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ABSTRACT
Along with the rapid evolution of deep neural networks, the ever-
increasing complexity imposes formidable computation intensity
to the hardware accelerator. In this paper, we propose a novel
computing philosophy called “bit interleaving” and the associate
accelerator design called “Bitlet” to maximally exploit the bit-level
sparsity. Apart from existing bit-serial/parallel accelerators, Bitlet
leverages the abundant “sparsity parallelism” in the parameters to
enforce the inference acceleration. Bitlet is versatile by supporting
diverse precisions on a single platform, including floating-point
32 and fixed-point from 1𝑏 to 24𝑏. The versatility enables Bitlet
feasible for both efficient inference and training. Empirical studies
on 12 domain-specific deep learning applications highlight the
following results: (1) up to 81×/21× energy efficiency improvement
for training/inference over recent high performance GPUs; (2) up to
15×/8× higher speedup/efficiency over state-of-the-art fixed-point
accelerators; (3) 1.5𝑚𝑚2 area and scalable power consumption from
570𝑚𝑊 (𝑓 𝑙𝑜𝑎𝑡32) to 432𝑚𝑊 (16𝑏) and 365𝑚𝑊 (8𝑏) @28𝑛𝑚 TSMC;
(4) highly configurable justified by ablation and sensitivity studies.
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1 INTRODUCTION
The deep learning accelerator performance is supposed to catch up
with the ever increasing model size designed for higher accuracy,
but on the other hand, the hardware designers are very reluctant to
empower more computational resources in line with the evolution
of deep neural networks (DNNs), due to some tight limits like
battery life and power budget or even cost especially on embedded
devices like autonomous robotics, drones and smartphones and so
on. Boosting the accelerator efficiency is hence very desirable in
both high-performance and power-efficient use cases. This work
focuses on leveraging the abundant bit-level sparsity parallelism to
accelerate both training and inference phases to serve the cloud/edge
general-purpose deep learning.

TheLandscape of Prior Sparsity-awareWork: Plenty ofmech-
anisms [7, 31, 43, 49] and prototypes [16, 17, 28, 32, 47] in the litera-
ture seek to mine the maximum potential of weight/activation spar-
sity and execute the effectual multiply-and-accumulations (MACs)
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in parallel for as many as possible. However, the sparsity is not
always abundant but varies upon different models or even the in-
dividual layers within the same model. For instance, activation
sparsity is more possible due to some non-linear activation func-
tions, but weights, on the contrary, usually show scarce sparsity
except for training with L1 norm. Even for the activations, the
zero values are only likely to be spawned when they are passed
through functions like ReLU or PReLu. The same situation exists
in the model employing activation functions, such as sigmoid, ELU,
leakyRelu, Gelu or Tanh. To resolve this challenge, some approaches
therefore intend to identify the near “zero values” in the operand
set [29, 30] or implement tedious sparse (re)training to create more
sparsity for pruning [27, 31, 43, 48].

Recently, the community has noticed that headroom of exploit-
ing the value-based sparsity has hit an end. On one hand, there
exits a visible margin the compression ratio cannot overstep if the
lossless accuracy is the first-order design constraint. No matter
what pruning methodology is employed, plenty of time is spent
on exploring such margin to balance the accuracy and the model
size. On the other hand exploiting the value sparsity also inevitably
induces more complex accelerator design. For example, enlarg-
ing its storage system to accommodate the growing size of the
indices[17, 32, 46, 47] with the cost of the increased memory ac-
cesses and compromised peak computation throughput.

The “bit-level sparsity”, on the contrary, is the inherently more
fine-grained sparsity that targets the “zero bits” in each operand
instead of the coarse-grained zero values. Using either floating-
point or fixed-point precision to represent each weight or activation,
the zero-bit percentage could attain 45% ∼ 77% in different vanilla
DNNs as will be shown in the next section. Skipping zero bits in
the operand will not affect the result, which also implies that the
acceleration could be directly obtained without any software effort
if effectual computation at the bit level is strictly enforced.

A series of bit-serial accelerators [8, 22, 26, 37] have been pro-
posed to leverage the abundant bit-level sparsity, albeit to varying
degrees. Figure 1 presents a high-level example to compare the
computing paradigm of three types of accelerator PE. Apart from
the early-stage bit-parallel accelerators [9, 12, 13, 19, 21] (Figure
1a), bit-serial prototypes use numerically identical bit-level arith-
metic to compute the inner product. For example, decomposing
one 8𝑏 × 8𝑏 product into eight 1𝑏 × 8𝑏 products yields identical
result, by organizing and input the weights for MAC both in serial
(Step ❶ in Figure 1b). However, this simple example also showcases
an overwhelming problem. To release the maximum potential of
the bit sparsity, it better skips the zero bits as many as possible.
Whereas, the locality of the zero bits in each 8𝑏 operand is highly
unpredictable, especially after fixed-point quantization. The reason
is that quantization will fully utilize the limited bit width to repre-
sent the value range, making zero bits arbitrarily interleaved with
the essential bit 1s. In order to fully leverage the inherently exposed
bit sparsity, synchronization is imperative and must be carefully
implemented as the Step ❷ shows in Figure 1b, before finalizing
the bit-serial MACs in Step ❸.

Prior used synchronization methods include middleware-level
dense scheduling (i.e., Bit-tactical [26]) and hardware-level direct
Booth Encoding (i.e. Laconic [36] and Pragmatic [8]) and so on.
However, the key weakness of these approaches stems from the

difficulty in determining a uniform pattern to describe the locality
of the sparsity for synchronization. A direct consequence is that
the ongoing MAC operation must be halted for aligning the bit sig-
nificance with the cost of crippled throughput compared with the
bit-parallel counterparts. For example in Figure 1(b),𝑤02 must wait
until𝑤10 and𝑤11 have accomplished MAC, while𝑤13 must wait
until𝑤02 has accomplished MAC. In terms of the hardware imple-
mentation, the complexity is also increased because Booth encoding
needs additional circuits for encoding and storing the weight bits.
As the incidental weakness, such serialized organization manner
cannot support the floating-point arithmetic, or in other words, bit-
serial accelerators cannot be deployed for general-purpose cases.

Our Focus: this work proposes a novel method to exploit the
bit-level sparsity called “bit interleaving.” It does not focus on the
internal sparsity of an individual weight; instead, it leverages the
sparsity parallelism exhibited by a series of weights to accelerate
DNN inference. As shown in Figure 1c, it organizes the same num-
ber of weights in parallel (Step ❶), but interleaves the weights and
implements bit-level MAC in serial (Step ❷) This is different from
the existing bit serial/parallel accelerator design concept, from two
dimensions: (1) compared with bit parallel accelerators, the actual
bits used for computing the product are not original weights but
interleaved weights; (2) apart from the bit serial accelerators, the se-
rialization procedure is not limited within one weight, but extended
to a series of interleaved weights along with each independent
bit significance. Due to the above two features, bit interleaving is
particularly appealing to DNNs in three aspects: (1) MAC computa-
tions exhibit behaviors that favor bit interleaving: the accumulation
targets each independent bit significance, and no synchronization
mechanism is necessary as in bit-serial accelerators. (2) it can be
conveniently configured to support either floating-point or fixed-
point precision, and is orthogonal to any quantization/pruning
methodology. This becomes more important when quantization
to lower fixed-point or integer precision does not work, and the
inference has to turn back to floating-point arithmetic; (3) the “bit
interleaving”-directed accelerator design could be used for both
training and inference.

The contributions of this work are listed as follows:

• Wepropose anovelDNNaccelerationphilosophy that fully
exploits the bit-level sparsity, termed as bit interleaving. Sec-
tion 2 demonstrates the bit sparsity is not only high, as proved in re-
cent literature[36], but also uniform at each bit significance (around
50%). Our findings corroborate that such even distribution persists:
① in both fixed-point & floating-point weights, and ② across big &
little models. This sparsity parallelism motivates the feasibility and
the necessity of the proposed bit interleaving concept.
• We propose Bitlet, the associate hardware accelerator that
maximallymines the potential of bit interleaving. Bitlet serves
as a general-purpose deep learning accelerator supporting both
floating-point (𝑓 𝑝 32/16) and fixed-point (1 ∼ 24𝑏) on one single
platform. No matter what precision is used in practice, the sparsity
parallelism could all be sufficiently exploited at each bit significance.
Such versatility renders Bitlet could bring satiable efficiency not
only in inference but also in training. As will be shown in Section
5, the maximum speedup of Bitlet could attain 15× over existing
bit parallel/serial accelerators, and 81× over GPUs.
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Figure 1: High-level step-by-step example comparing the bit-interleaved PE with prior bit-parallel/serial PE in the fixed-point
mode. The 𝑤𝑖

𝑗 marked in grey is the non-essential bit (0 bit). In (a) bit-parallel PE, Step ❶ organizes the weights for MAC in
parallel; Step ❷ issues MAC. In (b) bit-serial PE, Step ❶ organizes the weights in serial; Step ❷ synchronizes the significance of
the essential bits; Step ❸ issues the “bit-serial” MAC. In (c) bit-interleaved PE, Step ❶ organizes the weights in parallel, but Step
❷ issues the bit-serial MAC along each bit significance, excluding the synchronization operation. Note that bit interleaving
also supports the floating-point MAC, as will be specified in Section 3.

The biggest difference with previous bit serial accelerators 
is that it targets the sparsity parallelism exhibited by each bit 
significance of a series of weights rather than the sparsity itself 
in a particular genetic model weight. BCE employs 24 RR-regs 
(see Figure 4) to distill such sparsity parallelism. They 
implement zero skipping along each bit lane asynchronously 
but implicitly, which means bitlet does not need explicit Booth 
Coding to fulfill this purpose unlike that of in Laconic [], PRA 
[] or Tactical []. Instead, a flexible sliding window is 
instantiated to frame the essential bits on each bit lane, and 
select the target activation mantissa as output for accumulation. 
The selection procedure could be pipelined as needed and will 
not hit the roofline set by the lane that has the longest essential 
bit 1s, because Section II has proved the sparsity parallelism is 
nearly even. This is apart from the bit serial counterparts that 
the overall computing cycles are highly determined by many 
critical serial bit lanes that usually have much longer essential 
bit length. As the Figure 9 in Section V will illustrate, the more 

A/W operands as input, the more speedup bitlet will obtain. 
That is because more inputs will expose more sparsity 
parallelism that favors bit interleaving and throughput 
enhancement.  

