaling. We evaluate Trident with four different
data volumes that vary in size and ratio between the sender

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

12

TABLE VIII
DATA ASSET SCALING ANALYSIS.

S / R
Stage receiver Comm. sender

227 / 220 28.7 s 200.2 MB 828.3 s

230 / 223 228.4 s
(8.0×)

1,065.4 MB
(5.3×)

6,466 s
(7.8×)

234 / 227 3,651 s
(127.2×)

16.6 GB
(84.9×)

103,099 s
(124.5×)

236 / 228 6,467 s
(225.3×)

48.7 GB
(249.1×)

411,019 s
(496.2×)

0

600
735 735 735

1200

1800

2400

3000

PoM core MM/MA core EC core

781875
10621011

1563

2668

Tr
id

en
t-a

cc
el

er
at

or
 ru

nn
in

g
tim

e(
s)

756882

4 8 32 2561286432 32168416

798

Fig. 14. Computation core scaling analysis. We analyze the performance
impact by scaling three computing cores in Trident.
and the receiver. As shown in Table VIII, under the same data
ratio, Trident’s processing time grows approximately linearly
with the data size. When the ratio of data between receiver
and sender changes, i.e., the last item of Table VIII, Trident’s
computation time does not increase in proportion to the sum
of data growth at both parties. It indicates that Trident’s data
partitioning strategy can well divide the intersection subset
without severely affecting the system performance by inefficient
partition. The result proves that Trident can stably support
different PSI data scales.

Computation Core Scaling. We explore the performance
scaling with three key computation cores, i.e., PoM cores,
MM/MA cores and OPRF cores. As shown in Figure 14,
intuitively, more computation cores bring a faster PSI perfor-
mance. We combine the impact of different cores on the system
performance and thus allocate 32 PoM cores, 256 MM/MA
cores and 32 OPRF cores in a balanced manner to maximize
the system performance and FPGA resource utilization.

F. Ablation Study

Trident is a co-designed PSI system. In this subsection, we
carry out the ablation study in protocol and accelerator. We
separately evaluate the optimization of the Trident compared
to the current PSI protocols, i.e., ORI-PSI and APSI, in terms
of communication and computation. We also analyze the
performance improvement of two key optimization methods.
In terms of the accelerator, we compare Trident with Trident +
CPU to show hardware accelerator effect in whole system.

Data Partitioning, Differential Sharing and Trident PoM is
a tightly coupled protocol steps, so we use DPDP to denote
them. Similarly, we use TIE to denote the coupled Trident
Initialization and Evaluation steps. Table IX(a) exhibits the
impact of DPDP and TIE on PSI efficiency at the software level.
We have 3 scenarios in total, i.e., No DPDP & TIE, DPDP only
and DPDP + TIE. Compared to No DPDP & TIE, The DPDP
achieves 7.3× and 1.1× speedup on the receiver and sender
parties, respectively, and reduces the communication volume by
23.8× the original. DPDP + TIE further improves PSI efficiency
based on DPDP. The two-step optimization significantly reduces

TABLE IX
ABLATION STUDY. IN ASSOCIATED WITH TABLE V, DPDP + TIE REDUCES

COMMUNICATION, PRIMARILY INTRODUCED BY FHE.
(a) Protocol

Method
Stage receiver Comm. sender

No DPDP & TIE 28,659 s 578.4 GB 115,418 s

DPDP only 3,941 s
(7.3×)

24.3 GB
(23.8×)

108,020 s
(1.1×)

DPDP + TIE 3,651 s
(7.9×)

16.6 GB
(34.8×)

103,099 s
(1.1×)

(b) Accelerator

System
Stage receiver sender

No OPRF & PoM & FHE 3,651 s 103,099 s

FHE only 3,284 s
(1.1×)

86,449 s
(1.2×)

FHE + PoM 3,284 s
(1.1×)

4,950 s
(20.8×)

OPRF+PoM+FHE 28 s
(130.4×)

707 s
(145.8×)

TABLE X
FPGA RESOURCE UTILIZATION.

Module
Resource LUT (k) FF (k) DSP BRAM

MA 69 35 0 334
PoM 233 110 2,944 928
MM 15 17 1,024 334
SM 78 60 1,792 0

OPRF 617 171 704 192

the amount of communication and decreases the computational
overhead to a certain extent.

The hardware accelerator targets the high computation
overhead, which cannot be solved by protocol optimization.
As shown in Table IX(b), Trident significantly reduces the
computational overhead of the system. Compared to Trident
running on the CPU, the FHE only achieves the speedup ratios
of 1.1× and 1.2× on the receiver and sender parties, and the
FHE + PoM obtains 20.8× performance improvement in the
sender party, which prove the importance of accelerating PoM.
By accelerating all the Trident procedures, i.e., OPRF, PoM,
and FHE, we achieve the speedup of 130.4× and 145.8×,
which further demonstrates that pure FHE-specific accelerators
cannot perform well facing PSI acceleration.

