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ABSTRACT
Classic DNN pruning mostly leverages software-based methodolo-
gies to tackle the accuracy/speed tradeoff, which involves compli-
cated procedures like critical parameter searching, fine-tuning and
sparse training to find the best plan. In this paper, we explore the
opportunities of hardware runtime pruning and propose a hardware
runtime pruning methodology, termed as “BitX” to empower ver-
satile DNN inference. It targets the abundant useless bits in the
parameters, pinpoints and prunes these bits on-the-fly in the pro-
posed BitX accelerator. The versatility of BitX lies in: (1) software
effortless; (2) orthogonal to the software-based pruning; and (3)
multi-precision support (including both floating point and fixed
point). Empirical studies on image classification and object detec-
tion models highlight the following results: (1) up to 4.82x speedup
over the original non-pruned DNN and 14.76x speedup collaborated
with the software-pruned DNN; (2) up to 0.07% and 0.9% higher
accuracy for the floating-point and fixed-point DNN, respectively;
(3) 2.00x and 3.79x performance improvement over the state-of-the-
art accelerators, with 0.039mm2 and 68.62 mW (floating-point 32),
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36.41 mW(16-bit fixed point) power consumption under TSMC 28
nm technology library.
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1 INTRODUCTION
Large computation intensity is well recognized as one of the main
obstacles to deploy DNNs into practical applications, because of the
rapid evolution of the parameter size from millions (i.e. ResNet [10]
family in computer vision) to even hundreds of billions (i.e. BERT
[7] or GPT-3 [5] in natural language processing). Although more
complex models with enormous layers and complicated neuron
connections will benefit the ever-increasing accuracy demand, the
real-time performance enhancement, which is the more important
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Table 1: WEIGHT/BIT sparsity comparison for various
DNNs pre-trained with ImageNet dataset. Bit sparsity is sig-
nificantly more abundant than weight sparsity. The weights
are represented by floating-point 32.

Model Weight Sparity Bit Sparity

DenseNet121 4.84% 48.64%
ResNet50 0.33% 48.64%
ResNet152 0.75% 48.64%
ResNext50_32x4d 0.37% 48.64%
ResNext101_32x8d 3.43% 48.65%
InceptionV3 0.05% 48.64%
MNASNet0.5 0.00% 48.60%
MNASNet1.0 8.07% 48.98%
MobileNetV2 0.01% 48.67%
ShuffleNetV2_x0_5 0.00% 48.36%
ShuffleNetV2_x1_0 1.53% 48.63%
SqueezeNet1_0 0.05% 48.64%
SqueezeNet1_1 0.02% 48.64%

and desirable request however, cannot catch up with the develop-
ment of DNNs, especially for the handhelds and cyber physical
devices.

Pruning is universally accepted as an effective way in maintain-
ing the model accuracy and optimizing the computation intensity
at the same time. Almost all the conventional pruning method-
ologies, i.e. [11] [21] [25] [22] [33] rely on software-level efforts
which usually consist of the following steps: evaluate the impor-
tance of neurons, remove the least important fraction of neurons
(contingent to the preset compression ratio), parameter fine-tuning
until satisfaction, or get unsatisfactory accuracy that has to change
the importance metric and commence pruning again. Generally
speaking, software-based pruning has competitive advantages in
(1) obtaining maintained accuracy and controllable compression
ratio, and (2) easy deployment without considering the underlying
hardware (for structured pruning of course). Due to the diversity of
deep learning applications, however, it is almost impossible to find
a universal software-based pruning method that is applicable to all
use cases. A direct consequence is that end-users must reconsider
the application-specific pruning criteria, in terms of the super-
parameters and DNN structured parameters and re-implement the
above steps from the very inception. The tediously repeated effort
limits the fast deployment of DNNs in the practical use.

From the model perspective, the DNN itself, or its internal sparsity
level also impairs the software-based pruning. In specific, pruning
leverages the importancemetric to identify the least contributive pa-
rameters. The metric measures the sparsity variants of the weights
or activations, i.e. the average percentage of zeros [11], the absolute
value of filters [21], or the entropy of filters [25] and so on, trying
to eliminate the zero or near-zero variants and retrain the model
until the optimal accuracy to justify the employed importance met-
ric. However, one metric may suit for certain DNNs very well but
might not behave perfectly for others. Besides, the headroom of the
sparsity is not always adequate either. Some pruning approaches
have to commence retraining to compensate the information loss
or sparse training to manually create more sparsity [22] [33] [4] in
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Figure 1: Distribution analysis of bit 1s. The 4 benchmark
DNNs demonstrate a similar behavior: the surfplot reaches
its peak at 2−21 ~ 2−30, which means this bit slice has the
largest fraction of bit 1s (nearly 40%), but most of them are
trivial. BitX aims to prune these trivial bits to obtain the in-
ference acceleration.

the parameter set, which is even more time-consuming and labor-
intensive.

From the efficiency perspective, the labor intensity of the software-
based pruning also exhibits in the parameter fine-tuning phase.
That is because the remaining non-pruned weights cannot always
guarantee the initial accuracy of the DNN. Classic procedure hence
relies on retraining to redeem the lost accuracy with the same
dataset and time-consuming iterations that usually cost days or
even weeks according to the equipped GPU facility. The above
procedure is usually implemented layer-wise, so if we apply it to
VGG-19 [29] for example, we need to retrain the model 19 times
with each time iterating tens of epochs to recover the lost accuracy.
The long and tedious retraining prevents the instant deployment of
the pruned model into the devices, and worse still, if the accuracy
is not satiable, it must repeat the same tedious procedure again.
Considering other widely used DNNs with hundreds of layers (i.e.
ResNet [10], DenseNet [12]) or even much larger and more complex
connections like 3D convolution [31], non-local convolution [32] or
deformable convolution [6], the developers therefore usually face a
formidable challenge to obtain both the satisfactory result and the
shorter time spent.

From the accelerator perspective, unstructured pruning relies heav-
ily on the underlying hardware. There are plenty of accelerator
prototypes proposed to support the particular pruning methodol-
ogy. For example, Cambricon-S [34] addresses the irregularity of
unstructured pruning. EIE [30] supports the pruning only for the
fully-connected layers; ESE [9] only focuses on the sparse LSTM
model, while the convolutional layers that dominate the CNN in-
ference computation are not supported. Accelerator design also de-
pends on various sparsification methodologies. SCNN [27] exploits
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(a) original weight matrix (b) exponents alignment
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Figure 2: Core concept of BitX. Bit matrix before pruning is shown in (a). (b) demonstrates exponent alignment according to
IEEE 754. Six non-essential bit rows are pruned as shown in (c), only leaving a more compact essential-bit matrix.

the neuron and synapse sparsity, while Cnvlutin [3] only supports
neuron sparsity. If the software engineer modifies the pruning pol-
icy or simply changes from structured pruning to the unstructured
pruning, the hardware employed is also about to change, attached
with overwhelming transplantation overhead.

