
1470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

General Purpose Deep Learning Accelerator
Based on Bit Interleaving

Liang Chang , Member, IEEE, Hang Lu , Member, IEEE, Chenglong Li ,
Xin Zhao , Graduate Student Member, IEEE, Zhicheng Hu, Jun Zhou , Senior Member, IEEE,

and Xiaowei Li , Senior Member, IEEE

Abstract—Along with the rapid evolution of deep neural
networks, the ever-increasing complexity imposes formidable
computation intensity on the hardware accelerator. In this
article, we propose a novel computing philosophy called “bit
interleaving” and the associate accelerator couple called “Bitlet”
and Bitlet-X to maximally exploit the bit-level sparsity. Apart
from the existing bit-serial/parallel accelerators, Bitlet leverages
the abundant “sparsity parallelism” in the parameters to enforce
the inference acceleration. Bitlet is versatile by supporting diverse
precisions on a single platform, including floating-point 32 and
fixed-point from 1b to 24b. The versatility enables Bitlet feasible
for both efficient inference and training. Besides, by updating the
key compute engine in the accelerator, Bitlet-X could furthermore
improve the peak power consumption and efficiency for the
inference-only scenario, with competitive accuracy. Empirical
studies on 12 domain-specific deep learning applications highlight
the following results: 1) up to 81×/21× energy efficiency improve-
ment for training/inference over recent high-performance GPUs;
2) up to 15×/8× higher speedup/efficiency over state-of-the-art
fixed-point accelerators; 3) 1.5 mm2 area and scalable power
consumption from 570 mW (fp32) to 432 mW (16b) and 365 mW
(8b) @28-nm TSMC; 4) 1.3× improvement of the peak power
efficiency for the Bitlet-X over Bitlet; and 5) highly configurable
justified by the ablation and sensitivity studies.

Index Terms—Accelerator, bit-level sparsity, deep neural
network (DNN).

I. INTRODUCTION

W ITH the development of deep neural networks (DNNs)
for higher accuracy, the model size is increasing cor-

respondingly, which requires more computational resources
for hardware deployment. However, for power-sensitive edge
devices, such as drones, power, and performance, are the
limitations for applying bigger-size models to pursue higher
accuracy. Accordingly, promoting accelerator efficiency is

Manuscript received 23 February 2023; revised 7 October 2023; accepted 7
December 2023. Date of publication 13 December 2023; date of current ver-
sion 23 April 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62104025 and Grant 62172387;
in part by the Youth Innovation Promotion Association of Chinese Academy
of Sciences (CAS) under Grant 2021098; and in part by the State Key
Laboratory of Processors (ICT, CAS) under Grant CARCHB202117 and
Grant CLQ202305. This article was recommended by Associate Editor
L.-C. Wang. (Corresponding author: Hang Lu.)

Liang Chang, Chenglong Li, Xin Zhao, Zhicheng Hu, and Jun Zhou are
with the School of Information and Communication Engineering, University
of Electronic Science and Technology of China, Chengdu 611731, China.

Hang Lu and Xiaowei Li are with the State Key Laboratory of
Processors, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing 100190, China, also with Zhongguancun Laboratory,
Beijing 100081, China, and also with Shanghai Innovation Center for
Processor Technologies, Shanghai 200120, China (e-mail: luhang@ict.ac.cn).

Digital Object Identifier 10.1109/TCAD.2023.3342728

essential for both high performance and power efficiency.
In this work, we focus on leveraging the abundant bit-level
sparsity parallelism to improve the efficiency of edge- and
cloud-based general-purpose deep learning accelerator.

There are a lot of works devoted to mining the data sparsity
to realize effectual computation [25], [36]. However, sparsity
is diverse in different models or even individual network
layers in identical models. In addition, sparsity is not always
abundant. For example, the zero values in activations are only
probably to be generated when they are passed through activa-
tion functions, such as ReLU. In order to handle this problem,
some works aim to recognize the nearly “zero values” in
the operands [23], [24] or implement time-consuming sparse
(re)training to increase sparsity for pruning [22], [25], [36].