At last, bitlet is versatile. By simultaneously supporting 
floating-point and fixed-point precision in a single platform, it 
is unnecessary for the deep learning hardware designers to 
equip other specific structures if the application engaged 
requires floating point inference for higher accuracy as the first 
priority, or if it must fall back to integers for lower power 
consumption facing the low-battery scenario. Even though 
there exits bit-serial accelerators in the literature [4-7] that 
could extract the useful bit 1s for acceleration as well, they only 
suit for the fixed-point precision, which means the deep 
learning tasks that could run on these accelerators are very 
limited. To the best of our knowledge, bitlet is the first 
prototype capable of distilling essential bits for both floating-

Table 1: Accelerator design philosophies. (†) the last column titled “power scalability” means if the PE power consumption is scalable under different bit 
length precisions. For instance, the power consumed under 8b should be less than 16b; and the fixed point should be less than the floating point. 

Philosophy Accelerators Sparsity Exploited Precision Versatility Trainable? †Power Scalability
bit parallel Eyeriss [], DianNao series [] [] N/A 16b         
bit parallel Cambricon-S [], –x [], EIE [] A-value or W-value  16b         
bit parallel SCNN [] A-value and W-value 16b         
bit serial UNPU [], Stripes [] N/A 1~16b         
bit serial Bit Fusion [] N/A 2,4,8,16b         
bit serial Pragmatic [] A-bit or W-bit 1~16b         
bit serial Bit Tactical [] A-bit and W-value  1~16b         
bit serial Laconic [] A-bit and W-bit 1~16b         

bit interleaving Bitlet (this work) W-bit and W-value, 
(or A-bit and A-value) float 32/16, 1~24b         

 

Table 2 Benchmark DNNs and their specs. We use these models for motivating bit interleaving and in the evaluation section. 

Models Type Precision Domain Dataset GFLOPs Weights (M) W-bit Sparsity (%) 
ResNet-50 [] 2D convolution 8 bit Image Classification ISLVRC’12 [] 8.21 25.56 70.15 (fixed point) 
MobileNetV2 [] 2D convolution 8 bit Image Classification ISLVRC’12 [] 0.615 3.49 76.85 (fixed point) 
YoloV3[] 2D convolution 8 bit Object Detection CoCo [] 25.42 61.95 77.78 (fixed point) 
Multi-Pose[] 2D convolution 8 bit Pose Estimation CoCo [] 97.55 59.59 66.33 (fixed point) 
lapSRN [] 2D deconvolution 16 bit Image Super Resolution SET14 [] 736.73 0.87 74.31 (fixed point) 
DCPDNet [] encoder-decoder 16 bit Deraining/Dehazing NYU-Depth [] 254.37 66.9 75.00 (fixed point) 
DenseNet-161 [] 2D convolution 16 bit Image Classification ISLVRC’12 [] 15.56 28.68 68.92 (fixed point) 
FCOS [] feature pyramid 16 bit Object Detection CoCo [] 80.14 32.02 70.83 (fixed point) 
CartoonGAN [] GAN float 32 Style Transfer flicker [] 108.98 11.69 48.49 (floating point)
Transformer [] seq2seq float 32 Word Embedding wmt’14 [] 10.6 176 45.75 (floating point)
C3D [] 3D convolution float 32 Video Understanding UCF101 [] 38.57 78.41 45.83 (floating point)
D3DNet [] 3D deformable float 32 Video Super Resolution Vimeo-90k [] 408.82 2.58 47.69 (floating point)
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Figure 2: Potentials of bit interleaving. The baseline design is "bit parallel (N/A)". Most existing sparsity-aware accelerators
only target fixed-point precision, so we only compare 16b and 8b DNNs in Table 2. In Section 5, we will evaluate the floating-
point applications over GPUs.

Table 1: Accelerator design philosophies.

Philos. Design Sparsity Preci. V. Training
Exploited Support

bit
parallel

Eyeriss[10], N/A 16b NoDaDianNao[12]
Cambricon A-/W-value 16b No-S[47], EIE [17]
SCNN[32] A-&W-value 16b No

bit
serial

UNPU[27], N/A 1 ∼ 16b NoStripes[22]
Bit Fusion [37] N/A 2,4,8,16b No
Pragmatic [8] A-/W-bit 1 ∼ 16b No
Bit Tactical[26] A-bit&W-value 1 ∼ 16b No
Laconic[36] A-&W-bit 1 ∼ 16b No

bit inter
-leaving

Bitlet
(this work)

W-bit &W-value, 𝑓 𝑝32/16,
1 ∼ 24b

Yes(or A-bit&A-value)

2 MOTIVATION AND RELATEDWORK
2.1 Rethinking Sparsity-aware Accelerators
In Table 1, we categorize the state-of-the-art sparsity-aware acceler-
ators. In early-stage bit-parallel accelerators, i.e., Cambricon series
[46, 47] and SCNN [32], the sparsity is only focused on values. By
collaborating with software-level pruning techniques, more head-
room of zero values are created to release the potential of these
accelerators. More recent bit-serial accelerators place the empha-
sis on the bit-level sparsity, considering the zero bits are inher-
ently abundant in genetic weights or activations. The most recent
Laconic[36] uses “terms” after Booth Coding to extract the essential
bits serially and proposes a low-cost LPE to minimize the power

increment caused by frequent encoding/decoding. Tactical[26] re-
solves the sparsity on the level of weight value and activation bit.
The design concept is similar to Pragmatic[8], both of which uses
zero-bit skipping ability to optimize the ineffectual product, but
Tactical relies on a datatype agnostic front-end for skipping the zero
weights and a software scheduler for maximizing the possibilities
of weight skipping. There are also sparsity-agnostic prototypes that
follow bit-serial computing manner. For example, Stripes[22] and
UNPU[27] directly implements bit serialization for the fixed-point
operands without sparsity avoidance. Bit-fusion[37] supports faster
spatial and temporal composition to accelerate bit serialization but
still does not exploit bit sparsity as well.

The strength of bit serial accelerators is the effectiveness of ex-
ploiting the sparsity in bits. However, the bit-serial accelerators
provide comparatively lower throughput than its bit-parallel coun-
terpart. On the top of two design philosophies, bit interleaving
seeks to combine their pros and avoid their cons. Figure 2 shows
the potential of Bitlet could attain 8× ∼ 29× by exploiting the
weight bit and value sparsity (W-bit and W-value in Table 1) for
various AI tasks. Exploiting the activation sparsity is also applicable
within Bitlet, depending on the on-spot data reuse policy.

Although fixed-point precision succeeds in efficient DNN in-
ference, it leads that the accelerators designed for fixed precision
can only implement inference, which makes these prototypes can
hardly work for general purpose perspective. For example, the DNN
training still relies on floating-point back propagation to guarantee
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the two modes, and thus more suitable for practical use on both 
cloud and edge side deep learning acceleration. 

II. MOTIVATION AND RELATED WORK 

A. Reconsidering Sparsity-aware Accelerators 
As shown in Table 1, we categorize most state-of-the-art 

sparsity-aware accelerators. In early-stage bit-parallel 
accelerators, i.e. Cambricon series and SCNN, the sparsity 
optimization focuses on the value level. By collaborating with 
software-level pruning techniques, it creates more headroom of 
zero values for skipping. The widely adopted weakness of bit 
parallel accelerators is the storage overhead for indices and the 
sparsity roofline that cannot be easily compromised with little 
accuracy loss. In order to resolve these issues, the more recent 
bit serial accelerators place the emphasis on the bit-level 
sparsity, considering the zero bits are inherently abundant in 
genetic model weights and activations. The most recent 
Laconic [] uses the terms after booth coding to extract the 
essential bits serially and proposes a low-cost LPE to minimize 
the power increase because frequent booth encoding/decoding . 
Tactical [] resolves the sparsity on the level of weight value and 
activation bit. The design concept is similar to PRA [], both of 
which uses zero-bit skipping ability to optimize the ineffectual 
product, but Tactical relies on a datatype agnostic front-end for 
skipping the zero weights and a software scheduler to maximize 
the possibilities of weight skipping.  

The pros of bit serial accelerator lie in the effectiveness to 
exploiting the sparsity in bits, which is the key in exposing 
ineffectual computations. However, the cons of bit serial 
accelerator are the weakened throughput compared with its bit 
parallel counterpart. There are also work that does not consider 
sparsity but also implement the bit serial computing manner. 
For example, Stripes [] and UNPU [] directly implements the 
bit serialization for fixed-point operands without sparsity 
avoidance, and Bit-fusion [] supports faster spatial and 
temporal composition to accelerate the bit serialization but still 
does not exploit bit sparsity as well.  

On top of the two design philosophy, bit interleaving seeks 
to combine their pros and avoid their cons. In specific, it targets 
multiple parallel absorbed weights, and merges them by 
squeezing out zero bits and making essential bits interleaved 
with each other. The benefits are twofold: firstly, as will be 
shown in the next subsection, it could accelerate the MACs and 
simultaneously maintain the throughput by exploiting the 
sparsity parallelism; secondly, compared with the bit 
serialization manner, the bit interleaving makes the support of 
versatile precisions possible. Although fixed-point precision 
succeeds in efficient DNN inference, it also leads that the 
accelerator designed for the fixed precision can only implement 
inference as well. In other words, the prototypes of plenty of 
existing bit-parallel/serial accelerators are weakened in training. 
Our proposed bitlet prototype, due to the bit interleaving design 
concept, could not only tackle bit/value-level sparsity 
effectively, but also support full-range precisions including 
both floating point and fixed point.  

B. Leveraging the Sparsity Parallelism 
Nearly all the work mentioned above have proved that the 

bit level sparsity is abundant. Indeed, the bit sparsity is 

inherently high across different precisions and different 
representatives of the same precision (i.e., fixed16, int8 or int4). 
However, previous work solely focus on exploring the tactics 
of skipping zero bits inside a particular weight, while none of 
them explored the inter-weight sparsity, that is, the sparsity 
parallelism based on which bit interleaving could significantly 
outperform the bit serial/parallel prototypes.  