Ideally, a pre-trained DNN should be pruned as fast as possible
for the timely deployment in hardware, and more desirably, the
hardware could directly implement runtime pruning without any
tedious software-level work to accelerate the DNN inference in
a handy and efficient manner. This necessity stimulates us to re-
consider the existing classic pruning methodologies and explore a
new style to free the developers from the labor-intensive software
effort. Therefore, in this paper, we propose BitX, a hardware runtime
pruning methodology to empower versatile DNN inference. Apart
from the software-based pruning that requires complex algorithm
to identify the trivial values by repeated trial-and-error, BitX imple-
ments pruning by targeting bits. It aims to pinpoint the essential
bits and prune away the useless bits in the parameters, because
the useless bits are more easily exposed especially at the hardware
level. For example, the floating-point value has long bit-width in
its mantissa (24 bits) [13], and the exponent always shifts the man-
tissa to align the binary point with another value for computation.
The shifted binary positions are automatically zero-padded and
involved in the floating-point arithmetic. This procedure generates
two types of useless bits: the 1st type is the genetic zero bits in
the mantissa and the automatically padded zero bits; the 2nd type
is more implicit, that is, the rear bit 1s with extremely trivial sig-
nificance. As will be shown in Section 2, the two types of useless
bits both occupy a large fraction in the binary represented weights,
which also provides a decent condition for BitX to prune these bits
directly in the accelerator at the inference runtime.

Our evaluations have shown that by precisely locating and prun-
ing these useless bits, the inference speed could be significantly
boosted (Section 4.2). Most importantly, the whole pruning oper-
ation could be implemented on-the-fly in the proposed BitX ac-
celerator, with lossless accuracy and without any software related
effort.

The contributions of this paper are listed as follows:

• Wepropose anovel hardware runtimepruningmethod,
termed as BitX, to empower versatile DNN inference.
We highlight the following features of BitX :

(1) Software effortless: BitX directly prunes the original
DNN.No retraining, fine-tuning, or special library/framework
needed, because it targets the useless binary bits not val-
ues.

(2) Orthogonal to the existing software pruningmethod-
ologies: BitX implements straightforward bit pruning
in the accelerator, so the DNNs, either pruned or non-
pruned at the software level, are all suitable for BitX. In
other words, it could further prune the useless bits of the
software-pruned DNN, and obtain additional speedup.

(3) Multi-precision support: BitX applies to not only floating-
point but also fixed-point DNNs. The fixed-point DNNs
also demonstrate substantial useless bits. BitX could accel-
erate these models with even higher accuracy and speedup.

• We propose a deep learning accelerator capable of un-
precedented hardware runtime pruning to mine the
maximum potential of BitX.We highlight the following
results:

(1) Speedup: two representatives of BitX accelerator – BitX-
mild and BitX-wild could respectively obtain 2.61x ~ 4.82x
faster speed over the non-pruned baselines under float-
point 32 mode, and up to 2.00x under 16-bit fixed-point
mode. For the object detection model YoloV3, the speedup
is up to 4.98x and 14.76x higher over the original model.

(2) Accuracy: for ImageNet, the accuracy loss is 0.13% and
0.44% for BitX-mild and BitX-wild; for Cifar-10, the loss
is 0.09% and 0.15%. The above accuracy data are reported
by the floating-point DNNs. Under 16-bit fixed-point, the
accuracy is even 0.9% and 0.2% higher than the baseline
DenseNet121 and ResNext101 for BitX-mild; 0.8% and 0.1%
higher for BitX-wild. For YoloV3, the accuracy is 0.06% and
0.07% higher than the original model for BitX-mild; 0.31%
and 1.64% lower for BitX-wild.

(3) Accelerator Performance: we compare the BitX accel-
erator performance with other state-of-the-art accelerator



ICPP ’21, August 9–12, 2021, Lemont, IL, USA Hongyan Li, Hang Lu, Jiawen Huang, Wenxu Wang, Mingzhe Zhang, Wei Chen, Liang Chang, and Xiaowei Li

prototypes. Equipped by BitX, the accelerator achieves
2.00x and 3.79x performance improvement. The area is
0.039mm2 and 68.62 mW (floating-point 32) and 36.41 mW
(16-bit fixed point) under TSMC 28nm technology library.

(4) Sensitivity: we thoroughly evaluate the sensitivity of the
key design parameters to the accuracy and speed (see
Section 4.3).

Powered by the above features, BitX is designed for flexible and
versatile DNN inference at any circumstances. In the next section,
we will start from discussing two key observations that justify BitX.

2 OPPORTUNITIES OF HARDWARE
RUNTIME PRUNING

2.1 Bit-level Sparsity – 1st target
For most of the software-based pruning approaches in the literature
[22] [11] [26] [33], the classic procedure basically involves identi-
fying and pruning the trivial “near-zero” parameters. However as
mentioned above, the headroom of the value-level sparsity is very
limited. If the compression ratio is mistakenly set, the accuracy
loss is inevitable. Under such circumstances, two alternatives are
always considered: lower the compression ratio and roll back to the
inception [11] [26], or commence sparse training to create more
headroom for the employed pruning metric [22] [33]. It is also the
root reason that the labor-intensive software effort stems from.

In order to circumvent the inconvenience, we re-examine the
parameters in-depth. Instead of sticking to the sparse “values”, we
analyze the more fine-grained bit-level sparsity. As shown in Table
1, the “weight sparsity” proportion is obtained by counting the
values below 10−5 over the total parameter size, while the “bit
sparsity” proportion is by counting total bit 0s over the total “bit
count” of the mantissas in the parameter set. Obviously, various
benchmark DNNs uniformly demonstrate an obvious gap between
the two sides. Most of the weight sparsity results are less than
1%. The bit sparsity however, are nearly 49% and no exception.
It provides an excellent opportunity of exploiting the sparsity at
the bit level without resorting to the value pruning, because ~49%
bits are already 0s and removing these useless bits off the MAC
computation is definitely harmless to the accuracy. BitX intends to
fully utilize this decent condition to accelerate the DNN inference.

2.2 Trivial bit 1s – 2nd target
Obviously, we can design particular zero-skipping mechanism to
avoid the ineffectual computations caused by the zero bits, which is
also the main objective many previous sparsity-aware acceleration
schemes target [23] [24] [2] [19]. However, the trivial “bit 1s”, as
another factor that influences the inference efficiency, are barely
considered but they are exactly the major optimization objective
in BitX. Therefore, having explored the bit-level “sparsity” (or the
fraction of bit 0s), we further migrate our focus to the useless “bit
1s”. The 49% fraction of 0s also means the percentage of bit 1s is
around 51%, which is also a very large fraction. More importantly,
not all the bit 1s are influential to the final accuracy. If we could
identify the “essential” bit 1s and prune away the trivial ones, the
inference efficiency could be further boosted.

Algorithm 1 BitX Pruning Procedure
Require: n number of fp32 weights, and bit-sparsity level N
Ensure: essential bit matrixW ′
1: Interpret n exponents E = [e1, ..., en ] and mantissas M =

[m1, ...,mn ];
2: Adding the hidden ‘1’ and obtainM ′ = [m′1, ...,m

′
n ];

3: AlignM ′ with emax =max(E) and obtain updatedM ′;
4: Obtain bit matrixW with eachm′ ∈ M ′ in column; // Figure

2(a)
5: r , c =W .shape; // matrix row and column
6: mask = zeros(r ); // initializemaskr×1 with 0
7: foreach row i inW : // iterate each row in W
8: Ei = ei − emax ;
9: pi = 2Ei ×

√
BitCnt(i)/C; // Eq.(4)

10: end for
11: P .append(pi ); // P stores each pi
12: I , P = sort(P); // sort P in descending order, obtain index vector

I
13: I ′ =max(I ,N ); // I ′ = [i1, ..., in ], obtain the first N indices
14: foreach index i in I ′ :
15: mask[i] = 1;
16: end for
17: W ←W ⊗mask ; // pruneW withmask , Figure 2(c)
18: n = 0;
19: foreach row i inW :
20: foreach column j inW :
21: ifW (i, j) == 1 then:
22: W ′(i,n) = 1;
23: n+ = 1;
24: end if
25: end for
26: n = 0; // reset n for the next row
27: end for
28: returnW ′; // essential bit matrix

As evidence, we explore the distribution of bit 1s in each bit slice.
As shown in Figure 1, the X-axis denotes the bit slice of the binary
represented weight (in floating-point 32). Each bit slice reflects
the significance of the bits. For example, if a dummy weight is
1.1101 × 2−4, its binary representation is 0.00011101 and we record
the significance of the four bit 1s are the 2−4, 2−5, 2−6, and 2−8 after
the binary point, respectively.

