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Abstract—Many recent excellent methods for efficient real-

time semantic segmentation are of low precision and heavily 
rely on multiple GPUs for training. In this paper, we rethink the 
critical factors affecting the accuracy of efficient segmentation 
models. The previous works usually reduce the input resolution 
prior to training the parameters of models by cropping or 
resizing the images. On the contrary, our empirical study shows 
that the reduced images lose the important content information 
and details, which are vital to the high precision. However, the 
previous methods are unable to train the original high-
resolution images due to the memory-limited GPUs. 

To tackle this problem, we propose a novel versatile network 
(VNet), which employs reversible mechanism and asymmetric 
convolution to achieve highly efficient and extremely low 
memory consumption in backward propagation. In particular, 
we keep all the detailed spatial information of the input images 
without cropping or resizing to pursue decent prediction 
accuracy.  It is worth noting that VNet can train multiple 
1024×2048 high-resolution images on only one standard GPU 
card. Under the same conditions, our model achieves a new 
state-of-the-art result on Cityscapes datasets. Specifically, it 
can process the 1024×2048 high-resolution inputs at a rate of 
37.4 and 15.5 frames per second (fps) on a standard GPU and 
an edge device, respectively, with only 0.16 million parameters. 

I. INTRODUCTION 

Modern semantic segmentation task, the important 
applications including medical image analysis, image editing 
and video surveillance, has made remarkable progress by using 
deep convolution neural network models (DCNN). The 
accurate DCNN models largely depend on deeper and wider 
convolution layers with myriads of parameters and operations, 
which are not suitable for resource-constrained edge devices 
like cellphones, drones and self-driving cars. 

Efficient real-time semantic segmentation method has 
recently drawn much attention, as intelligence edge devices not 
only have faster inference speed requirement for semantic 
segmentation models but also cannot rely on the cloud services 
of data center devices. There are two feasible approaches to 
obtaining the efficient semantic segmentation model. One 
approach is by designing the efficient models, which fabricates 
the model architecture from scratch (e.g., ENet [5] ). Another 
less common, but increasingly popular method is network 
compression, which can obtain the light-weight model (e.g. 

ICNet [4]) with pruning methods [7] widely used in image 
classification tasks. However, both of them are challenging to 
make semantic segmentation model light and fast without 
sacrificing too much accuracy. 

In this paper, we investigate the central question: whether 
there are other important factors that can achieve better 
accuracy and why previous works ignore them. In previous 
work, it is common to reduce the high-resolution images before 
training the model using GPUs. For instance, the 1024×2048 
resolution Cityscapes dataset [8] is usually cropped in random 
or resized to the half (512×1024) or even the quarter (256×512) 
of the original resolution. Whereas our empirical study shows 
that the cropped images lose content information and the 
resized images damage the details, and both of content 
information and details are useful for the accuracy of small 
models. It is critical for efficient semantic segmentation models 
to keep the input content information intact. However, due to 
GPU memory limitation, previous work cannot use the original 
high-resolution images to train the model. Though it is possible 
to train the original resolution images on multiple GPUs (one 
GPU card per im age), some larger models, which have higher 
accuracy and more parameters than ENet, are even unable to 
train a single original resolution image on one GPU card. 
Therefore, larger GPU memory devices have to be adopted, 
which are more expensive.  

The goal of this paper is to find an effective solution for 
training the high-resolution images on only one GPU. We 
propose a novel versatile network (VNet), which is mainly 
composed of Contextual Pyramid Pooling (CPP) modules and 

 
Figure 1 The number of parameters, inference speed (fps) and mIoU (%) 

performance on Cityscapes test set. The inference speed is tested 
using 1024ൈ2048 high-resolution images on NVIDIA TITAN Xp. 
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Versatile modules (V modules). In summary, our paper makes 
the following two contributions:  

 We propose a versatile semantic segmentation network 
that has smaller parameters, faster inference and decent 
accuracy compared to previous models. VNet can process 
the 1024×2048 high-resolution images at a rate of 37.4 fps 
and a 15.5 fps on a NVIDIA TITAN Xp and a NVIDIA 
Jetson Tx2 with only 0.16M parameters. Benefiting from 
the high-resolution training, the accuracy of VNet is 
higher than previous small models. In Figure 1, the 
accuracy of VNet is ~4% higher than ESPNet, while the 
parameter of VNet is 2.25x smaller than that of ESPNet .  