From our observation, the weight sparsity at each 
magnitude is nearly uniform. As evidence, we trace the bit 
sparsity for each convolutional kernel, as shown in Figure 2. 
The X axis is the bit significance of the mantissa, so we have 
23 bits in total excluding the hidden bit 1 in standard fp32 
format [20]. Each orange dot indicates the zero fraction on this 
bit index within one kernel. For the two DNNs resnet152 and mobilenetv2, it shows obvious aggregation at the first half of 
the mantissa, bit 0 ~ bit 16, which means the amount of 0s and 
1s that lie on this bit index is nearly comparable. This provides 
a favorable condition to read the weights into the accelerator in 
parallel but compute the produce in serial along each bit lane, 
because the computation will not hit the roofline caused by the 
lane that dominates the computing cycles. As will be shown in 
Section V, the computation of 64 MACs could be accomplished 
within one cycle in our FPGA platform for most of the 
evaluated benchmarks.  

 

 

 
Figure 2: Sparsity parallelism. The mantissa of one fp32 weight has 23 bits 

(X axis), excluding the hidden bit 1. Each dot indicates the fraction 
of zeros on this bit across all the weights of this kernel. It shows 
around 50% bits are 0s for the weights of all kernels. Compared 
with fp32, fp16 (10-bit mantissa, excluding the hidden 1) and int8 
(excluding the signed bit) distribution is more even on each bit 
index.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122

Bi
t--

w
is

e 
Ze

ro
 F

ra
ct

io
n

Resnet-152 (fp32)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122

Bi
t--

w
is

e 
Ze

ro
 F

ra
ct

io
n

Mobilenetv2 (fp32)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9

Bi
t--

w
is

e 
Ze

ro
 F

ra
ct

io
n

Resnet-152 (fp16)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9

Bi
t--

w
is

e 
Ze

ro
 F

ra
ct

io
n

Mobilenetv2 (fp16)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

Bi
t--

w
is

e 
Ze

ro
 F

ra
ct

io
n

Resnet-152 (int8)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6

Bi
t--

w
is

e 
Ze

ro
 F

ra
ct

io
n

Mobilenetv2 (int8)

Figure 3: Sparsity parallelism. Each dot indicates the frac-
tion of zeros on this bit lane across all the weights of this
kernel. It shows ∼ 50% bits are 0s for all kernels. On X-axis
in the figure, the sparsity only entails the mantissa (23/10
bits for float 32/16), and 7 significant bits excluding the sign
bit for int8 precision.Wedonot need to consider the sparsity
of the exponential bits.

the model accuracy. Even in some edge-level use cases, the pre-
cision must be tuned back to the floating point but the real-time
requirement still needs to be fulfilled, especially when the fixed-
point precision cannot satisfy the accuracy for the in-progress AI
application. Ideally, the accelerator should be applicable to most
of the use cases, providing enough convenience and flexibility for
the end-users in synergy. Bitlet, due to the bit interleaving design
concept, could not only tackle sparsity effectively, but also sup-
port versatile precisions including both floating point and fixed
point. The configurable feature renders it suitable for both high-
performance and power-efficient scenario.

2.2 Leveraging the Sparsity Parallelism
Previous work has proved that the bit level sparsity is abundant.
However, they solely focus on exploring the tactics of skipping
zero bits inside a particular weight, while none of them explored
the inter-weight sparsity, that is, the sparsity parallelism based
on which bit interleaving could significantly outperform the bit
serial/parallel prototypes.

As shown in Figure 3, we trace the bit sparsity for different
convolution kernels, and observe that the weight sparsity at each
significance is uniform. The X-axis indicates the bit significance
of the mantissa, so we have 23 bits in total excluding the hidden
bit 1 in standard fp32 format [15]. Each orange dot indicates the
zero fraction on this bit index within one kernel. For the two DNNs
ResNet152 and MobileNetV2, it shows obvious aggregation at the
first half of the mantissa (bit0∼bit16), which means the amount
of 0s and 1s that lie on this bit significance is nearly comparable.
This provides a favorable condition to read the weights into the

accelerator in parallel but compute the produce in serial along each
bit lane. The independence of bit lanes is helpful to get rid of the cost
of synchronization. As will be shown in Section 5, the computation
of 64 MACs could be accomplished within one cycle in our FPGA
platform for most of the evaluated DNNs.

Besides, from bit lane 17∼23, the dots mostly overlap at 100% on
the Y-axis (the long tail in the fp32 figures), which means most of
the bits are 0. The floating-point multiplier does not distinguish
this suboptimal scenario, because it is designed for covering any
corner case of the operand. It is also the root reason that floating
point MAC can hardly be accelerated. Whereas in our proposed
Bitlet accelerator, such high sparsity could be easily exploited by
bit interleaving. The details will be illustrated in the next section.

3 BIT INTERLEAVING
3.1 Theorem
Without losing generality, a floating-point operand is composed
of three portions: signed bit (S), mantissa (M), and exponent (E),
following IEEE-754[15], which is the most commonly used design
standard in the industry. If we employ float-32 format (fp32 here-
after), the mantissa comprises 23 bits and the exponent occupies 8
bits with the last bit for the sign. A floating-point operand 𝑓 𝑝 could
be expressed as 𝑓 𝑝 = (−1)𝑠1.𝑚 × 2𝑒−127, in which 𝑒 is the actual
position of the “binary point” plus 127. We consider a series of fp32
MACs in computing the partial sum of convolutions:

𝑁−1∑
𝑖=0

𝐴𝑖 ×𝑊𝑖 =

𝑁−1∑
𝑖=0

(−1)𝑆𝑊𝑖 𝐴𝑖 ×𝑀𝑊𝑖
× 2𝐸𝑊𝑖 (1)

Explain Eq.1 first: we translate𝑊𝑖 into the normalized fp32 repre-
sentation, in which𝑀𝑊𝑖

and 𝐸𝑊𝑖
stands for 1.𝑚𝑊𝑖

and 𝑒𝑊𝑖
−127 for

simplified expressions. Note that𝑀𝑊𝑖
includes the hidden bit – the

first bit ‘1’ in the mantissa, while for the actual storage in memory,
this bit is hidden complied with IEEE-754.𝑀𝑊𝑖

is the mantissa and
its width is fixed – 24 bits in total, so if we further decompose this
𝑀𝑊𝑖

, we get the bit-represented partial sum:

𝑁−1∑
𝑖=0

𝐴𝑖 ×𝑊𝑖 =

𝑁−1∑
𝑖=0

−23∑
𝑏=0

[
(−1)𝑆𝑊𝑖

𝐴𝑖

]
× 2𝐸𝑊𝑖

+𝑏 ×𝑀𝑏
𝑊𝑖

(2)

=

𝑁−1∑
𝑖=0

−23∑
𝑏=0

[
(−1)𝑆𝑊𝑖

⊕
𝑆𝐴𝑖 ·𝑀𝐴𝑖

]
× 2𝐸𝑊𝑖

+𝐸𝐴𝑖
+𝑏 ×𝑀𝑏

𝑊𝑖
(3)

where𝑀𝑏
𝑊𝑖

is the 𝑏-th bit of the binarized𝑀𝑊𝑖
. Replacing 𝐴𝑖 with

IEEE-754 binary format, Eq.2 could be rewritten as Eq.3. Further-
more, let 𝐸𝑖 = 𝐸𝑊𝑖

+ 𝐸𝐴𝑖
, then Eq.3 can be transformed as:

𝑁−1∑
𝑖=0

−23∑
𝑏=0

[
(−1)𝑆𝑊𝑖

⊕
𝑆𝐴𝑖 ·𝑀𝐴𝑖

]
× 2𝐸𝑖−𝐸𝑚𝑎𝑥 × 2𝐸𝑚𝑎𝑥+𝑏𝑀𝑏

𝑊𝑖
(4)

=

𝑁−1∑
𝑖=0

𝐸𝑖−𝐸𝑚𝑎𝑥−23∑
𝑏=𝐸𝑖−𝐸𝑚𝑎𝑥

[
(−1)𝑆𝑊𝑖

⊕
𝑆𝐴𝑖 ·

(
𝑀𝐴𝑖

×𝑀𝑏
𝑊𝑖

)]
× 2𝐸𝑚𝑎𝑥+𝑏

(5)

In Eq.5, we can infer that 𝑁 number of fp32 MACs are equivalent
to a series of bit-level operations of the corresponding mantissa. In
specific, if𝑀𝑏

𝑊𝑖
= 1, then the summation of 𝑁 MACs is transformed
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into the summation of 𝑁 signed 𝑀𝐴𝑖
(denoted by (−1)𝑆𝑊𝑖

⊕
𝑆𝐴𝑖 )

shifting 2𝐸𝑚𝑎𝑥+𝑏 , contingent on the significance bit 𝑏 and the 𝐸𝑚𝑎𝑥 .
The above analysis conveys a fact: the floating-point partial

sum could be turned into bit-level operations, with the sparsity
considered. The product is primarily formed by the mantissa 𝑀𝐴𝑖

,
but whether it contributes to the product is decided by𝑀𝑏

𝑊𝑖
in Eq.5.

Such bit sparsity could be also exploited in bit interleaving. There
is a significant portion of 0s distributed at each bit significance, so
if𝑀𝑏

𝑊𝑖
= 0 but another weight𝑊𝑗 at the same significance 𝑏 is an

essential bit 1, we can allow𝑀𝑏
𝑊𝑗

taking the place of𝑀𝑏
𝑊𝑖

, making
different weight bits interleaved in the same lane. The mantissas
𝑀𝐴 𝑗

and𝑀𝐴𝑖
could contribute to the product within the same cycle,

which accelerates the computations by exploiting the sparsity.
The theorem also embraces the fixed-point precision. In Eq.5, the

impact of 𝐸𝑚𝑎𝑥 and 𝐸𝑖 − 𝐸𝑚𝑎𝑥 is unnecessary, because fixed-point
values have no exponent. In the rest of this section, we describe
how bit interleaving works for fp32 weights, and in the next section,
we elaborate on how the proposed Bitlet accelerator is designed to
support versatile precisions.