According to Figure 1, the bit slice could range from bit signifi-
cance “9 ~ 0” before the binary point to “-61 ~ -70” after the binary
point. All the evaluated DNNs exhibit an “arched” shape across
each layer on the Y-axis. The central bit slices own most of the bit
1s (~40%), i.e. ResNet152 and DenseNet201. Taking bit significance
2−21 ~ 2−30 as the representative, the equivalent decimals are in
range: 0.000000477 (~10−8) to 0.000000000931 (~10−11). These tiny
values are very likely to be less contributive to the final accuracy.
Therefore, BitX aims to precisely identify the essential bits and
prune the large fraction of the trivial bits on the fly in the acceler-
ator, to reduce the computation intensity under the constraint of
tiny accuracy loss. In the next section, we will elaborate how it is
designed to achieve this objective.
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Figure 3: Overview architecture of the BitX accelerator.
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3 BITX
3.1 General Concept
Without losing generality, a floating-point operand is composed of
three portions: the signed bit, mantissa, and exponent, following
IEEE 754 [13] which is also the most commonly used floating-point
standard in industry. If we employ the single precision (fp32) format,
the mantissa comprises 23 bits and the exponent occupies 8 bits
with the last bit for the sign. A single precision weight fp could
be expressed as fp = (−1)s1.m × 2e−127, in which e is the actual
position of the “binary point” plus 127.

If we take 6 non-aligned fp32 weights as an example and inter-
pret their mantissas as illustrated in Figure 2(a), we get a bit matrix
with each column showing the binary mantissa actually stored in
memory. Different colors in the legend indicate the bit significance
from 2−1 to 2−9 after the binary point (position 0 denotes the hidden
1 of the mantissa [13]). In terms of the exponent, we use different
background colors in the bit matrix to indicate the actual signifi-
cance of this bit guided by the exponent. For example, the topmost
bit 1 marked as dark blue inW2 is actually the 2−3 significance in
the fractional part.

If we align the mantissa according to the exponent, zeros are
padded in the front vacancies just as shown in Figure 2(b). The first
observation is that the aforementioned bit-level sparsity is more
abundant after zero padding, which provides excellent condition for
the bit-level pruning. The second observation is that a large fraction
of bit 1s are shifted to the rear direction beyond 2−6 significance.
A direct consequence is that the practical contribution of these
bits are pretty trivial to the final MAC. If we could prune away
these insignificant 1s, it could save plenty of bit-level arithmetic
and speed up the inference. As illustrated in Figure 2(c), the red box
denotes the pruned bit 1s, only leaving several essential 1s to form
the pruned weights:W1 ′ ,W3 ′,W4 ′ andW5 ′, and we term these 1s
as the “essential bits”.

3.2 Methodology
Leveraging the essential bits in Figure 2(c) is an effective way to
simplify a series of value-level MACs as bit-level additions [23] [20].
However, for the millions of parameters in DNN, if we use fp32
to represent these values, the impact of a single bit to the whole
network is not that easy to be determined. The leftover problem
is how to create an effective yet hardware-friendly mechanism
to make full use of the abundant useless bits and maintain the
initial accuracy, without labor-intensive software tricks. In this
subsection, we firstly formalize the problem and then elaborate the
BitX procedure.

3.2.1 Problem Formulation. Given an n × l matrix A (activa-
tions) and an l × n matrixW (weights), the result of A ×W can be
represented by the summation of n rank-one matrices: A(i) repre-
sents the i-th row of A andW(i) for the i-th column ofW , as shown
in Eq. (1). The criticality of these rank-one matrices could be easily
decided by the Fast Monte-Carlo Algorithm [8], in which some
rank-one matrices are randomly sampled to approximate A ×W .
The most common sampling method [8] to select these rank-one
matrices is by referring to their respective probability as shown
in Eq. (2). It is obtained by computing the Euclidean distance of
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Table 2:Cifar-10 performance. The last ‘Avg.’ rowdenotes the “accuracy loss / sparsity increment”. The accuracy loss is obtained
by itemizing the accuracy loss of each benchmark model versus the original and calculate their average(in %). The sparsity
increment is obtained by counting the bit 0s after pruning and normalizing the data to the original (in x).

Model Original N=10 N=8 N=6 N=4

DenseNet121 95.25/1x 95.21/1.36x 95.19/1.49x 95.10/1.63x 93.17/1.77x
DenseNet161 95.66/1x 95.55/1.33x 95.52/1.47x 95.52/1.61x 93.98/1.76x
DenseNet169 95.50/1x 95.48/1.33x 95.49/1.47x 95.44/1.61x 93.28/1.76x
Densenet201 95.35/1x 95.39/1.31x 95.35/1.45x 95.25/1.60x 93.71/1.75x
ResNet18 95.18/1x 94.96/1.66x 94.90/1.75x 94.80/1.83x 93.69/1.91x
ResNet34 95.33/1x 95.27/1.66x 95.27/1.74x 95.20/1.83x 93.69/1.91x
ResNet50 95.14/1x 95.07/1.42x 95.04/1.53x 95.07/1.66x 91.79/1.78x
ResNet101 95.51/1x 95.34/1.44x 95.35/1.56x 95.39/1.69x 91.46/1.81x
ResNet152 95.56/1x 95.41/1.45x 95.47/1.57x 95.36/1.69x 90.48/1.81x
ResNext29_2x64d 95.82/1x 95.71/1.45x 95.73/1.57x 95.71/1.69x 91.95/1.81x
ResNext29_4x64d 95.69/1x 95.57/1.37x 95.55/1.50x 95.50/1.64x 92.82/1.78x
ResNext29_8x64d 96.19/1x 96.13/1.31x 96.16/1.45x 96.08/1.60x 93.57/1.75x
ResNext29_32x64d 95.61/1x 95.56/1.25x 95.55/1.40x 95.48/1.56x 89.47/1.73x
Avg. loss / sparsity 0.000/1x 0.090/1.41x 0.094/1.53x 0.145/1.66x 2.979/1.80x

Table 3: ImageNet performance. The computing method is identical to Table 2.

Model Original N=10 N=8 N=6 N=4

DenseNet121 71.96/1x 71.95/1.34x 71.00/1.47x 71.00/1.62x 65.00/1.76x
DenseNet161 75.28/1x 75.20/1.32x 75.14/1.46x 74.79/1.61x 72.00/1.76x
DenseNet169 73.75/1x 73.56/1.31x 73.55/1.45x 73.55/1.60x 68.62/1.75x
Densenet201 74.56/1x 74.46/1.30x 74.40/1.44x 74.24/1.59x 69.00/1.74x
ResNet18 67.28/1x 67.09/1.64x 67.00/1.73x 66.72/1.81x 62.52/1.90x
ResNet34 71.32/1x 71.11/1.65x 71.10/1.73x 70.92/1.82x 68.00/1.90x
ResNet50 74.50/1x 74.50/1.41x 74.51/1.54x 74.10/1.67x 67.00/1.80x
ResNet101 76.00/1x 76.06/1.43x 76.05/1.55x 75.76/1.68x 69.02/1.81x
ResNet152 77.02/1x 76.56/1.44x 76.55/1.56x 76.46/1.69x 72.30/1.81x
ResNext50_32x4d 76.29/1x 75.99/1.24x 75.96/1.39x 75.67/1.56x 65.01/1.72x
ResNext101_32x8d 78.24/1x 78.20/1.27x 78.30/1.42x 78.10/1.58x 73.00/1.74x
SqueezeNet1_1 54.84/1x 54.86/1.42x 54.70/1.54x 54.40/1.67x 47.30/1.80x
Avg. loss / sparsity 0.000/1x 0.131/1.40x 0.242/1.52x 0.444/1.66x 6.023/1.79x

A(i) andW(i), which reflects the importance of the rank-one matrix
multiplication.

