
Uranus: Ultra-efficient Acceleration Architecture for
the Privacy Inference of Graph Neural Networks

Xicheng Xu1,2,3, Yinghao Yang1,2(B), Fuyao Liu1,2,3, Xiaowei Li1,2,3, Hang Lu1,2,3(B)

SKLP, Institute of Computing Technology, CAS1;
University of Chinese Academy of Sciences2;

Zhongguancun Laboratory3
Abstract—Graph Neural Networks (GNNs) are increasingly

applied across various domains, including social media and
recommendation systems. However, data privacy protection has
become a critical issue for GNN applications. Fully Homo-
morphic Encryption (FHE), which enables computation on en-
crypted data, has emerged as a mainstream solution for secure
GNN inference. However, due to the high computational costs
of FHE-based GNNs, dedicated accelerators are necessary to
make them practical. Existing CKKS-based GNN algorithms
require large encryption parameters, imposing high demands
on hardware resources. The state-of-the-art design PPGNN is
hardware friendly on memory by combining CKKS with TFHE,
but TFHE’s SISD computing characteristic causes a dramatic
increase in computational overhead, limiting its performance
benefits. This paper proposes a novel software-hardware co-
designed GNN accelerator architecture, Uranus, which integrates
a hardware-friendly algorithmic framework with a matching
accelerator design. The inference framework leverages CKKS
and BFV schemes to enable efficient linear layer computations
and SIMD-based nonlinear calculations with reduced encryption
parameters suitable for hardware constraints. Additionally, the
highly reconfigurable hardware accelerator maximizes utilization
and performance. Key results demonstrate the following: (1) up
to 92× speedup compared to CKKS accelerators; (2) achieves
3.3× to 4.2× performance improvement over the SOTA PPGNN
architecture; (3) over 119× in energy efficiency improvement
compared to PPGNN.

I. INTRODUCTION

Graph Neural Networks (GNNs) are widely applied in
recommendation systems, social networks, knowledge graphs,
natural science, etc [10], [30], [32]. However, handling sensi-
tive data, such as personal information in cloud services or
medical records in bioinformatics, raises privacy concerns.
Protecting sensitive information during GNN inference has
thus become a critical research focus.

Fully Homomorphic Encryption (FHE), known for its “com-
putable but not visible” feature, is a prominent privacy-
preserving technology. This enables its wide application in
scenarios requiring data privacy, including GNN inference.
CryptoGCN [23] and Penguin [24] are FHE-based GNN
implementations, both of which optimize the linear layer of
the GNN to reduce the computational overhead. However,
to improve the inference performance, they use squared ac-
tivation or second-order polynomial fitting to implement the
activation layer of the GNN, respectively, which leads to a
drastic decrease in their accuracy and low practicality. In

Yinghao Yang and Hang Lu are corresponding authors. This work was
supported in part by the National Natural Science Foundation of China under
Grant 62172387; in part by the CCF Phytium Fund 2023; in part by the Open
Research Fund of the State Key Laboratory of Blockchain and Data Security,
Zhejiang University.

GNN Combination Aggregation Activation

CKKS-based
PPGNN

(CKKS+TFHE)
Uranus (ours)

SIMD

SIMD

SIMD

SIMD

SISD

SIMD

SIMD

SISD

SIMD

Less Complexity

..
.

FHE
op

..
.

SIMD
..

.

FHE op

SISD

..
.

..
.

..
.

More Efficient

CUs

...

...
...

Mem
Mem

CUs

...

...

...

...

Cap.BW

Cores

...

Larger
Param.

Hardware
Friendly

Hardware
Unfriendly

Fig. 1. Comparison of GNN acceleration accross CKKS-based, PPGNN and
Uranus implementations. Single instruction multiple data (SIMD) has lower
computational complexity and higher efficiency compared to single instruction
single data (SISD). Smaller encryption parameters mean lower hardware
resource requirements and design complexity, more hardware friendly.

fact, high-precision nonlinear computations require high-order
polynomial fitting implementations, such as a 343-degree poly-
nomial for sign function approximation [19], [31], resulting in
at least 12 multiplication depths per ReLU operation. Even a
simple 3-layer GNN requires 42 multiplication depths. There-
fore, practical high-precision privacy GNN inference requires
bootstrapping to support large multiplication depths, which in
turn requires large parameter settings and high overhead.

To improve the inference efficiency, FHE-based GNN re-
quires specialized accelerators to improve its efficiency and
practicality. As shown in Fig. 1, although general-purpose FHE
accelerators like CraterLake [26] and SHARP [16] can support
CKKS-based implementations, they require huge scratchpads
(180MB-512MB) to meet the memory access requirements
for large parameters, significantly increasing the area and
power consumption of the accelerators. PPGNN [31], the first
hardware-software co-designed GNN accelerator, improves
accuracy and inference speed using a combination of CKKS
and TFHE schemes. PPGNN’s co-design reduces parameter
demands, offering a memory advantage in hardware accelerat-
ing. However, PPGNN can only support GNN models without
edge weights, and its nonlinear layer implementation based
on TFHE’s Programmable Bootstrapping (PBS) essentially ex-
tracts packed data and computes them in SISD manner, which
introduces a dramatic increase in computational complexity.
For instance, processing a single iteration of a simple 3-layer

TABLE I
NOTATIONS, PARAMETERS AND KEY OPERATIONS.

Notation Description
m Polynomial plaintext.
N Degree of the polynomial.
Q Ciphertext modulus.
RQ Cyclotomic polynomial ring, ZQ/(XN + 1)
[[m]] RLWE ciphertext of m, [[m]] =

(a(X), b(X)) ∈ R2
Q

m Scalar plaintext.
n Length of the vector.

[[m]] LWE ciphertext of m, [[m]] = (a⃗, b) ∈ Zn+1
Q

HAdd Homomorphic addition of two ciphertexts
PMult Homomorphic multiplication of plaintext and

ciphertext
CMult Homomorphic multiplication of two ciphertexts
Extract Extract LWE ciphertexts from RLWE ciphertext
Repack Pack LWE ciphertexts to RLWE ciphertext

GNN on the Pubmed dataset involves hundreds of thousands
of PBS.

Therefore, an efficient FHE-based GNN inference accel-
eration system needs to consider both algorithms and hard-
ware, designing a hardware-friendly GNN inference frame-
work while ensuring high efficiency. We propose Uranus,
a hardware-software co-designed GNN accelerator. Uranus
features a hardware-friendly and efficient inference framework
based on hybrid FHE scheme (CKKS for linear layers and
BFV for nonlinear layers) and a specialized hardware archi-
tecture to accelerate inference speed. The contributions of this
paper are as follows:

• We propose a high-accuracy and hardware friendly
Uranus framework for the GNN inference under FHE.
This framework is based on the CKKS and BFV imple-
mentations, and designs efficient matrix multiplication for
combination and aggregation in GNN and an accurate
SIMD activation method supporting small parameters
with high accuracy.