 VNet can be trained using multiple high-resolution 
images on only one GPU. The versatile model of VNet 
employs reversible mechanism to achieve extremely low 
memory consumption during the backward propagation. 
Taking four 1024×2048 images as an example, traditional 
methods require at least two GPUs with each one 12 GB 
memory. However, VNet can be trained on one GPU with 
9345M memory as shown in Table 3.  

II. BACKGROUND AND RELATED WORK 

A. Semantic Segmentation 
ENet [5] is the first light-weight network structure. It 

employs ResNet block [10] and fewer convolution filters to 
illustrate that highly efficient semantic segmentation is feasible 
on edge devices. Recently, ESPNet [9] introduces an efficient 
spatial pyramid module composed of point-wise convolution 
and spatial pyramid of dilated convolution to reduce 
computation and preserve a large receptive field. Although the 
two neural networks above are light-weight, the prediction 
accuracy is significantly sacrificed.  Therefore, ERFNet [6] 
uses more deep architecture that consists of residual 
connections and factorized convolutions to compensate the loss 

of precision, and it can process the 360×640 images at a speed 
of 7 fps on a NVIDIA Jetson Tx1 (embedded GPU) . ICNet [4] 
is based on the high accuracy method – PSPNet [1]. Originally, 
the  parameters of PSPNet are compressed with the method of 
pruning filters [7]. Despite decent accuracy achieved in both of 
these two networks, they are unable to meet the requirement of 
real-time inference speed on edge devices. Therefore, there is 
still a big room for the improvement of semantic segmentation 
efficiency.  

B. High-resolution Training 
Traditionally, during the training procedure, not only the 

training samples and parameters of DNNs, but also the feature 
maps are saved on graphics processing units (GPUs). Due to 
the limited memory capacity of GPUs (e.g., NVIDIA TITAN 
Xp), many CNN-based models [1, 3, 4] have to be trained with 
a mini-batch size of one, or with the resized images. Some 
methods [11, 12] have proved that the appropriate mini-batch 
is a benefit for the improvement of network performance. 
Moreover, the cropp ed images miss part of the image 
contextual information and the resized images lose the details 
of the information. Recently, reversible mechanism methods 
are proposed to achieve competing accuracy of image 
classification task on cifar-10, cifar-100 and ImageNet dataset. 
For instance, RevNet [13] is a variant of reversible mechanism 
where the feature maps of each layer can be reconstructed from 
that of the next layer. This can save a lot of memory footprint 
during training process. However, to the best of our knowledge, 
the reversible mechanism has never been used in the semantic 
segmentation as a technical means to train the high-resolution 
images, which largely improves the accuracy performance for 
light-weight semantic models.  

Table 1 The detailed VNet architecture. “Conv” stands for Conv-BN-PReLU. 
“D” represents the didated Convolution. The input resolution is 
1024ൈ2048. 

Name Type Channel Output  

Stage 1 
3x3 Conv (stride =2) 8 512ൈ1024 
3x3 Conv (stride =1) 8 512ൈ1024 
3x3 Conv (stride =1) 8 512ൈ1024 

Stage 2 
CPP module 32 256ൈ512 

V module  ൈ  α  32 256ൈ512 

Stage 3 
CPP module 64 128ൈ256 

V module (D) ൈ  β 64 128ൈ256 

MaxPool
(2x2, s=2)

Conv
(3x3, s=2)

[C, H, W]

[2C, H/2, W/2]

AvgPool
(2x2, s=2)

Conv
(1x1, s=2)

[C, H, W]

[2C, H/2, W/2]

AvgPool
(2x2, s=3)

AvgPool
(2x2, s=4)

 
(a) Downsampler                              (b) CPP  

Figure 2 Depiction of downsampler module and our proposed contextual 
pyramid pooling module (CPP).  
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Figure 3 Illustration of the conventional architecture and our proposed 
method in the training procedure. (a) use the cropped or resized 
image as input and save all feature maps (FM) on Multi-GPUs. (b) 
just use the original resolution image as input and save parts of 
feature maps on one GPU. 
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Figure 4 The proposed V Module consists of two components: reversible 

function and asymmetric convolution.  Only the output feature maps 
(FM) of V module are needed to be saved on GPU. 