Inspired by the Fast Monte-Carlo Algorithm, we enroll the same
probability concept in BitX to measure the importance of the weight
bits instead of values. Bits with smaller probability tends to play
a trivial role when multiplied with the activations compared with
other more important bits in the same weight. Therefore, we ab-
stract the bit matrix in Figure 2(a) asW and our objective is seeking
out the (in)significant bit rows in Figure 2(b) and simplifying MAC
computations. The problem remains how we can utilize the prob-
ability in Eq. (1) to sample each bit row inW , and determine the
to-be pruned bit rows.

pi =
|A(i) | |W(i) |∑l

i′=1 |A
(i′) | |W(i′) |

(1)

3.2.2 Bit-slice Extraction. InW (Figure 2 (a)), we target the man-
tissa of n normal floating-point 32 weights. Each mantissa is instan-
tiated as a column vector comprised of its bits. Obviously, n weights
are associated with the same number of activations for MAC. N
activations consist of another column vector [A1,A2...Aj ...An ]

T .
We put the two column vectors into Eq. (1), so it could be rewritten
as Eq. (2):

pi =
|A(i) | ×

√∑n
j=1 (2

E ji ×vj )
2

∑l
i′=1 (|A

(i′) | ×

√∑n
j=1 (2

E ji′ ×vj )2)

(2)

Aj is the element of the activation vector, and vj is the j-th bit
of the i-th row vector in the bit matrixW . Each bit in the same row
i has its own exponent, so we use 2E

j
i in Eq. (2) to represent the
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On our FPGA platform, the memory access is through DMA with two state machines to coordinate the data fetch and 
store, associated with the weight and activation buffer. Detailed FPGA and ASIC configuration are elaborated in Section 
4. 

Figure 5: layer-wise speedup for ImageNet dataset. The speedup of the original model is regarded as 1 on the Y-
axis. 

Figure 6: the method is the same as Figure 5. Higher is better. 

For the fixed-point DNN, the E-alignment module is bypassed and safely powered down. Original weights are 
directly connected to the input of the Bit-Extraction module, because the fixed-point arithmetic does not involve 
exponent matching. Power gating is favorable to the abundant energy savings in the fixed-point BitX accelerator, as 
shown in the evaluations. 

(1) E-alignment E-alignment module is designed to align the exponent of each weight uniformly to the maximum. It
is mainly comprised of the data shifter and zero-padding. Firstly, the weight is split into the corresponding exponent and 
mantissa (for the floating-point data). Then, the maximum exponent 𝐸௠௔௫  is obtained and stored. The exponents of all 
weights are aligned to this maximum value following Algorithm 1. The data shifter performs this operation through right 
shifting the i-th mantissa by 𝐸௠௔௫ െ 𝐸௜. The shifted vacancies are zero-padded in the front part of the mantissa, marked 
as orange in Figure 3. For different weights, 𝐸௜ is possibly not identical, so we will obtain arbitrary bit widths after zero 
padding. To deal with this scenario, this module also pads a series of zero bits to the maximum bit width, marked as 
green in the figure. Although zero padding is frequent in this module, our RTL implementation could easily hard code 
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exponent at position j. The Euclidean distance of the row vector is

calculated as
√∑n

j=1 (2
E ji ×vj )

2
.

In BitX, exponent alignment procedure is almost identical to the
normal floating-point addition [13], except one special difference,
that is, BitX does not implement weight/activation MAC one by
one. Instead, it aligns a group of weights simultaneously to the
maximum exponent. Therefore, after exponent matching the bits
in the same row i share the same exponent just as Figure 2(b) has
shown, and we use a uniform Ei to denote the actual exponent of
the row i .

v is a row vector inW composed of bits. For the case that a bit
element vj equals to 0, there is obviously no impact on calculating
the Euclidean distance and thus no impact on pi . Therefore, acquir-
ing the Euclidean distance is equivalent to counting the number of
bit 1s in row i . We use BitCnt(i) to indicate such operation, so the
probability pi of the i-th row can be represented as Eq. (3):

pi =
|A(i) | ×

√
(2Ei )2 × BitCnt(i)

|A(i
′) | ×

∑l
i′=1 (

√
(2Ei′ )2 × BitCnt(i ′))

=

√
(2Ei )2 × BitCnt(i)∑l

i′=1 (
√
(2Ei′ )2 × BitCnt(i ′))

(3)

In Eq. (3), Ei stands for the aforementioned exponent of the i-th
row. Each column vector in matrix A is the same, so |A(i′) | equals
to |A(i) |. For the givenW with l column vectors,

∑l
i′=1 |W(i′) | is a

constant, so we let C =
∑l
i′=1 (

√
(2Ei′ )2 × BitCnt(i ′)), and the final

pi is deduced by the following Eq. (4):

pi =

√
(2Ei )2 × BitCnt(i)

C
(4)

Discussion: the probability pi reveals the magnitude of “signif-
icance”. This is reasonable because Ei reflects the bit significance
of row i , and BitCnt(i) reflects the number of essential bit 1s in
row i . Larger Ei or BitCnt(i) definitely leads to more contribution
on the final MAC. BitX takes advantage of Eq. (4) to pinpoint the
essential bit rows and in the meantime, prunes away the trivial bit
rows directly in the accelerator.

3.3 Pruning Procedure
In Algorithm 1, BitX firstly interprets the exponent E and mantissa
M of n fp32 weights as input (line 1 ~ 3), aligns each exponent
according to the emax (line 4), and then calculates and sorts the row
probabilities in descending order (line 5 ~ 12). For the other input
parameter N , it denotes the remaining bit rows inW after pruning.
In other words, BitX selects the top n bit rows with relatively larger
pis . The indices of the n rows are reflected in I ′ (line 13). The
pruning is finalized by the vectormask with the selected n bit rows
marked as ‘1’ (line 7 and 16). Right after pruning, BitX extracts the
essential bits and stores them intoW ′ (line 17 ~ 23).

The design parameterN in the algorithm controls the granularity
of pruning. Smaller N inevitably leads to larger sparsity because
more bit rows are pruned, which also benefits the inference by
skipping more zero bits. In Section 4, we will thoroughly study the
impact of N on BitX performance.

3.4 BitX Accelerator Architecture
BitX is a hardware runtime pruning approach, so specially designed
hardware pruning modules are integrated in the accelerator design.
The overall full-system accelerator architecture is shown in Figure
3. Two module “E-alignment” and “Bit-Extraction” are designed to
perform Algorithm 1. We instantiate 16 computing units to form
one BitX PE. Each CU takes M weights/activation pairs as input.
The input weights are pre-processed by the “Bit-Extraction” mod-
ule with the trivial bits pruned to 0. CU executes the acceleration
according to the significance of each bit in the pruned weight.

On our FPGA platform, the memory access is through DMA
with two state machines to coordinate the data fetch and store,
associated with the weight and activation buffer. Detailed FPGA
and ASIC configuration are elaborated in Section 4.