• We propose a hardware accelerator architecture that
matches the Uranus framework, which includes a shifter
unit for FHE scheme conversion and a highly reconfig-
urable HMU based on a shared basic computing unit
capable of supporting all modulo-related computations
in the Uranus framework, achieving excellent hardware
utilisation and performance.

• We evaluate the performance of Uranus based on RTL
implementation at the 7nm technology node. We highlight
the following results: (1) achieves 9.0×-92× and 3.3×-
4.2× speedup compared to SOTA CKKS accelerator
and GNN-oriented accelerating architecture PPGNN. (2)
over 119× efficiency (EDAP) improvement compared to
SOTA PPGNN.

II. PRELIMINARY

A. FHE schemes and operations

State-of-the-art HE schemes can be broadly categorized into
RLWE-based schemes, such as CKKS [6] and BFV [11], and

LWE based schemes, such as TFHE [7], depending on the
underlying hardness assumptions. Table I summarizes the key
notations, parameters and operations of these schemes.

Significant differences exist between them in terms of
ciphertext structure and homomorphic operations. RLWE-
based schemes encrypt a plaintext polynomial m into an
RLWE ciphertext consisting of two polynomials, [[m]] =
(a(X), b(X)) ∈ R2

Q, while LWE-based schemes encrypt a
single plaintext message m into an LWE ciphertext composed
of a vector and a scalar, [[m]] = (⃗a, b) ∈ Zn+1

Q . These
differences in ciphertext formats inherently lead to variations
in the supported homomorphic operations.

Despite their structural and operational differences, vari-
ous conversion techniques have been proposed and widely
adopted [4], [7], [21]. Among them, Extraction enables the
extraction of an LWE ciphertext corresponding to a specific
message from an RLWE ciphertext, while Repacking allows
multiple LWE ciphertexts to be packed into a single RLWE
ciphertext in a prescribed order. In Uranus, scheme conversion
is primarily employed to rearrange data positions within the
polynomial.

B. FHE-based GNN Inference

GNN computations typically comprise three key stages:
combination, aggregation, and activation. These stages can be
mathematically expressed in matrix form as:

V(k) = σ
(
A ·V(k−1) ·W(k)

)
, (1)

where A is the adjacency matrix of the graph, V(k) is the
feature matrix at layer k, W(k) is the trainable weight matrix,
and σ is the activation function.

Under FHE, the combination (V(k−1) ·W(k), as in (1)) is
performed via ciphertext-plaintext matrix multiplication. The
aggregation (A ·V(k−1) ·W(k)) involves ciphertext-ciphertext
matrix multiplication, while the activation stage is typically
implemented using polynomial approximations. While these
computations enable GNN inference under FHE, they also
deplete the ciphertext’s multiplicative depth.

C. Threat Model

Following prior privacy-preserving deep learning ap-
proaches [3], [8], [13], [18], Uranus focuses on cloud-based
GNN inference services. In this system, the client retains the
confidential graph data (i.e., A and V(0)), while the server
manages the GNN model parameters(i.e., Wk). The server
is assumed to be semi-honest, meaning it performs inference
correctly but may try to infer or leak the client’s data. During
inference, the client encrypts graph data using FHE. The server
performs GNN inference on the encrypted data and sends the
results back to the client, who decrypts them to obtain the final
output. Since Uranus operates on the server side, the client’s
graph data remain encrypted, while the model weights are in
plaintext.

III. MOTIVATION

FHE-based GNN inference incurs substantial computational
overhead, necessitating specialized accelerators for practical

97.7

90.8

88.0

0.6

2.3

3.0

1.7

6.9

9.0

0% 25% 50% 75% 100%

Pubmed

Citeseer

Cora

linear nonlinear bootstrapping

Fig. 2. Latency breakdown of GNN inference. We implement GNN on three
datasets (Cora,Citeseer, and Pubmed) on the open source FHE library SEAL
[27] based on the CryptoGCN [31] design method and combined with high
precision polynomial fitting [19].

deployment. Achieving true efficiency requires joint consider-
ation of both software frameworks and hardware architectures.

A. Discrete Frameworks and Accelerators

Current optimizations for FHE-based GNN inference algo-
rithms and FHE accelerators are largely discrete. Algorithms
focus on reducing computational complexity without adapting
to hardware accelerators, while general-purpose FHE accelera-
tors lack designs tailored for GNNs, hindering their integration
for efficient performance. As shown in Fig. 2, the linear
layer in FHE-based GNN involves computationally expensive
ciphertext matrix multiplications, accounting for a significant
portion of the total computational overhead (over 88%), while
the nonlinear layer and bootstrapping overhead are minimal
(less than 12%). Theoretically, the linear layer requires only a
multiplication depth of 2, achievable with small encryption
parameters. However, bootstrapping for nonlinear functions
in GNNs demands significantly higher encryption parameters
(polynomial length 65536, ciphertext modulus 1500-bit). This
results in the linear layer also only operating at a polynomial
length of 65536, thus having a high overhead. However,
since the number of features of GNNs shrinks drastically as
the linear layer is computed (e.g., 2708 to 32 in Cora and
and 19717 to 32 in Pubmed), the source of large parameter
requirements, i.e. bootstrapping, instead has a small overhead
due to the fact that only a small number of feature data cipher-
texts need to be refreshed. Therefore, accelerating FHE-based
GNN inference by existing accelerator designs, i.e., ARK
[17], CraterLake [26], and SHARP [16], will result in very
low hardware utilization, which stems from the deployment
of multiple HBMs and large capacity scratchpads (180MB-
512MB) primarily for bootstrapping, which accounts for less
than 10% of the GNN compute load.

B. Unbalanced Software-hardware Co-design for GNN

PPGNN [31] is the first and only hardware-software co-
design GNN acceleration work that focuses on minimizing the
FHE encryption parameters for GNNs. It combines arithmetic
and logic FHE schemes, employing CKKS for ciphertext-
plaintext matrix multiplication and TFHE for ciphertext matrix
multiplication and nonlinear layer evaluation, reducing encryp-
tion parameters to a polynomial length of 4096. However,
it has two limitations: (1) The aggregation method supports
only special cases with additive aggregation, restricting its

 Homomorphic Aggregation
CKKS

4

S2C

Homomorphic
Activation

BFV

3

m Q

m qi

2 Homomorphic Combination
CKKS

m qi

1

Extraction
& KS

Repacking
V

W
*

Relu
Ciphertext

Plaintext

A

V
*

Fig. 3. Uranus framework. The three-step loop consecutively handles the key
stages of GNN computation, i.e., combination, aggregation, and activation.
Corresponding transition operations are required between each of the three
steps to ensure the connection of execution flow.

applicability to diverse GNN types. (2) To reduce encryption
parameters, PPGNN uses TFHE’s PBS for nonlinear functions
in GNNs, eliminating the need for CKKS bootstrapping with
large encryption parameters. However, the non-SIMD nature
of PBS limits it to activating a single data point, requiring
numerous operations and causing a computational complexity
explosion. For instance, for dataset Pubmed, PPGNN requires
hundreds of thousands of PBS operations in just one iteration,
specifically 19717 (vertices) × 32 (features). Thus, while
PPGNN reduces memory overhead on the accelerator by
optimizing parameters through software, its poor performance
from computational complexity explosion demands extensive
hardware resources to compensate. This unbalance signifi-
cantly limits the benefits of its software-hardware co-design.
An efficient privacy-preserving GNN acceleration system must
adopt a balanced co-design with hardware-friendly parameters
and reduced computational complexity.

