

VNet: A Versatile Network for Efficient Real-Time Semantic
Segmentation

Ning Lin1,2, Hang Lu1,2, Jingliang Gao1,2, Shunjie Qiao3 and Xiaowei Li1,2

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences1

University of Chinese Academy of Sciences2

Department of Computer Science, University of Hong Kong3

{linning19b, luhang, gaojingliang, lxw}@ict.ac.cn, {qsj1024}@connect.hku.hk

Abstract—Many recent excellent methods for efficient real-

time semantic segmentation are of low precision and heavily
rely on multiple GPUs for training. In this paper, we rethink the
critical factors affecting the accuracy of efficient segmentation
models. The previous works usually reduce the input resolution
prior to training the parameters of models by cropping or
resizing the images. On the contrary, our empirical study shows
that the reduced images lose the important content information
and details, which are vital to the high precision. However, the
previous methods are unable to train the original high-
resolution images due to the memory-limited GPUs.

To tackle this problem, we propose a novel versatile network
(VNet), which employs reversible mechanism and asymmetric
convolution to achieve highly efficient and extremely low
memory consumption in backward propagation. In particular,
we keep all the detailed spatial information of the input images
without cropping or resizing to pursue decent prediction
accuracy. It is worth noting that VNet can train multiple
1024×2048 high-resolution images on only one standard GPU
card. Under the same conditions, our model achieves a new
state-of-the-art result on Cityscapes datasets. Specifically, it
can process the 1024×2048 high-resolution inputs at a rate of
37.4 and 15.5 frames per second (fps) on a standard GPU and
an edge device, respectively, with only 0.16 million parameters.

I. INTRODUCTION

Modern semantic segmentation task, the important
applications including medical image analysis, image editing
and video surveillance, has made remarkable progress by using
deep convolution neural network models (DCNN). The
accurate DCNN models largely depend on deeper and wider
convolution layers with myriads of parameters and operations,
which are not suitable for resource-constrained edge devices
like cellphones, drones and self-driving cars.

Efficient real-time semantic segmentation method has
recently drawn much attention, as intelligence edge devices not
only have faster inference speed requirement for semantic
segmentation models but also cannot rely on the cloud services
of data center devices. There are two feasible approaches to
obtaining the efficient semantic segmentation model. One
approach is by designing the efficient models, which fabricates
the model architecture from scratch (e.g., ENet [5]). Another
less common, but increasingly popular method is network
compression, which can obtain the light-weight model (e.g.

ICNet [4]) with pruning methods [7] widely used in image
classification tasks. However, both of them are challenging to
make semantic segmentation model light and fast without
sacrificing too much accuracy.

In this paper, we investigate the central question: whether
there are other important factors that can achieve better
accuracy and why previous works ignore them. In previous
work, it is common to reduce the high-resolution images before
training the model using GPUs. For instance, the 1024×2048
resolution Cityscapes dataset [8] is usually cropped in random
or resized to the half (512×1024) or even the quarter (256×512)
of the original resolution. Whereas our empirical study shows
that the cropped images lose content information and the
resized images damage the details, and both of content
information and details are useful for the accuracy of small
models. It is critical for efficient semantic segmentation models
to keep the input content information intact. However, due to
GPU memory limitation, previous work cannot use the original
high-resolution images to train the model. Though it is possible
to train the original resolution images on multiple GPUs (one
GPU card per im age), some larger models, which have higher
accuracy and more parameters than ENet, are even unable to
train a single original resolution image on one GPU card.
Therefore, larger GPU memory devices have to be adopted,
which are more expensive.

The goal of this paper is to find an effective solution for
training the high-resolution images on only one GPU. We
propose a novel versatile network (VNet), which is mainly
composed of Contextual Pyramid Pooling (CPP) modules and

Figure 1 The number of parameters, inference speed (fps) and mIoU (%)

performance on Cityscapes test set. The inference speed is tested
using 1024ൈ2048 high-resolution images on NVIDIA TITAN Xp.