3.2 Procedures
Figure 1c exemplifies the procedures of bit interleaving for the 8-bit
fixed-point MAC in a step-by-step manner. However, the floating-
point MAC is not as easily harnessed as its fixed-point counterpart
for the practical implementation, because there is an special por-
tion - the exponent residing in the binary operand, and different
operands have different exponents. In order to mine the maximum
potential of the floating-point sparsity, bit interleaving involves
three independent but consecutive steps based on Eq. 5:
3.2.1 Step ❶: Pre-Processing. Figure 4a illustrates as an example
of 6 vanilla fp32 weights permuted in rows, each of which has an
arbitrary exponent and mantissa. The triangle mark indicates the
actual location of the binary point. For simplify, we do not represent
the actual fp32 binary format stored in memory, but use the more
iconic representations to express the value. For example, the (0.01)2
with 𝐸5 = −2 hence stands for 0.25 in decimal (𝑊5). This step is
similar to the Step ❶ in Figure 1c, except that in here it organizes
the fp32 weights in parallel for interleaving. It pre-processes these
vanilla binary weights, in order to obtain the respective exponent
and further determine the “maximum” exponent (𝐸6 in this exam-
ple). The mantissa is also interpreted and stored for the later MAC.
The rear bits (bit 9 23) of each mantissa is omitted for a simplified
representation.
3.2.2 Step ❷: Dynamic Exponent Matching. The exponents denote
the position of the binary point. Conventionally, it involves the
step called “exponent matching” in the floating-point addition, to
align the binary point of the two operands. In bit interleaving , we
align a group of floats by matching their exponents uniformly to
the maximum (𝐸6 in this example) instead of handling them one by
one. This step is called “dynamic exponent matching”, and is not
involved in Figure 1c because fixed-point value has no exponent.

Looking back at Eq.5, the two
∑
s could be executed in parallel

during actual implementation: the outmost
∑

is on behalf of the
vertical dimension in Figure 4a, that is, 𝑁 number of weights with
their associate activations; the innermost

∑
stands for the horizon-

tal dimension which represents different bit widths of the mantissa.

From this point of view, the key concept of Eq. 5 is to compute all
the𝑀𝐴𝑖

s with𝑀𝑏
𝑊𝑖

= 1, along the two dimensions in Figure 4a.
Since our final goal is to compute

∑𝑁−1
𝑖=0 𝐴𝑖 ×𝑊𝑖 , and it involves

𝑁 number of weight and activation MACs. Therefore, this step
intends to match all exponents to their maximum at each time
instead of the costly one-by-one matching. As can be seen in Figure
4(b), the 6 weights are all aligned to the maximum exponent–𝑤6.
For example,𝑤5 needs to shift 8 bit positions to the right to align
with𝑤6. As a benefit, the exponent matching is issued only once
for all the 6 weights, saving time and energy for efficient hardware
implementation.
3.2.3 Step❸: Essential Bit Distillation. For now, the problem is how
to take advantage of the essential bits to obtain the accurate partial
sum and further, the satisfied inference speed. Considering the
sparsity parallelism as mentioned in Section 2, this step leverages
this feature to distill the essential bits, and it is exactly identical to
the Step ❷ in Figure 1c.

As shown in Figure 4c, if we effectively distill the essential bit
1s, the total computations could be reduced significantly from 6-
operand MACs to only 3. Still taking𝑊6 as an example, its exponent
is 6 and the first bit (b=0) is an essential 1. As inspired by Eq.5, the
value of 2𝐸𝑚𝑎𝑥+𝑏 for this bit equals to 26, which means this bit is
located in the 7𝑡ℎ position before the binary point. For𝑊1 ∼𝑊5,
the 26 positions are all zeros after exponent matching. If we could
ascend the first bit of 𝑊6 replacing the same position in 𝑊1 in
the same vertical lane, we are able to compute 𝐴6 × 26 + 𝐴1 × 23
simultaneously. The essential bits that belong to other weights
could be operated in the same manner, and the distilled weights
are finalized in Figure 4(c).

As summary, the two steps accelerate fp32 MACs from two as-
pects: (1) it eliminates the expensive exponent matching operations;
and (2) it eliminates the useless computations caused by 0 bits by
exploiting the sparsity parallelism. In Section 5, we will empirically
show that the speed of fp32 MAC is even faster than the int8 or
fixed-16 quantization on our accelerator platform. As the extra
bonus, it directly accelerates the original DNNs without involving
low-precision quantization and other software work.

4 BITLET ACCELERATOR
To enforce bit-interleaving, we design a novel accelerator, named as
Bitlet. In this section, we present the key modules in Bitlet, including
the micro-architecture of the compute engine with versatile preci-
sion support and the overall design for efficient memory access.
4.1 Bitlet Compute Engine
Key Module #1 - Preprocess. First and foremost, we design an
engine responsible for the two steps in bit interleaving. Bitlet di-
gests multiple input weights and activations, indicated by N in
Figure 5. In Bitlet Compute Engine (BCE hereafter),𝑊0 through
𝑊𝑁−1 are the original weights, while 𝐴0 ∼ 𝐴𝑁−1 are the corre-
sponding activations. The preprocessing module decomposes each
𝑊𝑖 and𝐴𝑖 into two fractions: mantissa and exponent, and performs
𝐸𝑖 = 𝐸𝑊𝑖

+ 𝐸𝐴𝑖
for each A/W pair. Afterwards, the maximum expo-

nent 𝐸𝑚𝑎𝑥 is chosen and stored in the register for the subsequent
dynamic matching phase. After nailing down the 𝐸𝑚𝑎𝑥 , 𝑀𝑊𝑖

is
shifted by 𝐸𝑚𝑎𝑥 −𝐸𝑖𝑖 bits to align its exponent to 𝐸𝑚𝑎𝑥 . Still taking
the exemplified weights in Figure 4, 𝐸𝑚𝑎𝑥 should be 𝐸6 = 6 in
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Figure 5: Microarchitecture of the core module – Bitlet Compute Engine (BCE).

𝑊6, other weights are all aligned to 𝐸6, i.e.,𝑀𝑊4 will be shifted by
6 − 0 = 6 positions to the right hand side as shown Figure 5. The
shifted positions on the left hand side are padded by 0s automat-
ically, and the rear bits beyond 𝑏 = 23 are discarded because the
mantissa is 24-bit length.

KeyModule #2 -Wire Orchestrator.After dynamic matching,
we obtain the 24-bit but shifted mantissa, indicated by 𝑀𝑊𝑖

[0] ∼

𝑀𝑊𝑖
[23]. They are further sent into another module called “Wire

Orchestrator” in Figure 5, and it is used for or-organizing the wires
by aggregating the same bit significance together. In particular, the
output of the Orchestrator is represented as𝑀𝑊0 [𝑏], 𝑀𝑊1 [𝑏], · · · ,
𝑀𝑊𝑁−1 [𝑏] in which 𝑏 is in range 0 ∼ 23. Note that this module
does not contain any combinatorial logic or sequential logic. It
just congregates wires for the aligned mantissas and performs the



Distilling Bit-level Sparsity Parallelism
for General Purpose Deep Learning Acceleration MICRO ’21, October 18–22, 2021, Virtual Event, Greece

DMADMADMADMA

A0
A1
A2

AN-1

W0
W1
W2

WN-1

…
…

…
…

local 
buffer

Activation 
FSM

Weight
FSM

…

× 2Emax-23

× 2Emax-1

ctrl

ctrl

AN-1

W0
W1
W2

WN-1

…
…

…
…

O1

O23

……

s

output
activation

f

<< 0

<< 23

<< 1

Bitlet
CE

Bitlet
CE

ctrl

ctrl

ctrl

Bitlet
PE

O0

O1

O23

……

s

adder tree

PE Arrays

DDR
Memory

DDR
Memory

12.8GB/s

25.6GB/s

25.6GB/s

P
final

packager

 Emax

Figure 6: Bitlet accelerator. Each Bitlet PE is comprised of one BCE and a series of adders used for computing the output
activations. Bitlet is versatile: for the floating point, Emax is dynamic, while for the fixed-point precisions, Emax is fixed to
the target precision (i.e., 16 or 8).

transpose operation, so intuitively this module will not introduce
significant power consumption but increase the circuit area in some
extents, which will be evaluated in Section 5).

Key Module #3 - RR-reg. RR-reg𝑖 distills the essence in the
interleaved weights and selects the output of BCE from N activa-
tion mantissa. Each RR-reg has its internal clock connected with
the accelerator clock tree. As shown in Figure 5, the pseudo-code
represents the working procedure: it firstly wraps around the input
bits and distills the essential bit in sequence, one after another. The
“select” signal informs the decoder logic to configure the chosen
activation path and output𝑂𝑖 . If no essential bit is detected, RR-reg
activates the “fill 0” signal, and the output𝑂𝑖 will be 0 as well. This
operation accommodates the scenario that all bits in a particular
bit column are 0s, i.e., 𝑏 = 1 or 2 in Figure 4(c).

Discussions: We highlight three features of the BCE: ① the ar-
chitecture will not introduce accuracy loss, because the dynamic
exponent matching specified in Section 3.2.2 is identical to the
floating-point arithmetic in IEEE 754, by discarding the rightmost
outlier bits after shifting (“>> 𝐸𝑚𝑎𝑥 − 𝐸𝑖” in Figure 5). These bits
are trivial bits with negligible significance so the accuracy is harm-
less. ② BCE does not require any pre-processing regarding the
sparsity knowledge. The pre-processing module in Figure 5 is only
responsible for splitting out the mantissa/exponent of each weight
and activation. In the practical RTL implementation, we instantiate
a sliding window in each RR-reg to automatically interleave and
distill the essential bits. Benefited from the sparsity parallelism, the
distillation of the essential𝑀𝑊𝑖

[𝑏] could be accomplished nearly
simultaneously in each RR-reg. It also equips Bitlet with promis-
ing inference speed and low cost as proved in Section 5. ③ BCE is
mostly composed of combinatorial circuits except for the RR-regs,
but it does not involve complex wires that might lead to prolonged
critical path delay. Each RR-reg spawns one output 𝑂𝑖 per clock
cycle, but the total cycles spent on the partial sum are substantially
optimized compared with the traditional one-by-one MAC. 𝑁 is
the only design parameter in BCE, and larger 𝑁 is conductive to
distill more bit 1s. In Section 5 we will empirically study its impact
on the overall inference speed.

4.2 Accelerator Architecture
PEs. Bitlet is comprised of mesh-connected PEs. As shown in Figure
6, each PE is comprised of one BCE and one adder tree. BCE bridges
the gap between the on-chip buffer and the adder tree. Each PE
absorbs𝑁 weights and activations in tandem and spawns the partial
sum 𝑂𝑖 as the input of the adder tree. Since BCE outputs 24 bits
limited by the mantissa, we also have 24 inputs to the adder tree.

It finalizes the result by multiplying 2𝐸𝑚𝑎𝑥+𝑏 (note that b is
negative) to ensure the correctness of the result, which can be
decomposed into a fixed part b and a common part 𝐸𝑚𝑎𝑥 for BCE
output. The fixed part of the exponent is computed by fixed amount
shifting operated by wire connections in physical circuit. As for
the common part, 𝐸𝑚𝑎𝑥 is applied to the accumulator result in the
final-packager module to produce a formatted result. Obtaining 𝑂𝑖

only entails the fixed-point additions of the activation mantissa
excluding any multiplications, which also means the arithmetic
complexity and power consumption are also optimized accordingly.