IV. URANUS

A. Framework

As illustrated in Fig. 3, the GNN inference process in
the Uranus framework involves three closely integrated steps:
Homomorphic Combination, Homomorphic Aggregation, and
Homomorphic Activation. These steps enable ciphertext-
plaintext matrix multiplication (PMult) of node features and
model weights, ciphertext-ciphertext matrix multiplication
(CMult) of adjacency matrix and node features, and SIMD
activation of node features. Each step corresponds to a specific
FHE scheme with an associated ciphertext modulus. The
CKKS scheme features a decreasing ciphertext modulus (qi)
as computation progresses, while the BFV scheme maintains
a constant modulus (Q).

B. Procedures

1) Homomorphic Combination: The homomorphic combi-
nation operation (Step ① in Fig. 3) in GNN involves ma-
trix multiplication between ciphertext features and plaintext
weights. Unlike PPGNN, which employs coefficient encoding
to avoid extensive rotations during matrix multiplication, we
adopt a straightforward slot-based encoding approach com-
bined with an optimized BSGS method [5] to perform this
operation. Coefficient encoding distributes valid results across

𝑣ො0(𝑋) = 𝑣0,0 + 𝑣1,0𝑋 + 𝑣0,1𝑋2 + 𝑣1,1𝑋3

𝑤ෝ0,0(𝑋) = 𝑤0,0 + 0𝑋 − 𝑤1,0𝑋2 + 0𝑋3
𝑤෥0,1(𝑋) = 𝑤0,1 + 0𝑋 − 𝑤1,1𝑋2 + 0𝑋3

𝑣ො1(𝑋) = 𝑣0,2 + 𝑣1,2𝑋 + 𝑣0,3𝑋2 + 𝑣1,3𝑋3

𝑤ෝ1,0(𝑋) = 𝑤2,0 + 0𝑋 − 𝑤3,0𝑋2 + 0𝑋3
𝑤෥1,1(𝑋) = 𝑤2,1 + 0𝑋 − 𝑤3,1𝑋2 + 0𝑋3

 +(𝑎0,0𝑣0,1 + 𝑎0,1𝑣1,1 + 𝑎0,2𝑣2,1 + 𝑎0,3𝑣3,1ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝑣0,1

′

)𝑋

𝑣ො0
′ = 𝑎ො0 ∙ 𝑣ො

(a) N=8 (b) N=4

= (𝐴00𝑉00 + 𝐴01𝑉10 + 𝐴02𝑉20 + 𝐴03𝑉30ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝑉00

′

)

 +(𝐴00𝑉01 + 𝐴01𝑉11 + 𝐴02𝑉21 + 𝐴03𝑉31ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝑉01

′

)𝑋

𝑣ො0
′ = 𝑎ො0 ∙ 𝑣ො

 + ⋯

𝑎ො0(𝑋) = 𝐴00 − 𝐴03𝑋2 − 𝐴02𝑋4 − 𝐴01𝑋6 𝑎ො00(𝑋) = 𝐴00 − 𝐴01𝑋2 𝑎ො10(𝑋) = 𝐴02 − 𝐴03𝑋2

𝑣ො0(𝑋) = 𝑉00 + 𝑉01𝑋
+𝑉10𝑋2 + 𝑉11𝑋3

𝑣ො1(𝑋) = 𝑉20 + 𝑉21𝑋
+𝑉30𝑋2 + 𝑉31𝑋3

= (𝐴00𝑉00 + 𝐴01𝑉10)

 + ⋯
 +(𝐴00𝑉01 + 𝐴01𝑉11)𝑋

𝑣ො00
′ = 𝑎ො00 ∙ 𝑣ො0

= (𝐴02𝑉20 + 𝐴03𝑉30)

 + ⋯
 +(𝐴02𝑉21 + 𝐴03𝑉31)𝑋

𝑣ො01
′ = 𝑎ො01 ∙ 𝑣ො1

𝑣ො0
′ = 𝑣ො00

′ + 𝑣ො01
′

𝑣ො(𝑋) = 𝑉00 + 𝑉01𝑋 + 𝑉10𝑋2 + 𝑉11𝑋3
+𝑉20𝑋4 + 𝑉21𝑋5 + 𝑉30𝑋6 + 𝑉31𝑋7

× = 𝑉00
′ 𝑉01

′

𝑉10
′ 𝑉11

′

𝑉00 𝑉01

𝑉10 𝑉11

𝑉20 𝑉21

𝑉30 𝑉31

𝑨𝟎𝟎 𝑨𝟎𝟏

𝐴10 𝐴11

𝑨𝟎𝟐 𝑨𝟎𝟑

𝐴12 𝐴13

𝐴20 𝐴21

𝐴30 𝐴31

𝐴22 𝐴23

𝐴32 𝐴33

Fig. 4. Toy example of homomorphic aggregation.
irregular polynomial coefficients, necessitating costly LWE-to-
RLWE conversions [4] with substantial rotations. In contrast,
our approach streamlines subsequent operations by eliminating
these overheads.

After the combination operation, since the subsequent ag-
gregation (step ②) involves MAC computations between ci-
phertexts, implementing it based on slots would introduce
significant rotations. Therefore, we use S2C [12] to transfer the
data to the coefficient space, leveraging the convolution prop-
erty of polynomial multiplication for efficient implementation.
Notably, the computational complexity of S2C (O(

√
N))

is significantly lower than the LWE-to-RLWE conversion
(O(N)) used in PPGNN.

2) Homomorphic Aggregation: In this operation, PPGNN
employs the HMUX operator; however, this approach only
supports simple additive aggregation and cannot handle
weighted graphs. In contrast, we implement the operation
based on standard matrix multiplication, which allows us to
support regularization and weighted graphs (e.g., NELL [2]),
offering greater practicality.

The design of the Uranus framework prioritizes both hard-
ware friendliness and efficiency. In coefficient space-based
aggregation, it is essential to optimize the distribution of re-
sult polynomial coefficients. Concentrating coefficients in the
leading terms of the polynomial facilitates efficient hardware
extraction

Formally, suppose the graph data input to a GNN layer
has H nodes and F input features, then adjacency matrix
A ∈ RH×H and the node features V ∈ RH×F . For simplicity,
consider the case when H×F ≤ N . After completing combi-
nation, node features are encoded in row-major order (v̂ in (2))
in the coefficients. However, during aggregation, dot product is
performed on each column of the node features, corresponding
to an interval of F in the row-major order. Besides, to leverage
the convolution properties of polynomials, the data involved
in the operation must be arranged in reverse order. Thus, each
row of the adjacency matrix should be encoded in reverse order
and at intervals of F in the coefficients, as ât shown in (2).