ERFNet：2.07M

ENet:0.36M

ESPNet:0.36M

SegNet：29.5M

PSPNet：…

BiSeNet-
ResNet18:4…

BiSeNet-…
VNet：0.16M

ICNet:7.8M

50

55

60

65

70

75

80

85

0.1 1 10 100
A

cc
ur

ac
y

(m
Io

U
 %

)
Parameters (Million)

Inference Speed ൒ 30 fps
Inference Speed ൏ 30 fps

4% higher
2.25x smaller

Versatile modules (V modules). In summary, our paper makes
the following two contributions:

 We propose a versatile semantic segmentation network
that has smaller parameters, faster inference and decent
accuracy compared to previous models. VNet can process
the 1024×2048 high-resolution images at a rate of 37.4 fps
and a 15.5 fps on a NVIDIA TITAN Xp and a NVIDIA
Jetson Tx2 with only 0.16M parameters. Benefiting from
the high-resolution training, the accuracy of VNet is
higher than previous small models. In Figure 1, the
accuracy of VNet is ~4% higher than ESPNet, while the
parameter of VNet is 2.25x smaller than that of ESPNet .

 VNet can be trained using multiple high-resolution
images on only one GPU. The versatile model of VNet
employs reversible mechanism to achieve extremely low
memory consumption during the backward propagation.
Taking four 1024×2048 images as an example, traditional
methods require at least two GPUs with each one 12 GB
memory. However, VNet can be trained on one GPU with
9345M memory as shown in Table 3.

II. BACKGROUND AND RELATED WORK

A. Semantic Segmentation
ENet [5] is the first light-weight network structure. It

employs ResNet block [10] and fewer convolution filters to
illustrate that highly efficient semantic segmentation is feasible
on edge devices. Recently, ESPNet [9] introduces an efficient
spatial pyramid module composed of point-wise convolution
and spatial pyramid of dilated convolution to reduce
computation and preserve a large receptive field. Although the
two neural networks above are light-weight, the prediction
accuracy is significantly sacrificed. Therefore, ERFNet [6]
uses more deep architecture that consists of residual
connections and factorized convolutions to compensate the loss

of precision, and it can process the 360×640 images at a speed
of 7 fps on a NVIDIA Jetson Tx1 (embedded GPU) . ICNet [4]
is based on the high accuracy method – PSPNet [1]. Originally,
the parameters of PSPNet are compressed with the method of
pruning filters [7]. Despite decent accuracy achieved in both of
these two networks, they are unable to meet the requirement of
real-time inference speed on edge devices. Therefore, there is
still a big room for the improvement of semantic segmentation
efficiency.

B. High-resolution Training
Traditionally, during the training procedure, not only the

training samples and parameters of DNNs, but also the feature
maps are saved on graphics processing units (GPUs). Due to
the limited memory capacity of GPUs (e.g., NVIDIA TITAN
Xp), many CNN-based models [1, 3, 4] have to be trained with
a mini-batch size of one, or with the resized images. Some
methods [11, 12] have proved that the appropriate mini-batch
is a benefit for the improvement of network performance.
Moreover, the cropp ed images miss part of the image
contextual information and the resized images lose the details
of the information. Recently, reversible mechanism methods
are proposed to achieve competing accuracy of image
classification task on cifar-10, cifar-100 and ImageNet dataset.
For instance, RevNet [13] is a variant of reversible mechanism
where the feature maps of each layer can be reconstructed from
that of the next layer. This can save a lot of memory footprint
during training process. However, to the best of our knowledge,
the reversible mechanism has never been used in the semantic
segmentation as a technical means to train the high-resolution
images, which largely improves the accuracy performance for
light-weight semantic models.

Table 1 The detailed VNet architecture. “Conv” stands for Conv-BN-PReLU.
“D” represents the didated Convolution. The input resolution is
1024ൈ2048.