 

 

III. VERSATILE NETWORK ARCHITECTURE 

In Table 2, VNet consists of three stages: In stage 1, we use 
the three 3×3 convolution layers to obtain low-level 1/2 
resolution feature maps and this stage has only 8 channels. In 
stage 2, CPP module is used to replace the parameter-
consuming downsampler module and get the 1/4 resolution 
feature maps. On top of CPP, we stack α V modules, which is 
a versatile module with light weight, small calculation and low 
memory consumption. In stage 3, the CPP module is also used 
to get 1/8 resolution feature maps and then β V modules.  

1) Contextual Pyramid Pooling (CPP) 

Due to the extremely small number of parameters, light-
weight networks are always not easy to meet the requirement 
of high precision. Simply using maxpool modules in light-
weight segmentation architecture will lose spatial contextual 
information, and inevitably reduce the network precision. Thus, 
the downsampler module is created to compensate for the loss 
of accuracy in ERFNet [6]. In Figure 2 (a), the downsampler 
module concatenates the parallel outputs of 3×3 dilated 
convolution layers [14] with stride 2 and maxpool modules.  
However, the increased 3×3 convolution layers will result in 
significant computational complexity and storage overhead.  

we propose the CPP module, which concatenates the parallel 
outputs of point-wise convolutions with stride 2 and the sum of 
pyramid pooling modules. For the point-wise convolution, it is 
a 1×1 convolution designed to utilize the channel level 
contextual information, which decreases the number of 
parameters and reduces computation overhead. In respect of the 
pyramid pooling modules, we use it to aggregate more spatial 
level contextual information and improve the accuracy. Figure 
2 (b) presents the details of the CPP module structure.  

2) Versatile Module (V Module)  

Figure 3 illustrates conventional training paradigm and our 
proposed method. We propose the versatile module with two 
key components, reversible function and asymmetric 
convolution layers. As the name of versatile module implies, 
the V module not only has small amount of parameters and 
calculation, but also small memory footprint in the training 
process. Figure 4 shows the structure of versatile module.  

Reversible Function. For reversible function [13], its input 
feature map can be computed from its output. When we stack 
more reversible blocks, only the final feature map needs to be 
cached. Thus in backpropagation procedure, we can calculate 
the intermediate feature map by the inversion property of 
Reversible block. The specific calculation formulation for the 
forward and backward of reverse is:  

Asymmetric Convolution. Asymmetric convolution [15] 
has been introduced that a n×n convolution kernel can be 
factorized to n×1 convolution followed by 1×n convolution and 
this factorization works well on medium layers. These 
decomposed layers have three benefits: light weight, low 
computational cost and deeper structures. For light weight and 
low computational cost, we replace the 3×3 convolution kernel 
with a 3×1 convolution followed by a 1×3 convolution. So, we 
can save 33% of parameters and computational cost when the 
numbers of input and output filters of them are identical.  

IV. EVALUATION 

A. Experimental Setup 

We use dataset Cityscapes [8], which contains 5000 fine 
annotated 1024×2048 high-resolution images collected from 
50 different urban streets. It is comprised of 2,975 training 
images, 500 validation images and 1,525 test images. Each 
pixel of images is annotated to one of 19 classes. Unless and 
otherwise stated explicitly, all experiments results, such as 
inference speed and GFLOPs are reported for 1024×2048 
resolution RGB images. We use ADAM with 4 images of one 
batch, betas=(0.9, 0.999), and the weight decay is 0.0001 for 
optimization. For learning strategy, we choose “poly” learning 
policy, and the initial rate is multiplied by ሺ1 െ
𝑖𝑡𝑒𝑟 𝑚𝑎𝑥𝑖𝑡𝑒𝑟⁄ ሻ୮୭୵ୣ୰. The initial learning rate is 0.0005 and 
power is set to 0.9, together with the maximum epoch number 
300 for Cityscapes.  