Recently, the headroom of exploiting value-based sparsity
has been noticed to the end. From the software perspective,
if lossless precision is the first-order design requirement, then
there is a visible margin that the compression ratio cannot
cross. And the majority of the time is needed to explore such
margin to realize the tradeoff between the model size and
the accuracy. From the hardware implementation perspective,
exploiting the value sparsity may lead to a more complicated
accelerator design. For instance, enlarging on-chip memory
is needed to adapt to the increasing size of the indices [13],
[26], [39], [40], which will increase area overhead and power
consumption.

In contrast, the “bit-level sparsity” is the inherently more
fine-grained sparsity that targets the “zero bits” in each
operand. Compared with coarse-grained zero values, higher
sparsity can be achieved. Moreover, skipping zero bits in the
operand will have no effect on the outcome, which suggests
that hardware could be able to directly obtain the bit-level
sparsity-based acceleration. In this way, plenty of bit-serial
accelerators [7], [17], [21], [30] have been presented. Fig. 1
shows a high-level example of the computing paradigms of
three different types of accelerator PE. Bit-serial prototypes
compute the inner product using numerically identical bit-level
arithmetic, with the exception of the early stage bit-parallel
accelerators [10], [16] [Fig. 1(a)]. For instance, by organizing
and inputting the weights for MAC both in serial fashion, one
8b × 8b product can be divided into eight 1b × 8b products
with the identical outcome [step ❶ in Fig. 1(b)]. However,
this example shows a serious problem. To mine the maximum
potential of the bit sparsity, it is preferable to skip the zero bits
as much as possible. Whereas, the locality of the zero bits in
each 8b operand is unforeseeable, especially after fixed-point
quantization. The reason is that quantization will fully utilize
the limited bit width to represent the value range, making zero
bits arbitrarily interleaved with the essential bit 1 s. In order

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6685-5576
https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0003-0111-0749
https://orcid.org/0000-0003-4623-9829
https://orcid.org/0000-0003-2098-9621
https://orcid.org/0000-0002-0874-814X

CHANG et al.: GENERAL PURPOSE DEEP LEARNING ACCELERATOR BASED ON BIT INTERLEAVING 1471

(a) (b) (c)

Fig. 1. Examples for the bit-interleaved PE comparing with prior bit-parallel/serial PE, where the wi
j marked in gray is the nonessential bit (0 bit).

(a) Bit-parallel PE. Step ❶ organizes the weights for MAC in parallel; step ❷ issues MAC. (b) Bit-serial PE. Step ❶ organizes the weights in serial; step ❷
synchronizes the significance of the essential bits; and step ❸ issues the “bit-serial” MAC. (c) Bit-interleaved PE. Step ❶ organizes the weights in parallel,
but step ❷ issues the bit-serial MAC along each bit significance, excluding the synchronization operation.

to make full use of bit sparsity, synchronization is essential. It
must be carefully implemented as step ❷ depicts in Fig. 1(b),
before completing the bit-serial MACs in step ❸.

Prior synchronization schemes include middle-ware-level
dense scheduling (i.e., bit-tactical [21]) and hardware-level
direct booth encoding (i.e., Laconic [29] and Pragmatic [7])
and so on. However, a consistent pattern to define the locality
of the sparsity for synchronization using these approaches
is difficult to come by. As a potential outcome, the current
MAC operation may be suspended in order to align the bit
significance, leading to performance degradation. For example,
w0

2 must wait until w1
0 and w1

1 have accomplished MAC
as shown in Fig. 1(b). As for the hardware implementation,
the design complexity is also increased due to additional
circuits for the encoding needed in the Booth encoding. In
addition, such serialized organization patterns cannot support
the floating-point computation and cannot be adopted for
general-purpose situations.

In this work, we propose a new scheme to investigate the
bit-level sparsity dubbed bit interleaving, which leverages the
sparsity parallelism presented by a number of weights to
accelerate DNNs. Fig. 1(c) illustrates how it organizes the
same number of weights in parallel (step ❶), but differs from
the bit serial/parallel accelerator design by interleaving the
weights and implementing bit-level MAC in serial (step ❷). On
the one hand, the actual bits used to compute the product are
interleaved weights rather than original weights compared with
bit parallel accelerators. On the other hand, the serialization
technique is expanded to a sequence of interleaved weights
together with each independent bit significance, with the
exception of the bit-serial accelerators. Considering these two
characteristics, bit interleaving is especially attractive to DNNs
in three perspectives.