Name Type Channel Output

Stage 1
3x3 Conv (stride =2) 8 512ൈ1024
3x3 Conv (stride =1) 8 512ൈ1024
3x3 Conv (stride =1) 8 512ൈ1024

Stage 2
CPP module 32 256ൈ512

V module ൈ α 32 256ൈ512

Stage 3
CPP module 64 128ൈ256

V module (D) ൈ β 64 128ൈ256

MaxPool
(2x2, s=2)

Conv
(3x3, s=2)

[C, H, W]

[2C, H/2, W/2]

AvgPool
(2x2, s=2)

Conv
(1x1, s=2)

[C, H, W]

[2C, H/2, W/2]

AvgPool
(2x2, s=3)

AvgPool
(2x2, s=4)

(a) Downsampler (b) CPP

Figure 2 Depiction of downsampler module and our proposed contextual
pyramid pooling module (CPP).

…

…

Resize
the input

50
%

M

em
or

y
us

e
d

One-GPU

FM and
Param.

FM and
Param.

Part FM and
Param.

Part FM and
Param.

Original
size

Muti-GPUs

98
%

M

em
or

y
u

se
d

(a) (b)

Figure 3 Illustration of the conventional architecture and our proposed
method in the training procedure. (a) use the cropped or resized
image as input and save all feature maps (FM) on Multi-GPUs. (b)
just use the original resolution image as input and save parts of
feature maps on one GPU.

X1

[X1, X2]

F1

X2

Z

F2

Y1

Y2

[Y1, Y2]

1
X

1
C

on
v

3
X

1
C

on
v

1
X

3
C

on
v

1
X

1
C

on
v

F
Not save FM on the GPU

Asymmetric convolution

Reversible function

Save FM on the GPU

Figure 4 The proposed V Module consists of two components: reversible

function and asymmetric convolution. Only the output feature maps
(FM) of V module are needed to be saved on GPU.

III. VERSATILE NETWORK ARCHITECTURE

In Table 2, VNet consists of three stages: In stage 1, we use
the three 3×3 convolution layers to obtain low-level 1/2
resolution feature maps and this stage has only 8 channels. In
stage 2, CPP module is used to replace the parameter-
consuming downsampler module and get the 1/4 resolution
feature maps. On top of CPP, we stack α V modules, which is
a versatile module with light weight, small calculation and low
memory consumption. In stage 3, the CPP module is also used
to get 1/8 resolution feature maps and then β V modules.

1) Contextual Pyramid Pooling (CPP)

Due to the extremely small number of parameters, light-
weight networks are always not easy to meet the requirement
of high precision. Simply using maxpool modules in light-
weight segmentation architecture will lose spatial contextual
information, and inevitably reduce the network precision. Thus,
the downsampler module is created to compensate for the loss
of accuracy in ERFNet [6]. In Figure 2 (a), the downsampler
module concatenates the parallel outputs of 3×3 dilated
convolution layers [14] with stride 2 and maxpool modules.
However, the increased 3×3 convolution layers will result in
significant computational complexity and storage overhead.

we propose the CPP module, which concatenates the parallel
outputs of point-wise convolutions with stride 2 and the sum of
pyramid pooling modules. For the point-wise convolution, it is
a 1×1 convolution designed to utilize the channel level
contextual information, which decreases the number of
parameters and reduces computation overhead. In respect of the
pyramid pooling modules, we use it to aggregate more spatial
level contextual information and improve the accuracy. Figure
2 (b) presents the details of the CPP module structure.

2) Versatile Module (V Module)

Figure 3 illustrates conventional training paradigm and our
proposed method. We propose the versatile module with two
key components, reversible function and asymmetric
convolution layers. As the name of versatile module implies,
the V module not only has small amount of parameters and
calculation, but also small memory footprint in the training
process. Figure 4 shows the structure of versatile module.

Reversible Function. For reversible function [13], its input
feature map can be computed from its output. When we stack
more reversible blocks, only the final feature map needs to be
cached. Thus in backpropagation procedure, we can calculate
the intermediate feature map by the inversion property of
Reversible block. The specific calculation formulation for the
forward and backward of reverse is:

Asymmetric Convolution. Asymmetric convolution [15]
has been introduced that a n×n convolution kernel can be
factorized to n×1 convolution followed by 1×n convolution and
this factorization works well on medium layers. These
decomposed layers have three benefits: light weight, low
computational cost and deeper structures. For light weight and
low computational cost, we replace the 3×3 convolution kernel
with a 3×1 convolution followed by a 1×3 convolution. So, we
can save 33% of parameters and computational cost when the
numbers of input and output filters of them are identical.