Memory System. To achieve high throughput, the Bitlet accel-
erator provides separated DMA channels for the activation and
weight data. As shown in Figure 6, the local buffer stores the data
fetched from DDR3 memory and provides adequate bandwidth for
the accesses from the corresponding Bitlet PEs. In our RTL imple-
mentation, the bandwidth achieves 12.8 GB/s per channel between
the memory and the local buffer, while the PE Array can utilize
totally 25.6 GB/s to get the activation and weight data from the
local buffer. In terms of the dataflow mode, Bitlet leverages weight
stationary and activation broadcasting [14] to minimize the main
memory accesses.

4.3 Versatility
Bitlet is a versatile accelerator. It could be conveniently configured
into fixed-point mode, providing enough flexibility for end-users. If
we want to employ fixed-point 16 precision for example, we could
handily power gate part of the preprocessing module that performs
the exponent matching and shifting (“≫ 𝐸𝑚𝑎𝑥 − 𝐸𝑊𝑖

” in Figure
5), and let the input𝑊𝑖 directly connects to the Wire Orchestrator.
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Bitlet is initially designed for the 24-bit mantissa, so if we use 16-
bit fixed point for example, only RR-reg0 ∼ RR-reg15 are involved.
Others could be safely powered off or left idle. Similarly for int8
quantization or any other target precision (i.e., int4, int9 etc.), Bitlet
handles it in the same manner. Therefore, end-users no longer have
to resort to other precision-specific accelerators to accommodate
different use cases. They could freely calibrate their DNNs to fulfill
the accuracy target as well as the power/performance tradeoff on
one platform.

5 EVALUATION
5.1 Experiment Setup
DNN Models & Application Baselines. In this section, we eval-
uate the proposed bit interleaving methodology and the Bitlet ac-
celerator. Bitlet is a general-purpose accelerator that covers main-
stream floating-point and 1 ∼ 24bit fixed-point precision, which
also benefits the diversity of the applications that could run on
Bitlet. Therefore, we select 12 domain-specific AI applications with
diverse model structures, GFLOPs, parameter sizes and precisions,
as listed in Table 2. According to the domain, the DNNs are trained
with the corresponding dataset with PyTorch framework[33]. We
quantize the initial fp32 weights into fixed-16 and int8 precision. In
order to prove the versatility of Bitlet, we choose a series of base-
lines: (1) GPUs, including high-performance datacenter product –
Titan V (volta) and Titan Xp (pascal) and power-efficient edge-level
product – Jetson TX2 (pascal). (2) Sparsity-agnostic accelerators,
typical accelerator based on the fixed-point MAC - Eyeriss[14], and
it employs multipliers and adders both designed for fixed-16 values
without considering the sparsity; and typical bit-serial accelerators -
Stripes[22]. This design does not exploit the abundant bit-level spar-
sity. (3) Sparsity-aware accelerators, we adopt value-sparsity aware
prototype SCNN[32] and bit-sparsity aware prototype Laconic[36]
as the representative. For Bitlet, we evaluate various flexible config-
urations, including “Bitlet (float 32)”, “bitlet (16b)” and “Bitlet (8b)”.
For the key design parameter𝑁 , we evaluate several typical settings
(2, 4, 8, 16, 32, 64) to analyze its impact on the speedup. A particular
hardware ablation study is presented to test the performance sensi-
tivity to the individual modules in BCE (i.e., preprocessing, RR-reg),
also under various 𝑁 settings.

FPGA & ASIC implementation. At the RTL level, we employ
Vivado (v2018.2) to conduct post-synthesis simulation on Xilinx
Virtex-7 FPGA. The inference time in frames per second (fps) is
recorded at each run. We instantiate 32 PEs clocked at 200MHz,
with 1 BCE in each PE. Runtime memory access data of our FPGA
platform are recorded and then feed to the DRAMsys tool[23] to
estimate the energy consumption of the memory accesses. For ASIC,
Synopsis Design Compiler (v2016) is used to measure power and
area. The frequency is set to 1 GHz. Our design is synthesized with
both TSMC 28𝑛𝑚 and 65𝑛𝑚 technology library. We decompose the
Bitlet PE to report detailed module-level area. The baseline area
numbers are directly reported from their publications, but only the
total PE area is available. .

5.2 Specifics Comparison
This subsection compares the specs of the SOTA accelerator proto-
types and GPUs with bitlet. The spec items in Table 3 are directly
reported according to the published literatures. Under 32 PEs/BCEs,

Bitlet obtains a 204.8 GOPs, 372.35 GOPs 744.7 GOPs peak perfor-
mance and 359.15 GOPs/W, 667.97 GOPs/W, 1335.93 GOPs/W peak
efficiency under 28 nm technology (111.97 GOPs/W, 267.87 GOPs/W,
621.10 GOPs/W under 65nm technology) for floating-point 32, 16b
and 8b precision, respectively. For GPUs, Titan V has the highest
performance but its efficiency is undermined by the high power
consumption. Although Bitlet has comparatively the least PEs, it
achieves the most optimal area and efficiency under 28𝑛𝑚 technol-
ogy node. Note that the “PEs/Cores” in the table is the standard
configuration, based on which the peak power efficiency and per-
formance are reported. However, in the subsequent performance
and energy evaluation, we use the same number of PEs with nearly
identical computational resources to give a fair comparison.

5.3 Speedup and Energy Efficiency
Speedup. We first analyze the acceleration. As shown in Figure 7,
we use the actual inference time (in fps) measured on our FPGA
platform as the representative of the speedup. We record the real
values in frames per second (fps) for comparison, so the Y-axis has
different scales in each sub-figure. For example, DenseNet-161 can
reach 2.8 fps on Bitlet, Whereas on other accelerator baselines, the
results are 0.187 (15.03×), 0.228 (12.33×), 0.426 (6.6×), and 0.611
(4.6×). As the representative of bit-serial accelerator, Stripes sup-
ports layer-wise tunable precision from 1 ∼ 16𝑏, tested offline based
on the minimum acceptable accuracy loss. SCNN however fixes the
precision to 16b in our evaluation and relies highly on the value-
sparsity condition. Pruning is not implemented on our benchmarks
so it performs worse than Stripes.

A more interesting observation is the fps result of Bitlet in float-
32 mode. It shows 2.53 fps for DenseNet-161 which is even faster
than all the fixed-point baselines. For other applications across
16b and 8b, the results are similar. Such benefit stems from the bit-
interleaving philosophy. By distilling the sparsity in parallel not in
serial, floating-point MAC also enjoys the acceleration by exploiting
the bit-level sparsity. Therefore, a more important conclusion is that
the end users could directly acquire abundant acceleration on Bitlet
using vanilla DNNs after training, instead of having to quantize
their models to the fixed-point precision in a labor-intensive and
time-consuming manner.

Table 4 presents the performance of executing one MAC op-
eration. The reported data includes the pre-processing and the
post-processing time. Bitlet representatives 22 ∼ 29 cycles/MAC
across 16b and 8b. The 16b Bitlet behaves nearly comparative with
the 8b Bitlet. It is reasonable because the bit sparsity exhibits nearly
uniform distribution at each significance, even if the bit length is
different. This feature, again, confirms that Bitlet serves as a general-
purpose accelerator that could cover any fixed-point precision.

Energy Consumption. Figure 8 reports the energy consump-
tion normalized to the “Bitlet (float 32)”. The largest gap emerges at
ResNet-50, who shows 24.31×more energy consumption. Generally
speaking, SCNN does not perform well in this set of experiment.
The reason is that SCNN tackles value-level sparsity, which means
the speedup benefits only when the sparsity is fertile, so the acceler-
ators designed for value sparsity have inherent limitations; it must
rely on software approaches to assist the practical use. However,
the 12 applications do not go through sparse training or pruning.
They are all original DNNs. Therefore, the accelerator designed for
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Table 2: Benchmark DNNs and their specs, which are used for motivating bit interleaving and the evaluations.

Models Type Precision Domain Dataset GFLOPS Weights W-bit Sparsity (%)

ResNet-50[18] 2D 8 bit Image ILSVRC’12[3] 8.21 25.56M 70.15 (fixed point)Convolution Classification

MobileNetV2[35] 2D 8 bit Image ILSVRC’12[3] 0.615 3.49M 76.85 (fixed point)Convolution Classification

YoloV3[34] 2D 8 bit Object CoCo[1] 25.42 61.95M 77.78 (fixed point)Convolution Detection

Multi-Pose[24] 2D 8 bit Pose CoCo[1] 97.55 59.59M 66.33 (fixed point)Convolution Estimation

lapSRN[25] 2D De- 16 bit Image Super SET14[4] 736.73 0.87M 74.31 (fixed point)Convolution Resolution

DCPDNet[45] Encoder 16 bit Deraining NYU-Depth[38] 254.37 66.9M 75.00 (fixed point)-Decoder /Dehazing

DenseNet-161[20] 2D 16 bit Image ILSVRC’12[3] 15.56 28.68M 68.92 (fixed point)Convolution Classification

FCOS[39] Feature 16 bit Object CoCo[1] 80.14 32.02M 70.83 (fixed point)Pyramid Detection
CartoonGAN[11] GAN float 32 Style Transfer flickr[2] 108.98 11.69M 48.49 (floating point)

Transformer[41] Seq2Seq float 32 Word wmt’14[6] 10.6 176M 45.75 (floating point)Embedding

C3D[40] 3D float 32 Video UCF101[5] 38.57 78.41M 45.83 (floating point)Convolution Understanding

D3DNet[44] 3D float 32 Video Super Vimeo-90k[42] 408.82 2.58M 47.69 (floating point)Deformable Resolution

Table 3: Accelerator specs comparison. The items are directly referred according to the published literatures.We list themhere
to give a straightforward comparison of the key metrics between bitlet and others, i.e., PEAK Performance in GOPs, GOPs/W
etc. “–” means this datum is not able to be referred.