For the fixed-point DNN, the E-alignment module is bypassed
and safely powered down. Original weights are directly connected
to the input of the Bit-Extraction module, because the fixed-point
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Table 4: Design space exploration of two key design parameters on ImageNet.

ResNet50 Original Accuracy: 74.50 DenseNet121 Original Accuracy: 71.96
N=10 N=8 N=6 N=4 N=10 N=8 N=6 N=4

M=8 74.50 74.51 74.10 67.00 M=8 71.95 71.00 71.00 65.00
M=16 74.54 74.40 73.60 61.00 M=16 71.97 72.00 71.00 62.00
M=32 74.00 74.50 73.50 58.20 M=32 72.03 72.00 71.00 58.00
M=64 74.39 74.00 73.00 53.30 M=64 71.00 71.00 70.00 55.00
M=128 74.41 74.32 72.70 46.30 M=128 71.00 71.00 70.00 49.20
M=256 74.51 74.40 72.80 46.80 M=256 71.84 71.00 69.00 49.00
M=512 74.30 74.26 71.90 39.40 M=512 71.83 71.60 69.00 34.00

ResNext101_32x8d Original Accuracy: 78.24 SqueezeNet1_1 Original Accuracy: 54.84
N=10 N=8 N=6 N=4 N=10 N=8 N=6 N=4

M=8 78.20 78.30 78.10 73.00 M=8 54.86 54.70 54.40 47.30
M=16 78.20 78.00 77.50 66.00 M=16 54.80 54.74 53.00 41.60
M=32 78.20 78.00 78.20 65.00 M=32 54.00 54.50 53.64 41.70
M=64 78.20 78.20 77.30 62.00 M=64 54.70 54.77 53.50 37.10
M=128 78.20 78.10 77.30 57.00 M=128 54.40 54.48 52.80 34.66
M=256 78.20 78.20 77.20 49.00 M=256 54.62 54.40 52.11 32.10
M=512 78.20 78.20 77.20 49.00 M=512 54.81 54.72 52.60 32.00

arithmetic does not involve exponent matching. Power gating is
favorable to the abundant energy savings in the fixed-point BitX
accelerator, as shown in the evaluations.

3.4.1 E-alignment. E-alignment module is designed to align the
exponent of each weight uniformly to the maximum. It is mainly
comprised of the data shifter and zero-padding. Firstly, the weight is
split into the corresponding exponent and mantissa (for the floating-
point data). Then, the maximum exponent Emax is obtained and
stored. The exponents of all weights are aligned to this maximum
value following Algorithm 1. The data shifter performs this oper-
ation through right shifting the i-th mantissa by Emax − Ei . The
shifted vacancies are zero-padded in the front part of the man-
tissa, marked as orange in Figure 3. For different weights, Ei is
possibly not identical, so we will obtain arbitrary bit widths after
zero padding. To deal with this scenario, this module also pads a
series of zero bits to the maximum bit width, marked as green in
the figure. Although zero padding is frequent in this module, our
RTL implementation could easily hard code this operation without
violating the timing constraint. The only overhead introduced is
the complicated wire organization that might potentially increase
the circuit area.

3.4.2 Essential Bit Extraction. The padded mantissa output by
the E-alignment module is then delivered to the Bit-Extraction
module for the actual pruning. The 1st functionality in this module
is the BITCNT, which is designed to implement the BitCnt function
in Eq. (4). In our FPGA implementation, the (2Ei )2 × BitCnt(i)
operation inside SQRT could be equalized as shifting BitCnt(i)
by 2Ei . SQRT is not necessary because it will not influence the
significance. Therefore, only combinatorial circuits could fulfill this
purpose. The second functionality of the Bit-Extraction module is
sorting the shifted BitCnt(i) and selecting the top n largest rows,
while the disqualified rows are completely pruned. The final pruned
weight are thus obtained.

3.4.3 Compute Unit (CU). The pruned weights will surely ex-
hibit more sparsity, and due to the pruning of the trivial bit ones, the
left essential bits are substantially scarce. Therefore, a zero-skipping
mechanism is designed in the “extractor” of the “Bit-Extraction”
module to pinpoint the essential bits and further feed them to the
compute unit (CU) module.

The microarchitecture of CU is shown in Figure 4. Each “selector”
in the extractor targets one pruned binary weight (M weights in
total), and k denotes the bit in the pruned weight. The extractor
records the significance of each essential bit k , represented as s . s
is used to shift the corresponding activation A in each shifter.

The activations could be either floating-point or fixed-point
data. The fixed-point A could be directly shifted. However, for the
floating-point A, the shifting operation is actually the exponent
accumulation in A, which is the fixed-point arithmetic as well.
Therefore, the shifters will not introduce severe overhead. The
adder tree performs the final partial-sum accumulation. It distin-
guishes the precisions, so the overall power consumption of CU is
also distinct under different precisions. Section 4.6 decomposes the
power consumption of the BitX accelerator in ASIC design to give
a comprehensive study.

4 EVALUATION
Benchmark and framework. The deep learning models and the
parameters pre-trained for Cifar-10 [18] and ImageNet [15] dataset
are directly obtained from PyTorch [1]. The benchmark models
involve “big” models with the parameter size ranging from 76.35M
(DenseNet201) to 356.71M (ResNext101_32x8d),as well as “little”
models with the parameter size of 4.71M (SqueezeNet1_1). YoloV3
[28] trained on CoCo [14] dataset is employed to evaluate the per-
formance on the object detection task. For the design parameter N
and M, we choose several discrete values for the design space explo-
ration, to explore the sensitivity of BitX on the accuracy and speed.
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design space exploration, to explore the sensitivity of BitX on the accuracy and speed. Also based on these parameters, 
we define two representatives of BitX – BitX-mild and BitX-wild. 

FPGA & ASIC implementation. At the RTL level, we employ Vivado HLS (v2018.2) to conduct post-synthesis 
simulation on Xilinx Virtex-7 FPGA. The actual inference time is recorded at each run. We instantiate 16 CUs in PE,  

Figure 7: Inference speedup comparison under different N settings. 

Figure 8: Inference speedup comparison of two BitX representatives on 16-bit fixed-point DNNs. 

clocked at 200 MHz. Runtime memory access data of our FPGA platform are recorded and then fed to the DRAMsys 
tool [33] to estimate the energy consumption of the memory accesses. For ASIC, Synopsis Design Compiler (v2016) is 
used to measure power and area. The frequency is set to 1 GHz. The whole design is synthesized with TSMC 28nm 
technology library. 

4.1 Accuracy & Sparsity 
(1) Cifar-10 Table 2 shows the accuracy/sparsity results for Cifar-10 dataset, grouped by the parameter 𝑁. Smaller 𝑁

means more bit rows are pruned, so the bit-level sparsity also turns larger. For example for 𝑁 = 4, the sparsity increases 
to 1.80x compared with the original model. More sparsity is undoubtedly beneficial to the inference speedup (as proved 
in Section 4.2). On the other hand, larger 𝑁 means less bit rows are pruned so the sparsity only shows 1.41x and 1.53x 
for 𝑁 = 10 and 𝑁 = 8.  

BitX shows promising pruning accuracy. The average accuracy loss is about 0.1% at 𝑁 = 10, 8 and 6 for various 
evaluated DNNs. 

(2) ImageNet The results for ImageNet dataset shown in Table 3 exhibit a similar trend as Table 2: less than 0.5%
average accuracy loss at 𝑁 = 10, 8, 6, and 1.40x, 1.52x, 1.66x sparsity increment apiece. 