ât[N − i× F (mod N)] = A[t][i]

v̂[i× F + j] = V [i][j]
(2)

Fig.4(a) shows an example where H = 4 (nodes), F = 2
(features), and N = 8 (polynomial degree). According to the
(2), the adjacency matrix is encoded as â0, â1, â2 and â3, and

mN-1mN-2m1m0

mN-1m1m0

m3

CKKS ciphertext
m0 ...

LWE ciphertexts

Extract & KS

...

BFV ciphertext

q0

N=215

m1 m2 mN-3 mN-2 mN-1

N=210

e

Q

m

m

LWE ciphertexts

ModSwitch

...
t N=210

Linear Transform

t

BFV ciphertext

e

q0

f(m)

Evaluate P(X)

t

f(mN-1)f(m1)f(m0)
LWE ciphertexts

Extract & KS

...
q0 N=210

Repack

2

3

4

5

1

Fig. 5. Homomorphic activation process.

the node features as v̂. During HAgg, â0·v̂, â1·v̂, â2·v̂ and â3·v̂
are computed respectively. Taking â0 · v̂ as exaple, it computes
the first row of A (marked in bold) and the two columns
of V (marked in red and blue), with the result distributed
in the first two coefficients of the product polynomial. This
encoding method distributes the effective results in the first
F coefficients of the H polynomials of ât · v̂, minimizing
extraction overhead.

For cases when H × F > N , the node features are
distributed across multiple ciphertexts. Therefore, we need to
partition the adjacency matrix accordingly to satisfy the afore-
mentioned operational rules. We define a partition (Hc, Fc)
for (H,F), such that Fc = ⌊N

H ⌋ and Hc = ⌊ N
Fc

⌋ with
Hc×Fc ≤ N . Since Hc×Fc < N , the above operation can be
repeated on each partition, and the results summed across the
partitions. Fig.4(b) illustrates the computation process using
the same H (4) and F (2), but with N = 4. Substituting
into the above formula, each partition has Fc = 2 and
Hc = 2, resulting in a total of ⌈ F

Fc
⌉⌈ H

Hc
⌉ = 2 partitions.

Each partition completes the matrix multiplication of the
submatrices. This partitioning approach ensures that results
from different partitions can be merged using simple HAdd
operation while retaining the property that effective results
are distributed in the leading coefficients. This significantly
reduces the overhead of merging and extraction.

3) Homomorphic Activation: Unlike PPGNN, which im-
plements activation using PBS in a SISD manner, Uranus
adopts the approach proposed in [20], introducing a unified
homomorphic activation operator that supports high precision
and SIMD computation. The core of this operation is to
evaluate a polynomial (step ❹ in Fig. 5) as:

P (x) = f(0)−
t−1∑
i=0

xi
t−1∑
k=0

f(k)kt−1−i (3)

Notably, this polynomial serves as an interpolation formula
for f(x) over the plaintext space Zt of BFV, meaning that
for any x ∈ Zt, P (x) = f(x). This computation format
conforms to ”table look-up,” a.k.a. LUT, which allows for
high-precision mapping for any activation function. Taking
ReLU as example, f(x) is substituted with ReLU(x) into
the formula and precomputes the corresponding interpolation
polynomial, enabling inference by evaluating this polynomial.

Fig. 5 illustrates the specific process of the activation.

Cluster
2

HBM

HBM

NoC

Cluster
3

Cluster
0

Cluster
1

Shifter

Automorphism

Keyswitch Gen (PRNG)

Register File

NoC

...

Calculation Region

Mapping Region

...

...

(a) Overall Architecture

Register File

PE
m,l-1

...

PE
2,l-1

PE
1,l-1

PE
m,1

...

PE
2,1

PE
1,1

PE
m,l

...

PE
2,l

PE
1,l

PE
m,2

...

PE
2,2

PE
1,2

M
U

X M
U

X

M
U

X M
U

X

M
U

X M
U

X

PE
m-1,l-1

PE
m-1,1

PE
m-1,l

PE
m-1,2

M
U

X M
U

X

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

a

b

c c c c
Logic of PE:
if(MM):
 a' = b * c
if(MA):
 a' = a + b
if(MSub):
 a' = a - b
if(BConv):
 buf = buf + b * c
 b' = b
if(NTT):
 a' = a + b * c
 a' = a - b * c
if(iNTT):
 a' = a + b
 b' = (a - b) * c
if(output_buf):
 a' = buf

(b) HMU Micro-architecture

MM

buf

a'

b'

MA

MA

M
U

X

M
U

X
M

U
XM

U
X

c

M
U

X

b

a

q

NTT BConv MM MA(i)NTT

Fig. 6. Uranus accelerator architecture. (a) is the overall architecture, comprising four clusters interconnected by a NoC, each containing mapping regions and
computation regions covering all operations in the Uranus framework. (b) is the micro-architecture of the HMU, the core computing unit in the accelerator,
with high resource utilization as well as reconfigurable datapaths.

After aggregation, the results are distributed over certain
coefficients of the polynomial. Therefore, Uranus first extracts
these results as multiple LWE ciphertexts by Extraction (step
❶). Subsequently, ModSwitch (step ❷) and Linear Transform
(step ❸) are performed to to pack LWE ciphertexts into the
plaintext space of BFV ciphertext. By evaluating the polyno-
mial P (x) = f(x), Enc(mi) will be mapped to Enc(f(mi)).
Then, S2C and extraction (step ❹) are performed to extract
LWE ciphtexts from BFV ciphertext. Among these steps,
sample extraction is an operation that is unique to the multi-
FHE scheme and requires a special acceleration unit, for which
we have designed a special hardware unit, Shifter, which will
be introduced in Section V-B2.

After activation, LWE ciphertexts are repacked according to
the order required by combination using the packing method
proposed in PEGASUS [21]. After repacking, the data are in
the slot space of the ciphertext and returns to the initial step
of framework for the next round of inference computation.
C. Parameter Optimization and Selection

The main objective of the Uranus framework is to opti-
mize the encryption parameters for hardware friendliness. The
Uranus framework is implemented by integrating linear layer
computations based on CKKS coefficient encoding and batch
nonlinear function evaluation based on BFV (simultaneously
achieving bootstrapping). Unlike traditional CKKS implemen-
tations, which separate nonlinear operations and bootstrapping
and introduce significant multiplicative depth (thus requiring
large encryption parameters such as N=65536 and logQ >
1500 bits), Uranus framework supports full GNN inference
with much smaller parameters.