Accelerator ASICs GPUs

Chip Eyeriss SCNN Stripes Laconic Bitlet (Ours) Titan V Titan Xp Tegra X2[14] [32] [22] [36]
PEs/Cores 168 64 4096 192 32 5120 3840 256
Precision 16b 16b 1∼16b 1∼16b fp32/16, 1∼24b fp32/16, 8b fp32, 8b fp32/16

Technology 65nm 16nm 65nm 65nm 28nm 65nm 12nm 16nm 16nm
TSMC TSMC TSMC TSMC TSMC TSMC TSMC TSMC TSMC

Freq. (MHz) 250 1000 980 1000 1000 1455 1582 854
PEAK

23.1 2000 – –
204.8 (fp32) 14900 (fp32)

29800 (fp16)
12150
(fp32)

750.1(fp32)
1330 (fp16)Performance 372.35 (16b)

(GOPs) 744.7 (8b)

Power 278mW – – –
570mW(fp32) 1829mW(fp32)

250W 250W 15W432mW(16b) 1390mW(16b)
366mW(8b) 1199mW(8b)

PEAK Power
83.09 – –

441 (16b)
805 (8b)

359.15 (fp32) 111.97 (fp32) 59.6(fp32)
119.2(fp16)

48.6
(fp32)

50.0 (fp32)
88.7(fp16)Efficiency 667.97(16b) 267.87 (16b)

(GOPs/W) 1335.93 (8b) 621.10 (8b)
Area (𝑚𝑚2) 12.25 7.9 122.1 1.59 1.54 5.80 – – –

Table 4: Quantitative comparison for average computation performance (cycles/MAC).

16b 8b
lapSRN DCPDNet DenseNet-161 FCOS ResNet-50 MobileNetV2 YoloV3 Multi-Pose

Eyeriss 339.34 357.39 343.68 346.62 344.08 343.77 345.08 341.71
SCNN 226.22 262.09 281.87 231.08 344.08 343.77 230.05 197.14
Stripes 90.49 106.25 150.86 115.54 158.39 174.07 119.94 110.23
Laconic 71.44 83.64 105.18 89.77 111.13 113.44 93.22 89.92
Bitlet 29.51 16.45 22.85 22.44 21.03 22.22 19.04 24.64

indexing the sparsity for zero skipping cannot fully contribute to
the speedup improvement but still consumes significant amount of
power. Bitlet (16b) has the lowest energy consumption. Selecting
some of the data to report: 28.1% for DCPDNet, 28.3% for YoloV3
and 36.7% for MobileNetV2.

Energy Breakdown. Our Xilinx-V7 FPGA platform involves
DDR3 memory, we use DRAMsys to estimate the runtime memory
access energy together with the PE computation energy. Figure 9
shows the energy breakdown from two aspects. Figure 9(a) shows

the full-system energy breakdown and obviously the memory ac-
cesses dominate the energy consumption. Especially for Trans-
former, the data attains nearly 99% and the PE computation energy
occupies only 1%. In Figure 9(b), we further decompose the PE-
only energy for each DNN. Preprocessing module dominates this
time (63.2%), because it involves a large number of buffers to store
the mantissa and exponent. For other modules, Wire Orchestra-
tor and adder tree consume 14.7% and 6.27% energy on average,
respectively.
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Figure 7: Speedup results. The upper row denotes the 16b DNN benchmarks and the bottom row denotes the 8b benchmarks.
We also run the float-32 version on bitlet for reference. All the results are real values in frames per second (fps). Higher is
better.

Synopsis Design Compiler (v2016) is used to measure power 
and area. The frequency is set to 1 GHz. The whole design is 
synthesized with TSMC 28nm technology library. 

B. Specifics Comparision 
This subsection compares the specs of the SOTA 

accelerator prototypes and GPUs with bitlet. The spec items are 
directly reported according to the published literature. Under 32 
PEs/BCEs, bitlet obtains a 204.8 GOPs, 372.35 GOPs 744.7 
GOPs peak performance and 359.15 GOPs/W, 667.97 GOPs/W, 
1335.93 GOPs/W peak efficiency for floating-point 32, 16b and 
8b precision, respectively. Among GPUs, Titan V has the 
highest performance but its efficiency is undermined by the 
thermal design power. Although Bitlet has comparatively the 
smallest PEs, it achieves the most optimal area and efficiency 
under 28 nm technology node.  

Note that the “PEs/Cores” item is the standard configuration, 
based on which the peak power efficiency and performance are 

reported. However, in the subsequent performance and energy 
evaluation, we use the same number of PEs with nearly 
identical computational resources to give a fair comparison. 

C. Speedup and Energy Efficiency 
Speedup. We first analyze the acceleration. As shown in 

Figure 6, we use the actual inference time (in fps) measured on 
our FPGA platform as the representative of the speedup. We 
record the real values in frames per second (fps) for comparison, 
so the the Y axis has different scale. For example, DenseNet-
161 can reach 2.8 fps on bitlet. Whereas on other accelerators, 
the results are 0.187 (15.03x), 0.228 (12.33x), 0.426 (6.6x), and 
0.611 (4.6x). A more interesting point is the fps of bitlet in float-
32 mode. It shows 2.53 fps which is even faster than all the 
fixed-point accelerator baselines. Similar for other benchmarks 
across 16b and 8b, the floating-point bitlet is much faster. It 
does not seem to be reasonable, because floating point is widely 
adopted to be slower than fixed point. However in bitlet, such 
benefit stems from bit interleaving philosophy, by distilling the 

    

    
Figure 6 Speedup results. The upper row denotes the 16b DNN benchmarks and the bottom row denotes the 8b benchmarks. We also run the 

float-32 version on bitlet for reference. All the results are real values in frames per second (fps). Higher is better. 

Figure 7 Energy Consumption. We also report the energy result of the float-32 inference, and all the fixed-point results are normalized to it. 
Lower is better. 

0.046

0.035 

0

0.02

0.04

0.06

lapSRN (16b)

fra
m

es
 p

er
 s

ec
on

d
Eyeriss (16b)
SCNN (16b)
Stripes (16b)
Laconic (16b)
Bitlet (16b)
Bitlet (float 32)

0.239 

0.125 

0.0

0.1

0.2

0.3

DCPDNet (16b)

fra
m

es
 p

er
 s

ec
on

d

Eyeriss (16b)
SCNN (16b)
Stripes (16b)
Laconic (16b)
Bitlet (16b)
Bitlet (float 32)

2.812
2.529 

0

1

2

3

DenseNet-161 (16b)

fra
m

es
 p

er
 s

ec
on

d

Eyeriss (16b)
SCNN (16b)
Stripes (16b)
Laconic (16b)
Bitlet (16b)
Bitlet (float 32)

0.556

0.358 

0

0.2

0.4

0.6

FCOS (16b)

fra
m

es
 p

er
 s

ec
on

d

Eyeriss (16b)
SCNN (16b)
Stripes (16b)
Laconic (16b)
Bitlet (16b)
Bitlet (float 32)

5.793

4.362 

0

2

4

6

8

ResNet-50 (8b)

fra
m

es
 p

er
 s

ec
on

d

Eyeriss (8b)
SCNN (8b)
Stripes (8b)
Laconic (8b)
Bitlet (8b)
Bitlet (float 32)

73.189

49.970 

0

20

40

60

80

MobileNetV2 (8b)

fra
m

es
 p

er
 s

ec
on

d
Eyeriss (8b)
SCNN (8b)
Stripes (8b)
Laconic (8b)
Bitlet (8b)
Bitlet (float 32)

2.066

1.087 

0

1

2

3

YoloV3 (8b)

fra
m

es
 p

er
 s

ec
on

d

Eyeriss (8b)
SCNN (8b)
Stripes (8b)
Laconic (8b)
Bitlet (8b)
Bitlet (float 32)

0.416

0.305 

0

0.2

0.4

0.6

Multi-Pose (8b)

fra
m

es
 p

er
 s

ec
on

d

Eyeriss (8b)
SCNN (8b)
Stripes (8b)
Laconic (8b)
Bitlet (8b)
Bitlet (float 32)

11.360 

0.404 

16.457 

0.281 

21.888 

0.484 

13.084 

0.346 

24.316 

0.405 

20.848 

0.367 

12.540 

0.283 

12.431 

0.395 

0

5

10

15

20

25

Ey
er

is
s 

(1
6b

)
SC

N
N

 (1
6b

)
St

rip
es

 (1
6b

)
La

co
ni

c 
(1

6b
)

Bi
tle

t (
16

b)
Bi

tle
t (

flo
at

 3
2)

Ey
er

is
s 

(1
6b

)
SC

N
N

 (1
6b

)
St

rip
es

 (1
6b

)
La

co
ni

c 
(1

6b
)

Bi
tle

t (
16

b)
Bi

tle
t (

flo
at

 3
2)

Ey
er

is
s 

(1
6b

)
SC

N
N

 (1
6b

)
St

rip
es

 (1
6b

)
La

co
ni

c 
(1

6b
)

Bi
tle

t (
16

b)
Bi

tle
t (

flo
at

 3
2)

Ey
er

is
s 

(1
6b

)
SC

N
N

 (1
6b

)
St

rip
es

 (1
6b

)
La

co
ni

c 
(1

6b
)

Bi
tle

t (
16

b)
Bi

tle
t (

flo
at

 3
2)

Ey
er

is
s 

(8
b)

SC
N

N
 (8

b)
St

rip
es

 (8
b)

La
co

ni
c 

(8
b)

Bi
tle

t (
8b

)
Bi

tle
t (

flo
at

 3
2)

Ey
er

is
s 

(8
b)

SC
N

N
 (8

b)
St

rip
es

 (8
b)

La
co

ni
c 

(8
b)

Bi
tle

t (
8b

)
Bi

tle
t (

flo
at

 3
2)

Ey
er

is
s 

(8
b)

SC
N

N
 (8

b)
St

rip
es

 (8
b)

La
co

ni
c 

(8
b)

Bi
tle

t (
8b

)
Bi

tle
t (

flo
at

 3
2)

Ey
er

is
s 

(8
b)

SC
N

N
 (8

b)
St

rip
es

 (8
b)

La
co

ni
c 

(8
b)

Bi
tle

t (
8b

)
Bi

tle
t (

flo
at

 3
2)

lapSRN (16b) DCPDNet (16b) DenseNet-161 (16b) FCOS (16b) ResNet-50 (8b) MobileNetV2 (8b) YoloV3 (8b) Multi-Pose (8b)

PE
En

er
gy

 C
on

su
m

pt
io

n
(N

or
m

al
iz

ed
 to

B
itl

et
-fl

oa
t3

2)

Figure 8: Energy Consumption. We also report the energy result of the float-32 inference, and all the fixed-point results are
normalized to it. Lower is better.