Discussion: firstly, it proves that the proposed BitX pruning methodology will not affect the accuracy of DNNs. The 
average accuracy loss is less than 0.5% at 𝑁 = 10, 8 and 6, for both Cifar-10 and ImageNet datasets. Secondly, this 
experiment clearly demonstrates the tradeoff between accuracy and sparsity. A borderline configuration also exists with 
the maintained accuracy and satisfied sparsity. As shown in Table 2 and Table 3, there is a significant accuracy drop at 
𝑁 = 4 and 𝑁 = 6. Therefore, we can safely choose 𝑁 values in the range 10 ~ 6 in BitX. This experiment also verifies that 
there are tremendously redundant bits in the parameters that can be safely pruned without hurting the accuracy.  
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means more bit rows are pruned, so the bit-level sparsity also turns larger. For example for 𝑁 = 4, the sparsity increases 
to 1.80x compared with the original model. More sparsity is undoubtedly beneficial to the inference speedup (as proved 
in Section 4.2). On the other hand, larger 𝑁 means less bit rows are pruned so the sparsity only shows 1.41x and 1.53x 
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average accuracy loss at 𝑁 = 10, 8, 6, and 1.40x, 1.52x, 1.66x sparsity increment apiece. 

Discussion: firstly, it proves that the proposed BitX pruning methodology will not affect the accuracy of DNNs. The 
average accuracy loss is less than 0.5% at 𝑁 = 10, 8 and 6, for both Cifar-10 and ImageNet datasets. Secondly, this 
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Figure 8: Inference speedup comparison of two BitX repre-
sentatives on 16-bit fixed-point DNNs.

Also based on these parameters, we define two representatives of
BitX – BitX-mild and BitX-wild.

FPGA & ASIC implementation. At the RTL level, we employ
Vivado HLS (v2018.2) to conduct post-synthesis simulation on Xil-
inx Virtex-7 FPGA. The actual inference time is recorded at each
run. We instantiate 16 CUs in PE, clocked at 200 MHz. Runtime
memory access data of our FPGA platform are recorded and then
fed to the DRAMsys tool [17] to estimate the energy consump-
tion of the memory accesses. For ASIC, Synopsis Design Compiler
(v2016) is used to measure power and area. The frequency is set to 1
GHz. The whole design is synthesized with TSMC 28nm technology
library.

4.1 Accuracy & Sparsity
4.1.1 Cifar-10. Table 2 shows the accuracy/sparsity results for
Cifar-10 dataset, grouped by the parameter N . Smaller N means
more bit rows are pruned, so the bit-level sparsity also turns larger.
For example for N = 4, the sparsity increases to 1.80x compared
with the original model. More sparsity is undoubtedly beneficial
to the inference speedup (as proved in Section 4.2). On the other
hand, larger N means less bit rows are pruned so the sparsity only
shows 1.41x and 1.53x for N = 10 and N = 8.

BitX shows promising pruning accuracy. The average accuracy
loss is about 0.1% at N = 10, 8 and 6 for various evaluated DNNs.

4.1.2 ImageNet. The results for ImageNet dataset shown in Table
3 exhibit a similar trend as Table 2: less than 0.5% average accuracy
loss at N = 10, 8, 6, and 1.40x, 1.52x, 1.66x sparsity increment apiece.

Discussion: firstly, it proves that the proposed BitX pruning
methodology will not affect the accuracy of DNNs. The average
accuracy loss is less than 0.5% at N = 10, 8 and 6, for both Cifar-10
and ImageNet datasets. Secondly, this experiment clearly demon-
strates the tradeoff between accuracy and sparsity. A borderline

Table 5: ImageNet performance of two BitX representatives
under 16-bit fixed-point DNNs.

Model Baseline(16b) BitX-mild BitX-wild

ResNet50 74.50 74.50 74.10
(0.00) (-0.40)

SqueezeNet1_1 54.86 54.80 54.40
(-0.06) (-0.46)

DenseNet121 71.00 71.90 71.80
(+0.90) (+0.80)

ResNext101_32x8d 78.00 78.20 78.10
(+0.20) (+0.10)

configuration also exists with the maintained accuracy and satis-
fied sparsity. As shown in Table 2 and Table 3, there is a significant
accuracy drop at N = 4 and N = 6. Therefore, we can safely choose
N values in the range 10 ~ 6 in BitX. This experiment also verifies
that there are tremendously redundant bits in the parameters that
can be safely pruned without hurting the accuracy.

4.2 Speedup
We evaluate the inference speed at different sparsity levels indicated
by the N configuration. The speedup data are recorded according
to the actual inference cycles on our Xilinx V7 FPGA platform and
normalized to the original non-pruned DNN. As shown in Figure
7, BitX exhibits ~2.6x speedup at N = 10, and ~4.8x speedup at
N = 6. The promising speedup stems from the enriched bit sparsity
enforced by the BitX pruning. More abundant sparsity enables more
zero-bit skipping in the BitX accelerator, and thus leads to much
faster inference speed.

Discussion: BitX accelerator directly integrates the pruning
module in hardware, and executes hardware runtime pruning dur-
ing inference. This is totally different from software-based pruning
that targets value sparsity to acquire reduced parameter size and
FLOPs. BitX leverages the abundant useless bits to directly acceler-
ate the original DNN after deployment, and does not involve any
software work. The high speedup and lossless accuracy can provide
attractive convenience for the end users to deploy their models into
products much faster.

4.3 Design Space Exploration
Section 4.1 and Section 4.2 have evaluated the sensitivity of N and
its impact to the BitX performance.We further explore the impact of
another key parameterM in this experiment.We use 4DNNs trained
with the ImageNet dataset as shown in Table 4. M indicates the
number of input weights that the accelerator could simultaneously
prune (Figure 3), and generally speaking,M barely influences the
overall accuracy scaling from 8 ~ 512 for all the 4 DNNs. For example,
in ResNet50 the accuracy at M = 8 is lower than the accuracy at
M = 16 but is higher than the accuracy at M = 32 or 64. For
SqueezeNet1_1, the accuracy atM = 8 (54.86%) is even higher than
the original model accuracy (54.84%). The average accuracy loss
at otherM configurations is less than 0.3%. We conclude that the
number of simultaneous input weights has negligible impact to the
performance of BitX.
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Table 6: Performance of BitX collaborating with software-
based pruning. We use the genetic and channel-pruned
YoloV3 model.

Method mAP(%) Speedup(x)

YoloV3 (baseline) 50.36 1
YoloV3 + BitX-mild (50.42) 2.75

(+0.06)
YoloV3 + BitX-wild 50.05 4.98

(-0.31)
YoloV3 + Slimming [22] (baseline) 50.23 2.35

(-0.13)
YoloV3 + Slimming [22] + BitX-mild 50.30 7.22

(+0.07)
YoloV3 + Slimming [22] + BitX-wild 48.72 14.76

(-1.64)
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the accuracy consistently degrades from 𝑁 = 10 to 𝑁 = 4, which is in 

line with the observation in Table 3. It is 𝑁 that decides the 

granularity of pruning, while 𝑀 only controls the input throughput.  

Two BitX instances: as discussed above, 𝑀 barely influences the 

accuracy, so we choose 𝑀 = 8 for the efficient accelerator 

implementation. Upon 𝑀 = 8, we select two 𝑁 settings: 𝑁 = 10 and 𝑁 

= 6 to form two BitX instances, termed as BitX-mild (𝑁=10, 𝑀=8) 

and BitX-wild (𝑁=6, 𝑀=8). BitX-mild has the topmost accuracy but 

limited speedup, while BitX-wild has little-degraded accuracy but 

relatively abundant speedup. Two instances are used to verify the 

“accuracy-speedup” tradeoff, and in the rest of this section, we will 

use the two instances as the representatives of BitX to compare with 

other SOTA accelerator baselines. 