(a) Inputs (b) ENet (c) ESPNet (d) VNet (e) GT
 

Figure 5 Sample results of ENet, ESPNet and VNet on Cityscapes validation set. From left to right: (a) input images; (b) ENet results; (c) ESPNet results; (d) VNet 
results; (e) the ground truth (GT). 
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B. Accuracy and Speed 
We report the performance comparison of our proposed 

VNet ( α ൌ 1, β ൌ 2 ) and other state-of-the-art methods on 
Cityscapes test set in Table 2. The inference speed is measured 
on the original 1024×2048 high-resolution images, and we do 
not employ any trick, such cropping the image to smaller size. 
Compared with small memory footprint model, e.g. SegNet, 
ENet, ICNet, ESPNet and BiSeNet, our proposed VNet can 
achieve a relatively high mIoU and much faster speed. For 
example, our VNet is even 15.4 fps faster than recently state-
of-the-art ENet, and the accuracy of VNet is 5.63% and 3.63% 
higher than ENet and ESPNet, respectively. More notably, the 
parameter of VNet is only 0.18M. Besides, the visual results 
are shown in Figure 5, and we can find that the results of VNet 
is closer to the ground truth compared to ENet and ESPNet.  

C. Performance Analysis on Edge Device 

Figure 6 compares the inference speed of VNet with ERFNet, 
ENe t and ESPNet. Our model has the fastest inference speed 
under the condition of same GPU frequency, because it has 
smaller channel number than the frameworks transferred from 
the ImageNet classification networks. For example, when we 
set GPU frequency to 1300, VNet is 6.5 fps, 6.3 fps, 11.9 fps 
faster than ESPNet, ENet and ERFNet, respectively. Thus, 
VNet is currently the fastest segmentation model, and it is able 
to meet the requirement of real-time inference for edge devices.  

D. Effectiveness of Versatile Module  
From Table 3, we can find that the PSPNet’s memory usage 

exceeds other networks, although the batch size equals one. 
Compared with ESPNet and ENet, our proposed VNet has the 
smallest memory overhead and can save 2410MB and 3130MB 
for training dataset, respectively. If the accuracy of the 
validation dataset needs to be verified during the training 
procedure, only VNet can be trained for 1024×2048 images. In 
addition, VNet takes 2.9 GPU days to train four high-resolution 
images, while other light-weight semantic models cannot train 
them due to the out of GPU memory. Moreover, the high-
accuracy semantic model even cannot train one high-resolution 
image on a NVIDIA TITAN Xp GPU. Overall, our proposed 
V module can train the VNet on only one GPU. 

V. CONCLUSION 

We propose a versatile network (VNet) based on V module 
and CPP module. VNet has the ability to train many high-
resolution images on only one standard GPU (12GB) without 
the need of images cropping or resizing. The experimental 
results show that VNet can process the high-resolution images 
at a rate of 37.4 and 15.5 fps on a standard GPU and an edge 
device, respectively, with only 0.16 million parameters.  
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Figure 6 The inference speeds of VNet, ENet, ERFNet and ESPNet 

measured on NVIDIA Jetson Tx2 with three GPU frequencies 
(MHz): 1300,1134 and 828.  
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Table 2 Evaluation results on the Cityscapes test set. The inference speed is 
evaluated on the NVIDIA TITAN Xp GPU. “ 

Network Param. (M) Speed (fps) mIoU (%) 
PSPNet [1] 65.7 1.9 78.4 

BiSeNet-ResNet18 [2] 49 27 74.7 
SegNet [3] 29.5 5 56.1 
ICNet [4] 7.8 30.3 69.5 

BiSeNet-Xception [2] 5.8 30 68.4 
ERFNet [6] 2.07 17.9 68.0 

ENet [5] 0.36 22 58.3 
ESPNet [9] 0.36 47.6 60.3 

VNet (α ൌ 1, β ൌ 2) 0.16 37.4 63.93 
 

Table 3 The effectiveness of V module.  “TMem.” indicates the GPU memory 
usage of training data. “TVMem.” is the GPU memory usage of 
training and validation data. “False” stands for the network cannot 
be trained due to out of memory. 

Network 
Batch 
Size 

TMem. 
(MB) 

TVMem. 
(MB) 

Train. Cost 
(GPU days) 

PSPNet 1 >12189 >12189 False 
ESPNet 4 7431 >12189 False 

ENet 4 8151 >12189 False 
VNet 4 5021 9345 2.9 