Table 5: Training/Inference efficiency of the float-point ap-
plications. Since the employed accelerator baselines do not
support floating point, we compare Bitlet with GPUs. Note:
TX2 is not used for training.

GPU
Baselines

Models
(Train / Inference efficiency in GOPs/W)
Cartoon
-GAN

Trans
-former C3D D3DNet

Titan V 0.27 4.09 1.82 0.06
/ 3.19 / 21.80 / 4.32 / 4.67

Titan Xp 0.20 3.03 1.35 0.04
/ 2.36 / 16.13 / 3.19 / 3.46

Jetson TX2 −− −− −− −−
/ 0.20 / 1.39 / 0.27 / 0.30

Bitlet (float 32) 9.40 7.36 8.59 4.87
/ 67.29 / 69.97 / 66.04 / 60.24

Efficiency. Bitlet is a versatile, general-purpose accelerator, sup-
porting the floating-point and 1 24b fixed-point precisions. Since the
ASIC baselines do not support the floating-point arithmetic, we com-
pare the power efficiency of Bitlet with the GPU baselines, in terms
of four deep learning applications – CartoonGAN, Transformer,

C3D and D3DNet. Table 5 reports the data including both train-
ing and inference efficiency. Bitlet shows 34.81×, 1.80×, 4.72×, and
81.16× improvement over the datacenter product - Titan V. Under
similar evaluation method, the corresponding inference efficiency
improvement is 21.09×, 3.21×, 15.29×, and 12.9×. We can observe
an obvious gap between the training and inference efficiency in
Table 5. That is because the training phase involves forward and
backward propagation, and the backward propagation however, is
not able to be accelerated by Bitlet. The actually-effective acceler-
ation is targeted and recorded towards the forward propagation
only, so the GOPs/Watt data are relatively smaller.

Table 6 and Table 7 show the results compared with fixed-point
accelerator baselines, and only inference efficiency is compared
because the baselines do not support training. For 16b applications,
the improvement over the most recent Laconic is 3.67×, 7.69×,
6.97× and 6.05×. Even for bitlet (float 32), it behaves better than all
the baselines. This confirms that bit interleaving is more powerful
than the bit-serial/parallel computing philosophies. If end users are
reluctant in quantizing their DNNs, directly deploying the floating
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enjoys the acceleration by exploiting bit-level sparsity which is 
even more abundant as shown in Figure 2. Therefore, the more 
important conclusion is that the end user could directly acquire 
abundant acceleration under float-32 instead of having to 
quantize their models to the fixed-point precision in a labor-
intensive and time-consuming manner, thus providing 
remarkable convenience and flexibility compared with 
previous accelerator prototypes.  

Energy Consumption. Figure 7 reports the energy 
consumption normalized to the “bitlet (float 32)”. The largest 
gap emerges at ResNet-50, who shows 24.31x more energy 
consumption. Generally speaking, SCNN does not peform well 
in this set of experiment. The reason is that SCNN tackles value 
level sparsity, which means the speedup benefits only when the 
value sparsity is fertile. However, the 12 applications we use do 
not go through sparse training or pruning. They are all vanilla 
models. Therefore, the accelerator designed for indexing the 
sparsity for zero skipping could not fully contribute to the 
speedup improvement but still consumes significant power 
quota. Combined with the application inference time, energy 
suffers. From the generality perspective, the accelerators 
designed for value sparsity have inherent limitations; it must 
rely on software approaches to assist the practical use. Bitlet 
(16b) has the lowest energy consumption. Selecting some of 
them to report: 28.1% for DCPDNet, 28.3% for YoloV3 and 
36.7% for MobileNetV2.  

Energy Breakdown. Our Xilinx-V7 FPGA platform 
involves DDR3 memory, we use DRAMsys tool to estimate the 
runtime memory access energy together with the PE 
computation energy. Figure 8 shows the energy breakdown 
from two aspects. (a) shows the full-system energy breakdown 
and obviously the memory accesses dominate the energy 
consumption. Especially for Transformer, the data attains 
nearly 99% and the PE computation energy occupies only 1%. 
In (b), we further decompose the PE-only energy for each DNN. 
Preprocessing module dominates this time (63.2%), because in 
PE the operand split necessitates the largest number of buffers 

to store the mantissas. The wire orchestrator and adder tree 
consume 14.7% and 6.27% energy on average, respectively.  

Efficiency. Bitlet is a versatile accelerator, supporting 
floating point and 1~24b fixed point. Since the accelerator 
baselines do not support floating point precision, we compare 
the power efficiency of bitlet in terms of four applications – 
CartoonGAN, Transformer, C3D and D3DNet with the GPU 
baselines. Table 4 reports the data including training and 
inference efficiency. In specific, training efficiency is 
represented by the power efficiency of executing the SGD 
operations. Parameter update can also be regarded as MAC 
alike computation: the multiplication is in terms of the learning 
rate and gradient and the addition is in terms of the previous 
weight and the result of the multiplication. Bitlet supports any 
type of floating point operation so it can be used in training and, 
aided by bit interleaving, it can further boost the training 
efficiency, as proved by Table 4. We record the power 
consumed and GOPs accomplished during SGD, and bitlet 
shows 34.81x, 1.80x, 4.72x, and 81.16x improvement over 
Titan V. Under similar evaluation method, the corresponding 
inference efficiency improvement is 21.09x, 3.21x, 15.29x, and 

(a) Full system energy breakdown. 

(b) PE-only energy breakdown. 

Figure 8 Energy breakdown. The upper figure includes the DDR3 
memory access energy; the bottom only involves PE 
related energy. 
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Table 4 Training/Inference efficiency of the float-point applications. 
Since the employed accelerator baselines do not support 
floating point, we compare bitlet with GPUs. Note: TX2 is 
not used for training. 

GPU 
Baselines 

Models 
(Train/Inference efficiency in GOPs/W) 

CartoonGAN Transformer C3D D3DNet 

Titan V 0.27/3.19 4.09/21.80 1.82/4.32 0.06/4.67 

Titan Xp 0.20/2.36 3.03/16.13 1.35/3.19 0.04/3.46 

Jetson TX2 --/0.20 --/1.39 --/0.27 --/0.30 

Bitlet (float 32) 9.40/67.29 7.36/69.97 8.59/66.04 4.87/60.24
 

Table 5 Inference efficiency of the 16b applications. 

16b Accelerator
Baselines 

Models (Inference efficiency is in GOPs/W) 

lapSRN DCPDNet DenseNet-161 FCOS

Eyeriss (16b) 9.92 9.42 9.79 9.71 

SCNN (16b) 24.29 20.96 19.49 23.77 

Stripes (16b) 25.06 21.34 15.03 19.63 

Laconic (16b) 46.04 39.32 31.27 36.64 

Bitlet (16b) 168.75 302.71 217.87 221.87

Bitlet (float 32) 44.64 55.82 69.03 50.33 
 

Table 6 Inference efficiency of the 8b applications. 

8b Accelerator
Baselines 

Models (Inference efficiency is in GOPs/W) 

ResNet-50 MobileNetV2  YoloV3 Multi-Pose

Eyeriss (8b) 9.79 9.80 9.76 9.85 

SCNN (8b) 15.97 15.98 23.88 27.87 

Stripes (8b) 14.32 13.03 18.91 20.57 

Laconic (8b) 29.60 29.00 35.29 36.58 

Bitlet (8b) 236.82 224.13 261.50 202.07 

Bitlet (float 32) 62.83 53.92 48.46 52.24 

(a) Full system energy breakdown.
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runtime memory access energy together with the PE 
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Efficiency. Bitlet is a versatile accelerator, supporting 
floating point and 1~24b fixed point. Since the accelerator 
baselines do not support floating point precision, we compare 
the power efficiency of bitlet in terms of four applications – 
CartoonGAN, Transformer, C3D and D3DNet with the GPU 
baselines. Table 4 reports the data including training and 
inference efficiency. In specific, training efficiency is 
represented by the power efficiency of executing the SGD 
operations. Parameter update can also be regarded as MAC 
alike computation: the multiplication is in terms of the learning 
rate and gradient and the addition is in terms of the previous 
weight and the result of the multiplication. Bitlet supports any 
type of floating point operation so it can be used in training and, 
aided by bit interleaving, it can further boost the training 
efficiency, as proved by Table 4. We record the power 
consumed and GOPs accomplished during SGD, and bitlet 
shows 34.81x, 1.80x, 4.72x, and 81.16x improvement over 
Titan V. Under similar evaluation method, the corresponding 
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Table 4 Training/Inference efficiency of the float-point applications. 
Since the employed accelerator baselines do not support 
floating point, we compare bitlet with GPUs. Note: TX2 is 
not used for training. 
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Stripes (16b) 25.06 21.34 15.03 19.63 
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8b Accelerator
Baselines 

Models (Inference efficiency is in GOPs/W) 

ResNet-50 MobileNetV2  YoloV3 Multi-Pose

Eyeriss (8b) 9.79 9.80 9.76 9.85 
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Figure 9: Energy breakdown.

Table 6: Inference efficiency of the 16b applications.

Accelerators
Baselines

Inference efficiency is in GOPs/W
lapSRN DCPDNet DenseNet FCOS-161

Eyeriss (16b) 9.92 9.42 9.79 9.71
SCNN (16b) 24.29 20.96 19.49 23.77
Stripes (16b) 25.06 21.34 15.03 19.63
Laconic (16b) 46.04 39.32 31.27 36.64
Bitlet (16b) 168.75 302.71 217.87 221.87
Bitlet (float 32) 44.64 55.82 69.03 50.33

Table 7: Inference efficiency of the 8b applications.

Accelerators
Baselines

Inference efficiency is in GOPs/W
ResNet-50 Mobile YoloV3 Multi

-NetV2 -Pose
Eyeriss (8b) 9.79 9.80 9.76 9.85
SCNN (8b) 15.97 15.98 23.88 27.87
Stripes (8b) 14.32 13.03 18.91 20.57
Laconic (8b) 29.60 29.00 35.29 36.58
Bitlet (8b) 236.82 224.13 261.50 202.07
Bitlet (float 32) 62.83 53.92 48.46 52.24

point model on Bitlet will also bring satiable acceleration. Similar
results are also exhibited for the 8b mode.