G. Accelerator Resource Utilization

The U280 is equipped with the Xilinx xcvu37p device.
Table X exhibits the resource utilization. The SM cores and
PoM cores obviously consume more DSP resources because
there are many multiplication operations in PoM and modular
arithmetic. The OPRF module uses more LUTs and fewer
DSP resources due to the fact that the module does not
contain multiplication operations. In addition, the MA cores
consume the least resources as a result of its simple circuit
logic. The design of the time-share modular unit SM enables
the accelerator efficiently uses the limited FPGA resource to
achieve a better performance.

H. ASIC Implementation

We implement our components in RTL and synthesized
them in a commercial 7 nm process using state-of-the-art

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

13

TABLE XI
AREA AND POWER BREAKDOWN. THE ASIC IMPLEMENTATION IS RUNNING

AT 1 GHZ AND UNDER THE 7NM TECHNOLOGY NODE.

Component Area [mm2] TDP [W]
MA 0.025 0.092
MM 0.247 0.87
PoM 0.451 0.39
EC 0.208 0.196

Hash 0.036 0.063
NoC 0.5 0.66

Scratchpad SRAM
(Cap. 8.6 MB / BW 3.9 TB/s) 3.7 0.32

HBM (2 × HBM2E)
(Cap. 16 GB / BW 1 TB/s) 29.6 31.8

Sum 34.8 34.4

TABLE XII
PSI PERFORMANCE ON ASIC.

Platform ORI-PSI APSI Trident-PSI
Trident-accel. (FPGA) 1,627 s 1,673 s 735 s
Trident-accel. (ASIC) 439 s 452 s 221 s

tools including the commercial SRAM compiler. Compared to
FPGA implementation, we add an HBM memory to improve
the bandwidth support, which can provide a total of 1 TB/s
off-chip memory bandwidth. We use [17], [24] to modeled
the HBM memory. The volume of the scratchpad is about
8 MB and can provide an on-chip bandwidth of 3.9 TB/s
and we implement the NoC as a multiplexer network. The
area costs and peak power of each hardware part are listed
in Table XI. The HBM and SRAM account for the majority
of the share. The Trident accelerator is sized 34.8 mm2 and
has the power consumption of 34.4 W . As shown in Table
XII, benefit from the larger bandwidth of the HBM as well
as the running frequency, the ASIC implementation further
improves the acceleration of PSI by more than 3× compared
to the FPGA-based Trident-accelerator.

VI. CONCLUSION

In this paper, we present a software/hardware co-design
solution for PSI acceleration. By investigating the execution
of PSI, we observe that the PSI performance suffers from the
large communication volume and high computation intensity.
Based on this observation, we propose a high-performance
PSI acceleration system named “Trident.” Trident includes a
novel optimized PSI protocol called “Trident-PSI,” which sig-
nificantly reduces the communication overhead, and a Trident-
specific hardware accelerator. We evaluate the Trident on the
practical FPGA device and ASIC. The results demonstrate the
effectiveness of the novel PSI acceleration architecture, i.e.,
Trident, which significantly improves both communication and
computation performance. In Trident, FHE polynomial evalua-
tion remains one of the computational overhead bottlenecks.
This can be mitigated by optimizing relinearization insertion
to reduce relinearization times. Currently, Trident-accelerator
design has HMult fixed to insert relinearization immediately
after ciphertext multiplication. This disables relinearization op-
timization in FHE polynomial evaluation. Therefore, adjusting
the Trident-accelerator to be more suitable for relinearization
insertion and designing specific relinearization insertion strategy
is an improvement direction for the software-hardware co-
design of Trident. Additionally, the Trident PoM step is used
to replace the FHE Powers Generation procedure, thereby

avoiding complex FHE ciphertext multiplications. However,
PoM also introduces significant computational overhead due
to its frequent use of NTT. Further acceleration of PoM from
both algorithmic and hardware perspectives is also a future
improvement direction for Trident. We hope this work can
inspire new ideas for future PSI acceleration combining with
the protocol optimization.

REFERENCES

[1] Datatrust. [Online]. Available: https://dp.alibaba.com/product/datatrust
[2] “Xilinxruntime rev:2021.1,” https://www.xilinx.com/products/design-

tools/vitis/xrt.html.
[3] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil, A. Chan-

drakasan, V. Vaikuntanathan, and A. Joshi, “Fab: An fpga-based acceler-
ator for bootstrappable fully homomorphic encryption,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 882–895.