Furthermore, in contrast to the PPGNN accelerator, which
primarily reduces encryption parameters through an unbal-
anced hardware-software co-design (where the non-linear layer
operates in SISD mode), Uranus adopts a SIMD approach for
both linear and non-linear layer computations, significantly
reducing computational complexity. As a result, despite using
slightly larger parameters than PPGNN, Uranus achieves sub-
stantially better overall performance, as demonstrated in the
performance evaluation section (Section VI). The optimized
parameter settings in Uranus are as follows: The LWE degree
n = 1024, and modulus q = 65537; In BFV ciphertext, the
degree N = 32768, plaintext modulus t = 65537 (the same as
the LWE modulus), and the ciphertext modulus is 765 bits; In
CKKS ciphertext, the degree N = 32768 and the ciphertext

modulus is 675 bits, which provides a rescale level L = 15.
These parameter settings guarantee a security level of 119 bits
(same as PPGNN).

V. URANUS ACCELERATOR

A. Overall Architecture

Fig. 6(a) illustrates the Uranus accelerator’s overall architec-
ture, consisting of four clusters interconnected via a network-
on-chip (NoC). Each cluster is divided into a mapping region
and a calculation region. The mapping region handles data
indexing operations in the Uranus framework, such as Auto-
morphism for rotation (Auto core) and Shifting for extraction
(Shifter core). The calculation region accelerates FHE mod-
ular computations, including number theoretic transformation
(NTT), modular multiplication (MM), modular addition (MA),
and base conversion (BConv). Unlike conventional CKKS-
based GNN implementations where NTT and BConv dominate
computation, Uranus introduces additional overhead from MA
and MM due to polynomial evaluations in activation (step ❹
in Fig. 5), which require numerous ciphertext multiplications
and additions. Since NTT and BConv are both composed of
MA and MM, to improve the hardware utilisation, we design
the reconfigurable multifunctional unit HMU to support all
homomorphic modular operations by resource reusing. The
specific micro-architecture will be introduced in Section V-B.

For memory, the Uranus accelerator integrates HBM and
scratchpad. HBM manages data exchange with the host, while
scratchpad caches intermediate results and supports compu-
tations in functional regions. All the cores have their own
input and output buffers, and the scratchpad is connected to
the buffer via NoC. Each cluster has a data parallelism of 512
and the total parallelism of the accelerators is 2048. Compared
to recently proposed architectures like ARK or CraterLake,
Uranus avoids large scratchpad memory, as its optimized
algorithm framework requires smaller encryption parameters,
reducing scratchpad capacity and bandwidth demands by 4×.

B. Microarchitecture

1) HMU: The HMU efficiently leverages shared modulo
addition and modulo multiplication units to perform the four
core FHE operations: NTT, MA, MM and BConv. As illus-
trated in Fig. 6(b), the HMU comprises an array of PEs. Each
PE array is reconfigurable, with its data paths dynamically
adjusted to support various operations such as NTT, MA,

--

--
--

q

M
U

X

...

an-1

an-2

an-3

a0

an-1

an-2

a0

a1

a2

a2

a1

...

...

...

...

...

...

a0

-an-1

-an-2

-a2

-a1

...

...

...

+ or -

-

Fig. 7. The Shifter micro-architecture.
MM, and BConv. For example, when performing NTT, the
data path between PEs forms a butterfly operation (red line),
where each PE executes a two-input butterfly computation.
The same configuration, but for BConv in accordance with
the proposal put forth by ARK, a continuous transfer of data
is conducted from one PE to the next along the rows of PEs.
This involves the sharing of one input data set between the
PEs in different rows, with no data interaction between the
rows themselves. No data interaction occurs between the rows
of the PE array (blue line). The data paths of MA and MM are
similarly reconfigured and selected in a similar manner (gray
line). In addition to the control of the inter-PE data paths, the
internal PEs in the HMU must be designed with configurable
computational logic to support different computational modes.
As illustrated in Fig. 6(b), each PE comprises one modulo
multiplication unit and two modulo addition units. Each PE is
equipped with three input ports and two output ports, enabling
support for up to four distinct operations. For instance, the
NTT configuration permits all five of the data ports to be
utilized, whereas in the BConv configuration, two input ports
and one output port are operational. In each cluster, the
dimensions of the PE array are 256 rows (m) and 5 columns
(l). Its parallelism is 512, and it is capable of completing
five iterations at a time in NTT computation. By means of
a two-level reconfigurable design between and within PEs,
the computational resources within HMU can be fully utilized
in the four different computational modes, thereby markedly
increasing the efficiency of hardware utilization and reducing
the impact of computational congestion in Uranus.

2) Shifter and Auto Cores: Uranus’s Shifter unit converts
RLWE ciphertexts into LWE ciphertexts, i.e., extraction (step
❶ in Fig. 5), with minimal computation but significant data
relocation. As shown in (4), to extract cti(lwe), we need to
cyclically shift all coefficients of the ciphertext term a of
RLWE by i + 1 positions and negate the (i + 1)-th to N -
th element. While the barrel shifter implements this process
with O(log2N) complexity, it becomes inefficient for frequent
continuous shifts. In Uranus, we try to fill the slots of a
single ciphertext to the maximum with the results of the
homomorphic combination and aggregation (step ① and ②
in Fig. 3). This requires close to N extraction operations for
that ciphertext. Thus, the Shifter unit (Fig. 7) employs a
straightforward register shifter. Each cycle shifts data by one

a⃗i[j] =

{
ai−j , j ≤ i,

−ai−j , j > i.
(4)

position, selecting elements as positive or negative based on
identification signals. In addition, since the input data must be
in the corresponding modulus, only the subtractor is required
for a negative value. In this way, the average cycle of an
extraction operation is close to 1. The Automorphism unit
primarily handles index mapping with minimal computational
demands. We adopt the optimized design in ARK [17] to
implement the Auto core. Our framework, Uranus, has a fixed
polynomial degree N of 215, and the parallelism a single Auto
core is 256. We deploy 8 cores to unify the total parallelism
of 2048.

VI. EVALUATION

A. Experimental Setup

Platform. The major logic units of Uranus are implemented
in RTL using the ASAP7 7.5-track 7nm predictive process
design kit (PDK) [9], and the SRAM components are evaluated
by a cache modeling tool FinCACTI [28]. The area and power
of two HBM modules are estimated based on prior work [14],
[22]. We measure the benchmark runtime with a cycle-level
simulator, and use the activity-level energy consumption from
the synthesized components for energy evaluation.

Additionally, it is important to note that, to ensure a fair
comparison, all other accelerators are normalized to a 7nm
technology node (including both area and power) based on
CMOS device performance scaling equations [29], as they
were originally implemented using different technology nodes.