IV. EVALUATION

A. Experimental Setup

We use dataset Cityscapes [8], which contains 5000 fine
annotated 1024×2048 high-resolution images collected from
50 different urban streets. It is comprised of 2,975 training
images, 500 validation images and 1,525 test images. Each
pixel of images is annotated to one of 19 classes. Unless and
otherwise stated explicitly, all experiments results, such as
inference speed and GFLOPs are reported for 1024×2048
resolution RGB images. We use ADAM with 4 images of one
batch, betas=(0.9, 0.999), and the weight decay is 0.0001 for
optimization. For learning strategy, we choose “poly” learning
policy, and the initial rate is multiplied by ሺ1 െ
𝑖𝑡𝑒𝑟 𝑚𝑎𝑥𝑖𝑡𝑒𝑟⁄ ሻ୮୭୵ୣ୰. The initial learning rate is 0.0005 and
power is set to 0.9, together with the maximum epoch number
300 for Cityscapes.

(a) Inputs (b) ENet (c) ESPNet (d) VNet (e) GT

Figure 5 Sample results of ENet, ESPNet and VNet on Cityscapes validation set. From left to right: (a) input images; (b) ENet results; (c) ESPNet results; (d) VNet
results; (e) the ground truth (GT).

Forward: Reverse:
𝑋 ൌ ሾXଵ, Xଶሿ Y ൌ ሾYଵ, Yଶሿ

Z ൌ Xଵ ൅ 𝐹ଵሺ𝑋ଶሻ Z ൌ Yଵ
Yଵ ൌ 𝑍 Xଶ ൌ 𝑌ଶ െ 𝑍

Yଶ ൌ 𝑋ଶ ൅ 𝑍 Xଵ ൌ 𝑍 െ 𝐹ଵሺ𝑋ଶሻ
Y ൌ ሾYଵ, Yଶሿ 𝑋 ൌ ሾXଵ, Xଶሿ

B. Accuracy and Speed
We report the performance comparison of our proposed

VNet (α ൌ 1, β ൌ 2) and other state-of-the-art methods on
Cityscapes test set in Table 2. The inference speed is measured
on the original 1024×2048 high-resolution images, and we do
not employ any trick, such cropping the image to smaller size.
Compared with small memory footprint model, e.g. SegNet,
ENet, ICNet, ESPNet and BiSeNet, our proposed VNet can
achieve a relatively high mIoU and much faster speed. For
example, our VNet is even 15.4 fps faster than recently state-
of-the-art ENet, and the accuracy of VNet is 5.63% and 3.63%
higher than ENet and ESPNet, respectively. More notably, the
parameter of VNet is only 0.18M. Besides, the visual results
are shown in Figure 5, and we can find that the results of VNet
is closer to the ground truth compared to ENet and ESPNet.

C. Performance Analysis on Edge Device

Figure 6 compares the inference speed of VNet with ERFNet,
ENe t and ESPNet. Our model has the fastest inference speed
under the condition of same GPU frequency, because it has
smaller channel number than the frameworks transferred from
the ImageNet classification networks. For example, when we
set GPU frequency to 1300, VNet is 6.5 fps, 6.3 fps, 11.9 fps
faster than ESPNet, ENet and ERFNet, respectively. Thus,
VNet is currently the fastest segmentation model, and it is able
to meet the requirement of real-time inference for edge devices.

D. Effectiveness of Versatile Module
From Table 3, we can find that the PSPNet’s memory usage

exceeds other networks, although the batch size equals one.
Compared with ESPNet and ENet, our proposed VNet has the
smallest memory overhead and can save 2410MB and 3130MB
for training dataset, respectively. If the accuracy of the
validation dataset needs to be verified during the training
procedure, only VNet can be trained for 1024×2048 images. In
addition, VNet takes 2.9 GPU days to train four high-resolution
images, while other light-weight semantic models cannot train
them due to the out of GPU memory. Moreover, the high-
accuracy semantic model even cannot train one high-resolution
image on a NVIDIA TITAN Xp GPU. Overall, our proposed
V module can train the VNet on only one GPU.