[4] J. Ali. (2018) Validating leaked passwords with k-anonymity. [Online].
Available: https://blog.cloudflare.com/validating-leaked-passwords-with-
k-anonymity/

[5] S. Atay, A. Koltuksuz, H. Hisil, and S. Eren, “Computational cost analysis
of elliptic curve arithmetic,” in 2006 International Conference on Hybrid
Information Technology, vol. 1. IEEE, 2006, pp. 578–582.

[6] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled psi from fully
homomorphic encryption with malicious security,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1223–1237.

[7] H. Chen, K. Laine, and R. Player, “Simple encrypted arithmetic library-
seal v2. 1,” in International conference on financial cryptography and
data security. Springer, 2017, pp. 3–18.

[8] L. T. Clark, V. Vashishtha, D. M. Harris, S. Dietrich, and Z. Wang,
“Design flows and collateral for the asap7 7nm finfet predictive process
design kit,” in 2017 IEEE international conference on microelectronic
systems education (MSE). IEEE, 2017, pp. 1–4.

[9] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[10] K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. Iliashenko, K. Laine,
and M. Rosenberg, “Labeled psi from homomorphic encryption with
reduced computation and communication,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1135–1150.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[12] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu, “Pir-psi: scaling
private contact discovery,” Cryptology ePrint Archive, 2018.

[13] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search
and oblivious pseudorandom functions,” in Theory of Cryptography:
Second Theory of Cryptography Conference, TCC 2005, Cambridge,
MA, USA, February 10-12, 2005. Proceedings 2. Springer, 2005, pp.
303–324.

[14] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[15] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and
pattern matching with security against malicious and covert adversaries,”
in Theory of Cryptography: Fifth Theory of Cryptography Conference,
TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5. Springer,
2008, pp. 155–175.

[16] C. H. C. Huang, J. L. J. Lai, J. R. J. Ren, and Q. Z. Q. Zhang, “Scalable
elliptic curve encryption processor for portable application,” in ASIC,
2003. Proceedings. 5th International Conference on, vol. 2. IEEE, 2003,
pp. 1312–1316.

[17] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons
from three generations shaped google’s tpuv4i: Industrial product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 1–14.

[18] J. Kim, G. Lee, S. Kim, G. Sohn, J. Kim, M. Rhu, and J. H. Ahn, “Ark:
Fully homomorphic encryption accelerator with runtime data generation
and inter-operation key reuse,” arXiv preprint arXiv:2205.00922, 2022.

[19] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 711–725.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

https://dp.alibaba.com/product/datatrust
 https://www.xilinx.com/products/design-tools/vitis/xrt.html
 https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/
https://blog.cloudflare.com/validating-leaked-passwords-with-k-anonymity/

14

[20] Á. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas, “Private set
intersection for unequal set sizes with mobile applications,” Cryptology
ePrint Archive, 2017.

[21] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203–209, 1987.

[22] Y. Lindell, “How to simulate it–a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography: Dedicated to
Oded Goldreich, pp. 277–346, 2017.

[23] C. Meadows, “A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party,” in 1986 IEEE
Symposium on Security and Privacy. IEEE, 1986, pp. 134–134.

[24] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-grained dram: Energy-efficient dram
for extreme bandwidth systems,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
41–54.

[25] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of elliptic
curve cryptographic coprocessor over gf (2ˆ m) on an fpga,” in CHES,
2000, pp. 25–40.

[26] J. Pullman, K. Thomas, and E. Bursztein, “Protect your accounts from
data breaches with password checkup,” 2019.

[27] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295–1309.

[28] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake:
a hardware accelerator for efficient unbounded computation on encrypted
data.” in ISCA, 2022, pp. 173–187.

[29] A. Shafaei, Y. Wang, X. Lin, and M. Pedram, “Fincacti: Architectural
analysis and modeling of caches with deeply-scaled finfet devices,” in
2014 IEEE Computer Society Annual Symposium on VLSI. IEEE, 2014,
pp. 290–295.

[30] L. Shen, X. Chen, D. Wang, B. Fang, and Y. Dong, “Efficient and
private set intersection of human genomes,” in 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2018,
pp. 761–764.

[31] M. Wu and T. H. Yuen, “Efficient unbalanced private set intersection
cardinality and user-friendly privacy-preserving contact tracing,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 283–300.

[32] Xilinx, “Product brief of smartssd,” https://www.xilinx.com/products/
boards-and-kits/alveo/u280.html.

[33] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li, “Poseidon:
Practical homomorphic encryption accelerator,” in 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2023, pp. 870–881.

Jinkai Zhang is currently pursuing the Doctoral
degree with the Institute of Computing Technology,
Chinese Academy of Sciences, University of Chinese
Academy of Sciences, Beijing, China. His research
interests include fully homomorphic encryption ap-
plication, fully homomorphic encryption acceleration,
and fully homomorphic encryption compiler.