Baseline. We employ the CKKS implementation Cryp-
toGCN [23] on the top of the SEAL library [27] and simulate
its performance on the SOTA CKKS FHE accelerator F1
[25], F1+ [26], CraterLake [26], and SHARP [16] as our
CKKS baseline. Combination and aggregation adopt homo-
morphic matrix-vector multiplications with diagonal encoding
[15], while ReLU uses a high-degree polynomial approxima-
tion [19]. In addition, PPGNN [31] is also selected for the
software-hardware co-design comparison with Uranus. The
high-performance prototype of PPGNN (referred to as the
”Total 2” version in the original paper) is reported to be
implemented using a 14nm process and operates at 475 MHz.
For fair comparison, in addition to scaling its chip area and
power to 7nm, we also scale its operating frequency, matching
that of our Uranus accelerator.

GNN Model and Datasets. As shown in Table II, we
selected widely-used datasets: Cora, Citeseer, and Pubmed.
We employ a three-layer GNN architecture with hidden layer
dimensions set to 32, 16, and 16.

B. Performance

1) Accuracy: We evaluate the inference accuracy of Uranus
on different datasets. As shown in Table II, the encrypted
accuracy is only 0.2%-0.7% lower than the plaintext, which
is much smaller than the CKKS-based GNN inference im-
plementation CryptoGCN [23]. BFV-based lookup table in
Uranus’s activation layer ensures high accuracy, avoiding the
errors introduced by CKKS’s polynomial fitting approach. In
addition, although PPGNN does not report accuracy results

TABLE II
DATASET INFORMATION AND ACCURACY.

Datasets Vertex Edge #Feature Plain (%) Cipher (%)
Cora 2,708 10,556 1,433 81.9 81.7

Citeseer 3,327 9,104 3,703 70.2 69.5
Pubmed 19,717 88,648 500 79.0 78.7

52.45 64.43 381.9

14.75 18.12 107.4

5.13 6.31 37.4

13.19 16.21 96.1

1.89 2.33 13.8
0.90 1.10 6.550.47 0.55 4.17

0.00

0.25

0.50

0.75

1.00

Cora (s) Citeseer (s) Pubmed (s)

R
e

la
tiv

e
e

xe
cu

tio
n

tim
e

F1 F1+ CraterLake SHARP PPGNN PPGNN @1GHz Uranus

Fig. 8. Performance comparison with prior accelerators. We use relative
execution times to better demonstrate the performance of GNN models at
different scales on the accelerators, normalized to F1.

and we are unable to make accuracy comparisons, the number
of bits of high accuracy it achieves based on the TFHE is only
11 bits while Uranus has 16 bits of high accuracy, indicating
that Uranus likely achieves comparable or superior inference
accuracy to PPGNN.

2) Speedup: Fig. 8 shows the performance comparison
between Uranus and other CKKS accelerators (F1, F1+,
CraterLake and SHARP) as well as PPGNN, where the
CKKS accelerator runs a CKKS-based implementation of
GNN. Uranus gets over 92× speedup over F1 and over 9.0×
speedup over CraterLake, which is the best CKKS accelerator
that works on GNN. Compared to GNN-oriented PPGNN,
Uranus demonstrates 3.3×-4.2× performance improvement.
To ensure a fair comparison under identical operating con-
ditions, we also evaluate PPGNN scaled to Uranus’ 1GHz
frequency. Even under this normalized scenario, Uranus retains
a significant 1.6×-2.0× advantage, attributed to its efficient
matrix multiplication and homomorphic activation based on
BFV-based SIMD, which greatly reduces the computational
complexity compared to PPGNN. It is also noteworthy that at
this performance, the area power consumption of Uranus is
also much smaller than these accelerator schemes, as detailed
in Section VI-D.

Fig. 9 illustrates the execution time breakdown of Uranus.
It is evident that Aggregation, Extraction, and Activation
dominate the runtime across the three GNN models and
datasets, primarily due to their high computational complexity.
Aggregation is implemented via matrix multiplication, which
involves a large number of expensive homomorphic rotations,
making it the most computationally intensive step. Notably,
Aggregation accounts for up to 29% of the execution time
on the Pubmed dataset, mainly because of its large number
of vertex (up to 19,717 as shown in Table II), which results
in larger matrices and increased computation. Extraction con-
verts all data from RLWE ciphertexts into LWE ciphertexts
and performs individual key switching operations. Since its
complexity scales with the number of valid data elements in
the ciphertext, it also incurs a significant overhead. Activa-
tion involves evaluating high-degree polynomial functions on
encrypted data, requiring numerous ciphertext multiplications
and additions. This makes it another major computational

3.92

3.68

0.42

0.40

0.33

0.15

7.50

4.69

29.44

37.06

38.68

30.35

47.93

49.23

37.29

3.19

3.39

2.36

0% 20% 40% 60% 80% 100%

Cora

Citeseer

Pubmed

Combination S2C Aggregation Extraction Activation Repacking

Fig. 9. Execution time breakdown. The breakdown consists of six key
operations, which include the three core steps of the Uranus framework:
Combination, Aggregation, and Activation, as well as the transition and
transformation steps between them, i,e., S2C, Extraction, and Repacking.

35.87

32.30

31.58

0.01

0.02

0.02

0.04

0.05

0.05

64.09

67.64

68.35

0% 20% 40% 60% 80% 100%

Pubmed
(74.54J)

Citeseer
(10.88J)

Cora
(9.44J)

HMU Auto Shifter Memory Access

Fig. 10. Energy consumption and breakdown.

bottleneck in the Uranus framework. In contrast, the operations
Combination, S2C, and Repacking contribute relatively little
to the overall execution time. This is because the coefficient-
encoded Combination only requires a single ciphertext multi-
plication, and both S2C and Repacking are essentially matrix-
vector multiplications, which are efficiently handled using the
optimized BSGS algorithm and thus incur low computational
overhead.

C. Energy

1) Energy Consumption and breakdown: In addition to
performance, we evaluate the full-system energy consumption
of the Uranus accelerator when running the four selected GNN
models. As shown in Fig. 10, memory access accounts for
approximately 65% of the energy consumption. Among the
compute units, HUM is the dominant contributor, whereas
Automorphism and Shifter contribute only minimally. This is
because HMU, serving as the core computational engine in
Uranus, is highly reconfigurable and supports a wide range
of operations, including NTT, BConv, MM, and MA. These
operations constitute the majority of homomorphic computa-
tions, making HUM responsible for most of the workload in
GNN execution and thus the primary source of energy con-
sumption. In contrast, Automorphism and Shifter are mainly
implemented through data storage structures and control logic
for memory access. As they involve limited arithmetic compu-
tation, their energy consumption remains significantly lower.