4.4 Performance of the Fixed-point DNN 

Accuracy. BitX is also feasible to 16b fixed-point DNNs, as part 

of its versatility. Fixed-point weight also exhibits substantial useless 

bits for pruning, but the difference with floating-point weight is that it 

does not need exponent matching. Therefore, the “E-alignment” 

module in BitX accelerator is not needed and could be power gated 

(Figure 3). The weights directly pass through to the “Bit-Extraction” 

module for sorting the probabilities of each bit row. As Table 5 

shows, the accuracy is exactly equal to the non-pruned ResNet50 for 

BitX-mild. More promisingly, BitX-mild and BitX-wild both exhibit 

even higher accuracy than the non-pruned DenseNet121 and 

ResNext101.  

The accuracy improvement attains up to nearly 1%. We conclude 

that BitX could precisely pinpoint the useless bits in both floating-

point and fixed-point DNNs. 

Speedup. As shown in Figure 8, BitX-wild exhibits up to 2x 

speedup over the original model. Reporting some of the results, for 

ResNet50, the speedup on BitX-wild is 1.67x; for DenseNet121, the 

datum is1.79x. As for the BitX-mild, the largest speedup emerges at 

SqueezeNet1_1 – 1.12x. Other DNNs demonstrate tiny acceleration, 

primarily because each weight only has 16-bit width, setting 𝑁 = 10 

Table 6：Performance of BitX collaborating with software-

based pruning. We use the genetic and channel-pruned 

YoloV3 model. 

Method mAP (%) Speedup (x) 

YoloV3 (baseline) 50.36 1 

YoloV3+ BitX-mild 
50.42 

(+0.06) 
2.75 

YoloV3+ BitX-wild 
50.05 

(-0.31) 
4.98 

YoloV3 + Slimming [1] (baseline) 
50.23 

(-0.13) 
2.35 

YoloV3 + Slimming [1] + BitX-mild 
50.30 

(+0.07) 
7.22 

YoloV3 + Slimming [1] + BitX-wild 
48.72 
(-1.64%) 

14.76 

 

  

Figure 9: Speedup comparison with other SOTA accelerators. 
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(a) Full system energy breakdown 

 

(b) BitX PE-only energy breakdown 

Figure 11: full-system and PE-only energy breakdown for 

SqueezeNet. 
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Precision BitX (floating-point 32) BitX (16b fixed point) 

Item 
Area  

(mm2) 

Power  

(mW) 

Power  

(mW) 

E-alignment 
Module 

0.017 
(43.6%) 

11.15 
(16.2%) 

-- 

Bit Extraction 
0.008 

(20.1%) 

0.040 

(0.05%) 

0.026 

(0.07%) 

16 CUs 
0.003 
(7.7%) 

53.71  
(78.3%) 

35.81 
(98.4%) 

Misc&Control 
0.011 

(28.2%)  

3.72 

(5.4%) 

0.576 

(1.6%) 

Total 0.039 68.62 36.41 
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Figure 10: Energy efficiency comparison. Higher is better.

Discussion: themajor factor that steers the accuracy and speedup
is the N configuration. Table 4 shows that at different scales ofM ,
the accuracy consistently degrades from N = 10 to N = 4, which
is in line with the observation in Table 3. It is N that decides the
granularity of pruning, whileM only controls the input throughput.

Two BitX instances: as discussed above, M barely influences
the accuracy, so we choose M = 8 for the efficient accelerator
implementation. Upon M = 8, we select two N settings: N = 10
and N = 6 to form two BitX instances, termed as BitX-mild (N = 10,
M = 8) and BitX-wild (N = 6, M = 8). BitX-mild has the topmost
accuracy but limited speedup, while BitX-wild has little-degraded
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another key parameter 𝑀 in this experiment. We use 4 DNNs trained 
with the ImageNet dataset as shown in Table 4. 𝑀 indicates the 
number of input weights that the accelerator could simultaneously 
prune (Figure 3), and generally speaking, 𝑀 barely influences the 
overall accuracy scaling from 8~512 for all the 4 DNNs. For 
example, in ResNet50 the accuracy at 𝑀 = 8 is lower than the 
accuracy at 𝑀 = 16 but is higher than the accuracy at 𝑀 = 32 or 64. 
For SqueezeNet1_1, the accuracy at 𝑀 = 8 (54.86%) is even higher 
than the original model accuracy (54.84%). The average accuracy 
loss at other 𝑀 configurations is less than 0.3%. We conclude that the 
number of simultaneous input weights has negligible impact to the 
performance of BitX.  

Discussion: the major factor that steers the accuracy and speedup is 
the 𝑁 configuration. Table 4 shows that at different scales of 𝑀, the 
accuracy consistently degrades from 𝑁 = 10 to 𝑁 = 4, which is in line 

with the observation in Table 3. It is 𝑁 that decides the granularity of 
pruning, while 𝑀 only controls the input throughput.  

Two BitX instances: as discussed above, 𝑀 barely influences the 
accuracy, so we choose 𝑀 = 8 for the efficient accelerator 
implementation. Upon 𝑀 = 8, we select two 𝑁 settings: 𝑁 = 10 and 𝑁 
= 6 to form two BitX instances, termed as BitX-mild (𝑁=10, 𝑀=8) 
and BitX-wild (𝑁=6, 𝑀=8). BitX-mild has the topmost accuracy but 
limited speedup, while BitX-wild has little-degraded accuracy but 
relatively abundant speedup. Two instances are used to verify the 
“accuracy-speedup” tradeoff, and in the rest of this section, we will 
use the two instances as the representatives of BitX to compare with 
other SOTA accelerator baselines. 

4.4 Performance of the Fixed-point DNN 
Accuracy. BitX is also feasible to 16b fixed-point DNNs, as part of 
its versatility. Fixed-point weight also exhibits substantial useless bits 
for pruning, but the difference with floating-point weight is that it 
does not need exponent matching. Therefore, the “E-alignment” 
module in BitX accelerator is not needed and could be power gated 
(Figure 3). The weights directly pass through to the “Bit-Extraction” 
module for sorting the probabilities of each bit row. As Table 5 
shows, the accuracy is exactly equal to the non-pruned ResNet50 for 

Table 6：Performance of BitX collaborating with software-
based pruning. We use the genetic and channel-pruned 
YoloV3 model. 

Method 
mAP 
(%) 

Speedup 
(x) 

YoloV3 (baseline) 50.36 1 

YoloV3+ BitX-mild 
50.42 
(+0.06) 

2.75 

YoloV3+ BitX-wild 
50.05 
(-0.31) 

4.98 

YoloV3 + Slimming \cite{RN7} 
(baseline) 

50.23 
(-0.13) 

2.35 

YoloV3 + Slimming \cite{RN7} + 
BitX-mild 

50.30 
(+0.07) 

7.22 

YoloV3 + Slimming \cite{RN7} + BitX-
ild

48.72 
( 1 64%)

14.76 

Figure 9: Speedup comparison with other SOTA accelerators. 

Figure 10: Energy efficiency comparison. Higher is better. 
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(a) Full system energy breakdown

(b) BitX PE-only energy breakdown

Figure 11: full-system and PE-only energy breakdown for 
SqueezeNet. 
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Precision BitX (floating-point 32) BitX (16b fixed point) 

Item 
Area  
(mm2) 

Power  
(mW) 

Power  
(mW) 

E-alignment
Module

0.017 
(43.6%) 

11.15 
(16.2%) 

-- 

Bit Extraction 
0.008 
(20.1%) 

0.040 
(0.05%) 

0.026 
(0.07%) 

16 CUs 
0.003 
(7.7%) 

53.71  
(78.3%) 

35.81 
(98.4%) 

Misc&Control 
0.011 
(28.2%) 

3.72 
(5.4%) 

0.576 
(1.6%) 

Total 0.039 68.62 36.41 

Figure 11: full-system and PE-only energy breakdown for
SqueezeNet.