5.4 Hardware Ablation Study
We carry out an ablation study in this subsection to explore the
impact of each hardware module on the fps. This is to pinpoint the
source of the performance improvement at the hardware level. In
the ablation study, the target modules include the preprocessing
module that performs dynamic exponent matching (termed as “M”)
and the RR-reg with check window that performs bit distillation
(termed as “D”). We have 4 scenarios in total as shown in Table 8:
(1) If we remove “M” and “D” in tandem (w/o M, w/o D) in Bitlet,
it is a bare-metal design which is the same as setting 𝑁 to 1. This
scenario could be configured in both floating- and fixed-point Bitlet.
(2) If we reserve “M” and remove “D” (w/ M, w/o D), it deteriorates
from the sparsity-aware to the sparsity-agnostic design, because
the distillation phase is disabled and the ineffectual zero bits are still
involved in computation. This only happens in the floating-point
Bitlet.

Table 8: Hardware ablation study. “bare-m” refers to “bare-
metal”, “M” refers to dynamic exponent “Matching”, and “D”
refers to essential bit “Distillation”. The results are in “fps”,
and higher is better.

Instance bare-m bitlet-fp32
Parameter 𝑁 = 1 𝑁 = 32 𝑁 = 64
Ablation w/o M w/ M w/ M w/ M w/ M

w/o D w/o D w/ D w/o D w/ D
CartoonGAN 0.012 0.209 0.269 0.244 0.352
Transformer 0.126 2.152 2.879 2.509 3.763
C3D 0.035 0.590 0.771 0.670 0.976
D3DNet 0.003 0.056 0.068 0.065 0.084
Instance bare-m Bitlet-16b
Parameter 𝑁 = 1 𝑁 = 32 𝑁 = 64
Ablation w/o M w/o M w/o M w/o M w/o M

w/o D w/o D w/ D w/o D w/ D
lapSRN 0.004 0.033 0.040 0.038 0.046
DCPDNet 0.011 0.096 0.184 0.109 0.239
DenseNet-161 0.187 1.567 2.260 1.779 2.812
FCOS 0.036 0.304 0.455 0.345 0.556
Instance bare-m Bitlet-8b
Parameter 𝑁 = 1 𝑁 = 32 𝑁 = 64
Ablation w/o M w/o M w/o M w/o M w/o M

w/o D w/o D w/ D w/o D w/ D
ResNet-50 0.354 2.970 4.598 3.371 5.793
MobileNetV2 4.730 39.644 60.001 45.001 73.189
YoloV3 0.114 0.959 1.640 1.089 2.066
Multi-Pose 0.030 0.250 0.346 0.284 0.416

(3) If we remove “M” and reserve “D” (w/o M, w/ D), Bitlet can
only work at the fixed-point mode, because only this mode does
not need exponent matching (no exponent in fixed-point values).
(4) If we reserve “M” and “D” in tandem (w/ M, w/ D), it is the
standard prototype of the floating-point Bitlet.

We highlight two observations in the ablation results. First, gen-
erally speaking, all Bitlet instances perform better than bare-metal.
For example, the speedup of Bitlet (float 32, w/ M w/ D) is 22.41×
(𝑁 = 32) and 29.33× (𝑁 = 64) for CartoonGAN. Similar to Bitlet (8b,
w/ M w/ D), it shows 12.69× (𝑁 = 32) and 15.47× (𝑁 = 64) speedup.
Secondly, within Bitlet instances, larger 𝑁 always leads to better
fps results, no matter if “D” is set or not. Taking DCPDNet as the
example, the speedup of 𝑁 = 64 over 𝑁 = 32 is 1.14× and 1.30× for
w/o D and w/ D respectively. While in the same 𝑁 configuration,
the w/D over w/o D is 1.92× and 2.19× for 𝑁 = 32 and 𝑁 = 64
respectively. Upon the two observations, it concludes here that
larger 𝑁 and setting up “D” will both bolster the inference speed,
but bit distillation (“D”) is the major drive across all the precision
and applications studied.

5.5 Sensitivity of Key Design Parameters
As concluded in the ablation study, larger 𝑁 leads to better fps
result. This experiment aims at the 𝑁 design space exploration, and
tries to find the best𝑁 configuration in terms of the inference speed.
𝑁 controls the stride that weights could be interleaved in Figure
4(c). Intuitively, if we set 𝑁 as large as possible, the number of
weights that are simultaneously absorbed by BCE is also increased.
It also provides a larger possibility for distilling the essential bits. As
shown in Figure 10, we record the task completion time at each 𝑁

and scale 𝑁 from 2 to 64 (power of 2 at each step), the performance
increases nearly exponentially for some of the applications, i.e.,
YoloV3, DCPDNet and Transformer, and linearly for ResNet-50,
Multi-Pose and lapSRN.
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Figure 10: Sensitivity study of the key design parameter 𝑁 .

Besides, we need to mention that larger 𝑁 will not burden power
consumption. 𝑁 only decides how many MACs could be simulta-
neously executed by each PE, so increasing 𝑁 does not mean the
on-chip local buffer also needs to be expanded. If the memory access
throughput could perfectly match the PE computing throughput,
𝑁 is the larger the better. That is why we have selected 𝑁 = 64 as
the default configuration in previous experiments.

5.6 Scalability
Figure 11 shows the PE scaling from 8,16 to 32 with respect to
the accelerator performance, normalized to PE=8. 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 is
more memory intensive so the performance scales 2.41× under float
32 mode. Other benchmark DNNs are more computation intensive
so more PEs are beneficial to the performance enhancement; for
example, ResNet50 attains 3.85× speedup for 32 PEs under 8b pre-
cision. Minimized data precision, generally speaking, is helpful to
the minimized memory accesses, so fixed-precision DNNs more
possibly exhibit higher performance when PE scales larger.
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Figure 11: Sensitivity study to the PE array scale.

5.7 Area and Power Breakdown

Table 9: Area and power breakdown. (@TSMC 28𝑛𝑚)
Bitlet(float 32) Bitlet(16b) Bitlet(8b)

Item Area Power Power Power
(𝑚𝑚2) (mW) (mW) (mW)

Preprocess- 0.553 356.8 296.598 296.598
ing Module (35.8%) (62.6%) (68.6%) (81.2%)
Wire Orch. & 0.570 63.857 40.28 20.651
Decoder (35.9%) (11.2%) (9.73%) (5.54%)
RR-Reg & 0.131 27.37 20.28 10.128
Check Win. (9.6%) (4.8%) (4.56%) (2.88%)
Adder Tree 0.244 107.424 71.616 35.808

(15.8%) (18.8%) (16.6%) (9.80%)
PostProcess- 0.044 14.88 2.304 2.304
ing Module (2.9%) (2.6%) (0.53%) (0.63%)
Total 1.542 570.15 432.08 365.49

Table 10: Area and power breakdown. (@TSMC 65𝑛𝑚)

Bitlet(float 32) Bitlet(16b) Bitlet(8b)

Item Area Power Power Power
(𝑚𝑚2) (mW) (mW) (mW)

Preprocess- 1.916 1208.5 1000.8 1000.8
ing Module (33%) (66.1%) (71.9%) (83.5%)
Wire Orch. & 2.327 164.1 111.4 55.7
Decoder (40.1%) (8.1%) (8.0%) (4.6%)
RR-Reg & 0.7 112.1 74.8 37.4
Check Win. (12.0%) (7.2%) (5.3%) (2.9%)
Adder Tree 0.7 293.3 195.5 97.8

(12.0%) (16.0%) (14.1%) (9.8%)
PostProcess- 0.2 48.5 7.4 7.4
ing Module (2.9%) (2.7%) (0.5%) (0.6%)
Total 5.8 1829.6 1390.0 1199.1

Under 28𝑛𝑚 TSMC technology node, Bitlet in float 32 mode ex-
hibits 1.542𝑚𝑚2 for the 32-PE prototype (5.802𝑚𝑚2 with the 65𝑛𝑚
technology node). Table 3 compares the area of the state-of-the-art
accelerators, and Bitlet costs the smallest circuit area. Within Bitlet,
Table 10 illustrates the largest floor space is occupied by the “Wire
Orchestrator & Decoder” in BCE (40.1%), because the decoder and
some of the wires reorganized are inevitably prolonged to avoid
intersection. However, it is not the largest power consumer (only
11.2%), because no complex computation circuit are involved in
this module. The “preprocessing module” consumes the largest
power quota (62.6%) followed by “adder tree” (18.8%). By compar-
ing the preprocessing module power, processing floating point data
costs less power than the fixed point data, but the portion over
total power increases from 62.6% to 81.2%. For the Wire Orches-
trator, lower precision consumes less power as well. The point we
want to emphasize is, from float-32 to 16b and 8b, Bitlet’s power
consumption continues to scale down, which means the design
is highly power scalable. However, looking back at the bit-serial
accelerators, the power consumption remains unchanged for any
fixed-point precision, because the bit-serial computing does not
distinguish the precisions during serialization. Bitlet, again, is able
to provide enough flexibility for the end users to select the best
power/performance investment in practice.

6 DISCUSSION
The application scope of Bitlet. The Bitlet primarily accelerates
the inference procedure. However, since the training procedure
also includes the forward propagation, which is actually also the
inference procedure. Therefore, the Bitlet could provide acceleration
for both training and inference.

The importance of versatile precision support. The Bitlet
focus on the general-purpose acceleration for various machine
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learning applications. However, the different application scenarios
requires various data types and precision support (see Table 2).
Therefore, it is important to provide multi-precision support (i.e.,
𝑓 𝑝32/16 and fixed-point 1𝑏 ∼ 24𝑏) in one accelerator architecture.

7 CONCLUSION
In this paper, we propose a novel bit-level approach for general-
purpose deep learning acceleration - “bit interleaving”, and the
corresponding accelerator design - “Bitlet”. It leverages the sparsity
parallelism in the parameters and implements “dynamic exponent
matching” and “essential bit distillation” to circumvent the useless
computations that would potentially drag down the inference speed.
Bitlet is versatile by simultaneously supporting the floating-point
(fp32/fp16) and fixed-point (1 ∼ 24b) precision. The users could test
their models at any precision on a single platform to explore the
best accuracy/speedup/power tradeoff, saving time and effort for
the faster deployment. We believe that the techniques proposed
in this paper can provide new opportunities for the researchers to
explore novel applications in deep learning and even the algorithms
beyond AI. We also hope it will probably inspire new ideas on the
deep learning accelerator design, by applying the same concept in
conjunction with some optimization techniques like pruning, and
on other hardware platforms (i.e., GPGPUs) in the future.
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