2) Energy Efficiency: We use energy-delay-area product
(EDAP) as the metric of energy efficiency. As shown in Table
III, Uranus demonstrates exceptional energy efficiency, achiev-
ing over 119× improvement compared to SOTA PPGNN
and surpassing other CKKS accelerators by more than 4
orders of magnitude. This is due to Uranus’ low-complexity,
hardware-friendly inference framework and highly reconfig-
urable hardware architecture designed specifically for GNN.
The Uranus framework imposes minimal requirements on en-
cryption parameters, which significantly reduces the memory
volume demand in accelerator design and consequently lowers

TABLE III
EFFICIENCY ANALYSIS. WE USE ENERGY DELAY AREA PRODUCT

(EDAP) IN J · s ·mm2 AS THE METRIC. LOWER IS BETTER.
Cora Citeseer Pubmed

F1 [25] 27,233,879 41,107,190 1,443,756,190
F1+ [26] 5,162,087 7,791,725 273,658,970

CraterLake [26] 1,446,949 2,184,046 76,707,487
SHARP [16] 2,350,332 3,547,624 124,598,733
PPGNN [31] 36,137 54,546 1,915,766

Uranus 230.0 311.7 16,138
TABLE IV

AREA AND POWER BREAKDOWN (@1 GHZ, 7NM).
Component Area [mm2] Peak Power [W]

Automorphism 1.9 1.5
PRNG 1.2 1.9
HMU 7.5 6.5
Shifter 0.16 0.59
NoC 2.9 3.9

Register Files (6MB) 3.4 1.96
SRAM (45MB) 20.1 4.8

HBM (HBM2E ×1) 14.8 15.9
Sum 51.96 37.05
F1 71.2 (7nm) ∼117

F1+ 170.6 (7nm) /
CraterLake 222.7 (7nm) ∼207

SHARP 178.8 /
PPGNN 119.0 (7nm) ∼87

both chip area and power consumption (detailed in Section
VI-D). Furthermore, the highly reconfigurable HUM design
enables efficient support for diverse computations, leading
to improved hardware utilization. These advantages in area
and resource efficiency collectively contribute to the excellent
energy efficiency of Uranus.

D. Area and Power

We implement the Uranus accelerator in RTL and synthesize
it in a commercial 7nm technology node using state-of-the-art
tools, including the SRAM compiler. As shown in Table IV,
With a size of 51.96mm2 and power consumption of 37.05W ,
Uranus is significantly more compact and power-efficient than
SOTA FHE accelerators, including GNN-optimized designs
like PPGNN. HMU is the compute unit with the highest
hardware overhead because it is designed for all the modulo
operation with high-overhead in Athena. Meanwhile, Uranus
accelerator has smaller on-chip storage and HBM requirements
compared to the CKKS accelerators, benefiting the smaller
size of ciphertext. In addition, Although PPGNN consumes
less memory, its activation layer based on the TFHE via SISD
approach requires a large number of HLUT units and thus
introduces a significant hardware overhead, resulting in more
than 2× the area/power consumption. This also demonstrates
the strength of Uranus’ software-hardware co-design.

E. Ablation Study

Uranus is a co-designed GNN acceleration system in which
the software framework and hardware accelerator are opti-
mized collaboratively, rather than being developed indepen-
dently. As a result, the Uranus framework requires a dedicated
hardware accelerator to fully realize its performance potential.
To validate this, we deploy the Uranus software framework on

Delay
Cora Citeseer Pubmed Average

SHARP 1 1 1 1.0000
CraterLake 0.527414631 0.535687352 0.506715464 0.5233
Uranus 0.542802774 0.546117896 0.434924122 0.5079

Energy
Cora Citeseer Pubmed Average

SHARP 1 1 1 1.0000
CraterLake 0.606526826 0.616040454 0.582722784 0.6018
Uranus 0.079844714 0.07864444 0.059708619 0.0727

EDP
Cora Citeseer Pubmed Average

SHARP 1 1 1 1.0000
CraterLake 0.319891122 0.33000508 0.295274646 0.3151
Uranus 0.043339932 0.042949136 0.025968719 0.0374

EDAP 222.7 57.56 51.5600
Cora Citeseer Pubmed Average

SHARP 1 1 1 1.0000
CraterLake 0.398432622 0.411029817 0.367772168 0.3924
Uranus 0.012594759 0.012481192 0.007546614 0.0109

0.0

0.2

0.4

0.6

0.8

1.0

SHARP CraterLake Uranus

D
el

ay
 (

re
la

tiv
e)

(a) Delay

Cora Citeseer Pubmed Average

0.0

0.2

0.4

0.6

0.8

1.0

SHARP CraterLake Uranus

E
ne

rg
y

(r
el

at
iv

e)

(b) Energy

Cora Citeseer Pubmed Average

0.0

0.2

0.4

0.6

0.8

1.0

SHARP CraterLake Uranus

E
D

P
 (

re
la

tiv
e

)

(c) EDP

Cora Citeseer Pubmed Average

0.0

0.2

0.4

0.6

0.8

1.0

SHARP CraterLake Uranus

E
D

A
P

 (
re

la
tiv

e)

(d) EDAP

Cora Citeseer Pubmed Average

Fig. 11. We deploy the Uranus framework on the existing FHE acceler-
ators and the Uranus accelerator. Since Uranus differs from CKKS-based
implementations, existing accelerators are not suitable for Uranus. For the
Uranus-specific modules HMU we use MA/MM and RNSConv to substitute
in SHARP and CraterLake.

other accelerators for performance evaluation. It is important to
note that the PPGNN hardware architecture supports only very
limited hardware parameters and offers extremely constrained
storage resources, making it incompatible with the Uranus
framework. Therefore, we select CKKS-based accelerators as
comparison targets. They lack Shifter units for the extraction
operation of Uranus, we assume that identical Shifter units are
incorporated into them to ensure a fair comparison.

Fig. 11 presents the performance of Uranus framework
when running on SHARP and CraterLake, including metrics
such as latency, energy consumption, EDP, and EDAP. The
results are obtained using a cycle-accurate simulator extended
from SimFHE [1]. As shown, Uranus significantly outperforms
SHARP in terms of latency and achieves performance compa-
rable to CraterLake, while occupying only 30% of SHARP’s
chip area and 23.3% of CraterLake’s. In terms of energy,
EDP, and EDAP, Uranus also consistently outperforms both
state-of-the-art CKKS accelerators. The main reason is that
these accelerators only focus on NTT and RNSConv, which
are known bottlenecks in CKKS applications, and cannot
effectively accommodate the computational characteristics of
Uranus, such as LUT-based homomorphic activation, resulting
in suboptimal hardware utilization and limited performance
scalability.

VII. CONCLUSION

In this paper, we propose Uranus, a software-hardware co-
designed acceleration architecture of secure GNN inference,
including a hardware-friendly inference framework and the
design of hardware accelerators to match the framework.
Based on CKKS and BFV, Uranus implements an efficient
nonlinear layer and a high-precision nonlinear layer capable
of batch table lookup, and addresses the computational bot-
tleneck of the algorithmic framework by improving hardware
utilization efficiency through highly reconfigurable hardware
computation units, thus achieving far better performance than
the SOTA accelerator in GNN secure inference.

REFERENCES

[1] Rashmi Agrawal, Leo De Castro, Chiraag Juvekar, Anantha Chan-
drakasan, Vinod Vaikuntanathan, and Ajay Joshi. Mad: Memory-aware
design techniques for accelerating fully homomorphic encryption. In
Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 685–697, 2023.