V. CONCLUSION

We propose a versatile network (VNet) based on V module
and CPP module. VNet has the ability to train many high-
resolution images on only one standard GPU (12GB) without
the need of images cropping or resizing. The experimental
results show that VNet can process the high-resolution images
at a rate of 37.4 and 15.5 fps on a standard GPU and an edge
device, respectively, with only 0.16 million parameters.

ACKNOWLEDGEMENT

 This work is supported in part by the national Natural
Science Foundation of China (NSFC) under grant No.
(61432017, 61602442, 61876173), and in part by the National
Key Research and Development Project under grant No.
2018AAA0102700. Corresponding authors are Hang Lu and
Xiaowei Li.

REFERENCES
[1] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network,"

in CVPR, 2017.
[2] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, "Bisenet: Bilateral

segmentation network for real-time semantic segmentation," in ECCV, 2018.
[3] V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional

encoder-decoder architecture for image segmentation," in TPAMI, 2017.
[4] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, "Icnet for real-time semantic

segmentation on high-resolution images," in ECCV, 2018.
[5] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "Enet: A deep neural

network architecture for real-time semantic segmentation," arXiv preprint
arXiv:1606.02147, 2016.

[6] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, "ERFNet: Efficient
residual factorized convnet for real-time semantic segmentation," IEEE
Transactions on Intelligent Transportation Systems 2018.

[7] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, "Pruning filters for
efficient convnets," arXiv preprint arXiv:1608.08710, 2016.

[8] M. Cordts et al., "The cityscapes dataset for semantic urban scene
understanding," in CVPR, 2016.

[9] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi, "ESPNet:
Efficient Spatial Pyramid of Dilated Convolutions for Semantic
Segmentation," in ECCV, 2018.

[10] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in CVPR, 2016.

[11] P. Goyal et al., "Accurate, large minibatch sgd: Training imagenet in 1 hour,"
arXiv preprint arXiv:1706.02677, 2017.

[12] Y. You, I. Gitman, and B. Ginsburg, "Scaling SGD Batch Size to 32K for
ImageNet Training," in CVPR, 2017.

[13] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, "The reversible residual
network: Backpropagation without storing activations," in NIPS, 2017.

[14] F. Yu and V. Koltun, "Multi-scale context aggregation by dilated
convolutions," in ICLR, 2015.

[15] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, "Rethinking atrous
convolution for semantic image segmentation," arXiv preprint
arXiv:1706.05587, 2017.

Figure 6 The inference speeds of VNet, ENet, ERFNet and ESPNet

measured on NVIDIA Jetson Tx2 with three GPU frequencies
(MHz): 1300,1134 and 828.

15.5

9 9.2

3.6

0

2

4

6

8

10

12

14

16

VNet ESPNet ENet ERFNet

In
fe

re
n

ce
 S

p
e

e
d

 [f
p

s]

1300 1134 828

6.3 fps

Table 2 Evaluation results on the Cityscapes test set. The inference speed is
evaluated on the NVIDIA TITAN Xp GPU. “

Network Param. (M) Speed (fps) mIoU (%)
PSPNet [1] 65.7 1.9 78.4

BiSeNet-ResNet18 [2] 49 27 74.7
SegNet [3] 29.5 5 56.1
ICNet [4] 7.8 30.3 69.5

BiSeNet-Xception [2] 5.8 30 68.4
ERFNet [6] 2.07 17.9 68.0

ENet [5] 0.36 22 58.3
ESPNet [9] 0.36 47.6 60.3

VNet (α ൌ 1, β ൌ 2) 0.16 37.4 63.93

Table 3 The effectiveness of V module. “TMem.” indicates the GPU memory
usage of training data. “TVMem.” is the GPU memory usage of
training and validation data. “False” stands for the network cannot
be trained due to out of memory.

Network
Batch
Size

TMem.
(MB)

TVMem.
(MB)

Train. Cost
(GPU days)

PSPNet 1 >12189 >12189 False
ESPNet 4 7431 >12189 False

ENet 4 8151 >12189 False
VNet 4 5021 9345 2.9