Yinghao Yang is currently pursuing the Doctoral
degree with the Institute of Computing Technology,
Chinese Academy of Sciences, University of Chinese
Academy of Sciences, Beijing, China. His research
interests include fully homomorphic encryption ac-
celeration, FPGA accelerator design, and fully ho-
momorphic processor design.

Zhe Zhou received the bachelor’s degree from the
School of Communications and Information Engi-
neering, Nanjing University of Posts and Telecommu-
nications, Nanjing, China, in 2021. He is currently
working toward the PH.D. degree with the school of
Cyber Science and Engineering, Southeast University,
Nanjing. His main research interests include com-
puter architecture and security and privacy preseving
computing architecture.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

 https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
 https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

15

Zhicheng Hu received the B.E. degree in micro-
electronics from University of Electronic Science
and Technology of China, Chengdu and is pursu-
ing the M.S. degree under the guidance of Prof
Liang Chang from the Department of Internet of
Things Engineering, School of Information and
Communication Engineering. His current research
interests include energy-efficient deep-neural-network
architectures/accelerators and efficient deep learning
based algorithm for hardware processing.

Xin Zhao received the B.E. degree in Electronic
Engineering from China University of Mining and
Technology, Xuzhou, China, in 2021. He is currently
pursuing the M.S. degree under the guidance of Prof
Liang Chang from the Department of Internet of
things Engineering, School of information and Com-
munication Engineering, University of Electronic
Science and Technology of China. His research
interest contains computing-in-memory architecture
and super-resolution hardware architecture.

Liang Chang (M’19) received the Ph.D. and M.S.
degrees from Beihang University in 2019 and 2014,
respectively. He received a double B.S. degree
from the Chengdu University of Information and
Technology and the University of Electronic Science
and Technology of China 2011. He was an engineer
and senior engineer in China Glorun Technology
(Beijing, China) and AMD China (Beijing, China)
during 2012-2015. From 2022, he was a visiting
scholar at HKUST. He has co-authored over 50
scientific papers, including IEEE International Solid-

State Circuits Conference (2021, 2023, 2024), MICRO (2021), IEEE TCAS-I
(2020-2024), IEEE TVLSI (2019, 2024), IEEE TC (2019), IEEE TCAD, etc.
His research interests include computing in emerging nonvolatile memory,
advanced memory-centric computer architecture, and AI processors for
intelligent detection. He is the Regular Reviewer of the IEEE JSSC, IEEE
TCAS-I/II, IEEE TBioCAS, IEEE TCAD, IEEE TC, IEEE TVLSI, etc.

Hang Lu received B.S. and M.S. degrees in Elec-
tronic Information Engineering from the Beijing
University of Aeronautics and Astronautics, Beijing,
China, in 2008 and 2011, respectively, and a Ph.D.
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Academy
of Sciences (CAS), Beijing, China, in 2015. He
is currently an Associate Professor and a Master
Tutor with the ICT, CAS, University of Chinese
Academy of Sciences, Beijing, China. He is also a
Research Scientist with Shanghai Innovation Center

for Processor Technologies. His research interests include fully homomorphic
encryption acceleration, FPGA accelerator design, and fully homomorphic
processor design. Dr.Lu is a member of the Youth Innovation Promotion
Association of CAS, and the New Best Star of ICT.

Xiaowei Li (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees in computer science
from the Hefei University of Technology in 1985
and 1988, respectively, and the Ph.D. degree in
computer science from the Institute of Computing
Technology (ICT), Chinese Academy of Sciences
(CAS) in 1991. In 2000, he joined ICT as a Professor,
where he is currently the Deputy Director of the
State Key Laboratory of Computer Architecture.
He has coauthored over 280 papers in journals
and international conferences, alongside holding 60

patents and 30 software copyrights. His research interests include VLSI testing,
design for testability, design verification, dependable computing, and wireless
sensor networks. He services as an Associate Editor for the Journal of Computer
Science and Technology, the Journal of Low Power Electronics, the Journal of
Electronic Testing: Theory and Applications, and the IEEE TRANSACTIONS
ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3517738

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ShanghaiTech University. Downloaded on January 02,2025 at 10:08:20 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background and Motivation
	PSI Formulation
	Bottlenecks in Computation and Communication
	Acceleration Opportunities

	Trident-PSI Protocol
	General Concept
	Procedures
	Security Proof
	Discussion

	Trident Accelerator
	Overall Accelerator Architecture
	OPRF
	PoM-FHE
	Memory System

	Evaluation
	Experimental Setup
	PSI Performance
	Long-item PSI
	Energy
	Design Space Exploration
	Ablation Study
	Accelerator Resource Utilization
	ASIC Implementation

	Conclusion
	References
	Biographies
	Jinkai Zhang
	Yinghao Yang
	Zhe Zhou
	Zhicheng Hu
	Xin Zhao
	Liang Chang
	Hang Lu
	Xiaowei Li