Table 7: PE area and power breakdown @TSMC 28nm.

BitX BitXPrecision (floating-point 32) (16b fixed point)

Area Power PowerItem (mm 2 ) (mW) (mW)

E-alignment 0.017 11.15
(43.60% ) (16.20%) –

Bit Extraction 0.008 0.04 0.026
(20.10%) (0.05%) (0.07%)

16 CUs 0.003 53.71 35.81
(7.70%) (78.30%) (98.40%)

Misc&Control 0.011 3.72 0.576
(28.20%) (5.40%) (1.60%)

Total 0.039 68.62 36.41

accuracy but relatively abundant speedup. Two instances are used
to verify the “accuracy-speedup” tradeoff, and in the rest of this
section, we will use the two instances as the representatives of BitX
to compare with other SOTA accelerator baselines.

4.4 Performance of the Fixed-point DNN
Accuracy. BitX is also feasible to 16b fixed-point DNNs, as part of
its versatility. Fixed-point weight also exhibits substantial useless
bits for pruning, but the difference with floating-point weight is that
it does not need exponent matching. Therefore, the “E-alignment”
module in BitX accelerator is not needed and could be power gated
(Figure 3). The weights directly pass through to the “Bit-Extraction”
module for sorting the probabilities of each bit row. As Table 5
shows, the accuracy is exactly equal to the non-pruned ResNet50
for BitX-mild. More promisingly, BitX-mild and BitX-wild both
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exhibit even higher accuracy than the non-pruned DenseNet121
and ResNext101.

The accuracy improvement attains up to nearly 1%. We conclude
that BitX could precisely pinpoint the useless bits in both floating-point
and fixed-point DNNs.

Speedup. As shown in Figure 8, BitX-wild exhibits up to 2x
speedup over the original model. Reporting some of the results, for
ResNet50, the speedup on BitX-wild is 1.67x; for DenseNet121, the
datum is 1.79x. As for the BitX-mild, the largest speedup emerges at
SqueezeNet1_1 – 1.12x. Other DNNs demonstrate tiny acceleration,
primarily because each weight only has 16-bit width, settingN = 10
means only 6-bit width is pruned. The trivial bit 1s pruned are very
limited. By sharp contrast, BitX-wild will prune 10 bits for each
weight. Hence, the speedup is abundant.

4.5 Working with Software-based Pruning
As a hardware runtime pruning approach, BitX is orthogonal to
any software-based pruning schemes. In this experiment, we use
the famous object detection model – YoloV3 [28] as the benchmark
DNN, including the genetic YoloV3 model and software-pruned
model based on the structured channel pruning [22]. As presented
in Table 6, BitX-mild still displays better performance than the ge-
netic YoloV3 with 2.75x speedup. BitX-wild exhibits tiny-degraded
accuracy but higher speedup – 4.98x. For the YoloV3+Slimming
baseline, Bit-mild has 0.07% accuracy improvement and BitX-wild
has less than 1.6% accuracy degradation. The speedup is very much
considerable over the genetic YoloV3: YoloV3+Slimming+BitX-wild
attains 14.76x; YoloV3+Slimming+BitX-mild attains 7.22x. This ex-
periment clearly proves that our method is completely compatible
to the previous software pruning schemes. The users could effort-
lessly obtain more superior speedup and accuracy by collaborating
BitX with software pruning.

4.6 Comparison with SOTA Accelerators
In this subsection, we compare the two BitX representatives with
the state-of-the-art fixed-point accelerators. Stripes [16] and Prag-
matic [2] are two bit-serial accelerators. Stripes implements the
MAC computation using bit-level arithmetic, but does not consider
the sparsity. Pragmatic, on top of stripes, exploits the bit sparsity
by dynamically skipping the zero bits. However, it is not designed
for bit pruning. BitX targets two types of useless bits. The trivial
bit 1s are also pruned which means the amount of 0 bits that can be
skipped becomes more, hence yielding better speedup performance.

Speedup. As proved by Figure 9, the speedup over Pragmatic
(normalized baseline) and stripes is 2.00x and 3.79x for BitX-wild;
and 1.12x, 2.34x for BitX-mild. A more interesting observation is
that the floating-point results are even better than the fixed-point
BitX, still because of the limited 16-bit width. Floating-point weight
has 24-bit mantissa and spawns even more useless bits after ex-
ponent matching. The functional flexibility provided by BitX also
releases more AI tasks that could run on BitX. The users could
freely customize their DNNs in the practical use.

Energy efficiency. Similar to the speedup result, the energy
efficiency of BitX outperforms other accelerator baselines, but this
time the 16b BitX-wild (2.00x, SqueezeNet, 1.68x ResNet50) demon-
strates better result than the float-32 BitX-mild (1.24x, 1.22x). That is

because the floating-point BitX has higher power consumption due
to the “E-alignment” module which is power gated in the 16b mode.
However, combined with the inference speed, BitX-wild (float 32)
still wins for 2.01x and 1.98x better efficiency.

Energy breakdown. Our Xilinx V7 FPGA platform involves
DDR3 memory. We use DRAMsys to estimate the runtime memory
access energy. Figure 11 shows the energy breakdown from two
aspects. Figure 11(a) shows the full-system energy breakdown and
clearly the memory accesses dominate the energy consumption.
Especially for the two 16-bit BitX representatives, the memory
access energy could attain 98% and PE energy only occupies less
than 2%. In Figure 11(b), we further decompose the PE-only energy
for each BitX instance. CU energy dominates this time (63%, 89%,
78%, 78%), because we have 16 CUs with a large number of buffers
to store the bit-pruned weights. For other modules, E-alignment
and the control circuits consume around 16% and 5%~37% energy,
respectively.

Area and Power breakdown. Under TSMC 28 nm technology
node, BitX in floating-point 32 mode exhibits 0.039mm2 area. Table
7 illustrates the largest area is occupied by the E-alignment module
(43.6%), because it involves frequent shifting operation and some of
the wires are inevitably prolonged to avoid intersection. However,
it is not the largest power consumer (only 16.2%) because no com-
putation circuits are involved in this module. Comparatively, the
16 CUs occupy the smallest area (7.7%) but consume most of the
power (78.3%) due to the internal arithmetic logic. BitX in 16-bit
fixed-point mode powers down the E-alignment module and the
CU arithmetic is based on the fixed-point activations, so its overall
power consumption reduces to 36.41 mW, compared with 68.62
mW in the floating-point 32 mode.

5 CONCLUSION
In this paper, we propose a novel hardware runtime pruning method
- BitX, to empower versatile DNN inference. By targeting the abun-
dant bit-level sparsity and trivial bit 1s, it implements pruning
on-the-fly in hardware without any software work. It precisely
locates the essential bits by the proposed BitX pruning algorithm,
and prunes away the trivial bits at different precisions including
both floating point and fixed point. The empirical studies have
proved the efficacy of BitX, by providing abundant sparsity, faster
inference speed and lossless (or even higher) accuracy on various
image classification and object detection models. We also hope BitX
pruning methodology and the associate accelerator design would
stimulate more insightful perspectives on hardware runtime prun-
ing, to provide both promising DNN acceleration and excellent user
experience at the same time.
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