[2] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
Hruschka, and Tom Mitchell. Toward an architecture for never-ending
language learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 24, pages 1306–1313, 2010.

[3] Hervé Chabanne, Roch Lescuyer, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. Recognition over encrypted faces. In Mobile,
Secure, and Programmable Networking: 4th International Conference,
MSPN 2018, Paris, France, June 18-20, 2018, Revised Selected Papers
4, pages 174–191. Springer, 2019.

[4] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient ho-
momorphic conversion between (ring) lwe ciphertexts. In International
Conference on Applied Cryptography and Network Security, pages 460–
479. Springer, 2021.

[5] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and
Yongsoo Song. Bootstrapping for approximate homomorphic encryption.
In Advances in Cryptology–EUROCRYPT 2018: 37th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part
I 37, pages 360–384. Springer, 2018.

[6] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In
International Conference on the Theory and Application of Cryptology
and Information Security, pages 409–437. Springer, 2017.

[7] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabach-
ene. Faster fully homomorphic encryption: Bootstrapping in less than
0.1 seconds. In international conference on the theory and application
of cryptology and information security, pages 3–33. Springer, 2016.

[8] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque,
and Li Fei-Fei. Faster cryptonets: Leveraging sparsity for real-world
encrypted inference. arXiv preprint arXiv:1811.09953, 2018.

[9] Lawrence T Clark, Vinay Vashishtha, David M Harris, Samuel Dietrich,
and Zunyan Wang. Design flows and collateral for the asap7 7nm finfet
predictive process design kit. In 2017 IEEE international conference on
microelectronic systems education (MSE), pages 1–4. IEEE, 2017.

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael
Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams.
Convolutional networks on graphs for learning molecular fingerprints.
Advances in neural information processing systems, 28, 2015.

[11] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, 2012.

[12] Kyoohyung Han, Minki Hhan, and Jung Hee Cheon. Improved homo-
morphic discrete fourier transforms and fhe bootstrapping. IEEE Access,
7:57361–57370, 2019.

[13] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep
neural networks over encrypted data. arXiv preprint arXiv:1711.05189,
2017.

[14] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
Xiaoyu Ma, et al. Ten lessons from three generations shaped google’s
tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 1–14. IEEE, 2021.

[15] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network
inference. In 27th USENIX security symposium (USENIX security 18),
pages 1651–1669, 2018.

[16] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan
Kim, and Jung Ho Ahn. Sharp: A short-word hierarchical accelerator
for robust and practical fully homomorphic encryption. In Proceedings
of the 50th Annual International Symposium on Computer Architecture,
pages 1–15, 2023.

[17] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, John Kim,
Minsoo Rhu, and Jung Ho Ahn. Ark: Fully homomorphic encryption
accelerator with runtime data generation and inter-operation key reuse.
arXiv preprint arXiv:2205.00922, 2022.

[18] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune
Kim, Jong-Seon No, and Woosuk Choi. Low-complexity deep con-
volutional neural networks on fully homomorphic encryption using

multiplexed parallel convolutions. In International Conference on
Machine Learning, pages 12403–12422. PMLR, 2022.

[19] Seewoo Lee, Garam Lee, Jung Woo Kim, Junbum Shin, and Mun-
Kyu Lee. Hetal: efficient privacy-preserving transfer learning with
homomorphic encryption. In International Conference on Machine
Learning, pages 19010–19035. PMLR, 2023.

[20] Zeyu Liu and Yunhao Wang. Amortized functional bootstrapping in less
than 7 ms, with o˜(1) polynomial multiplications. In International Con-
ference on the Theory and Application of Cryptology and Information
Security, pages 101–132. Springer, 2023.

[21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter
Qu. Pegasus: bridging polynomial and non-polynomial evaluations in
homomorphic encryption. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1057–1073. IEEE, 2021.

[22] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson,
Aditya Agrawal, Stephen W Keckler, and William J Dally. Fine-
grained dram: Energy-efficient dram for extreme bandwidth systems.
In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 41–54, 2017.

[23] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie
Wen. Cryptogcn: Fast and scalable homomorphically encrypted graph
convolutional network inference. Advances in Neural information
processing systems, 35:37676–37689, 2022.

[24] Ran Ran, Nuo Xu, Tao Liu, Wei Wang, Gang Quan, and Wujie Wen.
Penguin: parallel-packed homomorphic encryption for fast graph convo-
lutional network inference. Advances in Neural Information Processing
Systems, 36, 2024.

[25] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas De-
vadas, Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez. F1:
A fast and programmable accelerator for fully homomorphic encryption.
In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 238–252, 2021.

[26] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan
Manohar, Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris
Peikert, and Daniel Sanchez. Craterlake: a hardware accelerator for
efficient unbounded computation on encrypted data. In ISCA, pages
173–187, 2022.

[27] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL,
March 2022. Microsoft Research, Redmond, WA.

[28] Alireza Shafaei, Yanzhi Wang, Xue Lin, and Massoud Pedram. Fincacti:
Architectural analysis and modeling of caches with deeply-scaled finfet
devices. In 2014 IEEE Computer Society Annual Symposium on VLSI,
pages 290–295. IEEE, 2014.

[29] Aaron Stillmaker and Bevan Baas. Scaling equations for the accurate
prediction of cmos device performance from 180 nm to 7 nm. Integra-
tion, 58:74–81, 2017.

[30] Xuemei Wei, Yezheng Liu, Jianshan Sun, Yuanchun Jiang, Qifeng Tang,
and Kun Yuan. Dual subgraph-based graph neural network for friendship
prediction in location-based social networks. ACM Transactions on
Knowledge Discovery from Data, 17(3):1–28, 2023.

[31] Yuntao Wei, Xueyan Wang, Song Bian, Yicheng Huang, Weisheng Zhao,
and Yier Jin. Ppgnn: Fast and accurate privacy-preserving graph neural
network inference via parallel and pipelined arithmetic-and-logic fhe
accelerator. In Proceedings of the 61st ACM/IEEE Design Automation
Conference, DAC ’24, New York, NY, USA, 2024. Association for
Computing Machinery.

[32] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data
mining, pages 974–983, 2018.

https://github.com/Microsoft/SEAL

	Introduction
	Preliminary
	FHE schemes and operations
	FHE-based GNN Inference
	Threat Model

	Motivation
	Discrete Frameworks and Accelerators
	Unbalanced Software-hardware Co-design for GNN

	Uranus
	Framework
	Procedures
	Homomorphic Combination
	Homomorphic Aggregation
	Homomorphic Activation

	Parameter Optimization and Selection

	Uranus Accelerator
	Overall Architecture
	Microarchitecture
	HMU
	Shifter and Auto Cores

	Evaluation
	Experimental Setup
	Performance
	Accuracy
	Speedup

	Energy
	Energy Consumption and breakdown
	Energy Efficiency

	Area and Power
	Ablation Study

	Conclusion
	References