1) Bit interleaving is favored by the following behavior
in MAC computations: the accumulation targets each
independent bit significance, and no synchronization
mechanism is necessary as in bit-serial accelerators.

2) It can support fixed-point or floating-point computation
by configuration and is orthogonal to any quantiza-
tion/pruning methodology.

3) The bit interleaving-directed accelerator design could be
used for both inference and training.

The following is a list of what we contributed to this work.
1) We propose a novel DNN acceleration pattern called

bit interleaving that effectively takes advantage of the
bit-level sparsity. Section II reveals the bit sparsity is
not only high but also uniform at each bit significance

(about 50%). Our observations confirm that such distri-
bution exists: ① in both fixed-point and floating-point
weights and ② across big and little models. This sparsity
parallelism motivates the feasibility and the necessity of
the proposed bit interleaving.

2) We propose the corresponding hardware accelerators
that maximally mine the potential of bit interleaving.
The accelerators have two members—Bitlet and Bitlet-X.

a) Bitlet serves as the general-purpose deep learn-
ing accelerator, which supports both floating-point
(fp 32/16) and fixed-point (1b to 24b). The spar-
sity parallelism could all be sufficiently exploited at
each bit of significance, regardless of the precision
used in practice. Such versatility makes Bitlet could
bring satisfactory efficiency for both inference and
training. As will be shown in Section V, the
maximum speedup of Bitlet is 15× over existing
bit parallel/serial accelerators and 81× over GPUs.

b) Bitlet-X serves as the specific accelerator designed
for fast and accurate cloud-side inference. By
means of clock gating and reducing the wire com-
plexity, we obtain an even faster inference speed
and more optimized energy efficiency, but with
lossless accuracy on our versatile benchmark suit.
Concrete specs: 438 mW power consumption for
the floating-point 321 inference; 467.58 GOPs/W
peak power efficiency, which is 1.3× improvement
over the Bitlet under 28-nm technology.

II. MOTIVATION AND RELATED WORK

A. Rethinking Sparsity-Aware Accelerators

We categorize the state-of-the-art sparsity-aware accelera-
tors in Table I. In early stage bit-parallel accelerators, only
focus on value sparsity, such as Cambricon series [39], [40]
and SCNN [26]. By collaborating with the software-based
pruning techniques, more headroom of zero values is created
to release the potential of these accelerators. Recently, plenty
of bit-serial accelerators pay attention to the bit-level sparsity
in genetic activations or weights. The most recent Laconic uses
“terms” to extract the essential bits serially after Booth Coding
and designs a low-cost LPE to minimize the power increment
caused by frequent encoding/decoding [29]. Tactical [21] and
Pragmatic [7] use zero-bit skipping to optimize the ineffectual

1In this manuscript, we interchangeably use “floating-point 32” and the
“fp32.”

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

1472 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 2. Potential speedup of bit interleaving. Most existing sparsity-aware accelerators only support fixed-point precision, so we only compare 8b and 16b
DNNs in Table II. The floating-point applications will be evaluated over GPUs in Section V.

TABLE I
ACCELERATOR DESIGN CATEGORIZATION

product. Stripes [17] and UNPU [22] implement bit seri-
alization to support fixed-point operands computing without
sparsity avoidance. Bit-fusion [30] supports faster spatial and
temporal composition to accelerate bit serialization but still
does not exploit bit sparsity as well.

The strength of bit serial accelerators is the effectiveness
of exploiting the sparsity in bits. However, the bit-serial
accelerators provide comparatively lower throughput than their
bit-parallel counterpart. Therefore, bit interleaving seeks to
combine their pros and avoid their cons. Fig. 2 shows that
the potential of bit interleaving speedup could achieve 8× to
29× by exploiting the weight bit and value sparsity (W-bit and
W-value in Table I) for various AI tasks. In addition, mining
the activation sparsity is also workable, which depends on the
data reuse policy.

Ideally, an accelerator should be applicable to most cases,
providing enough convenience and flexibility for the end-users
in synergy. However, the vast majority of accelerators can
only support fixed-point inference, which makes it difficult
to work from a general-purpose perspective. For instance,
the back propagation in DNNs training relies on floating-
point precision to ensure the training accuracy. In this work,
due to the bit interleaving design concept, Bitlet could not
only handle sparsity effectively but also support versatile
precisions, including both fixed point and floating point, which
renders it suitable for both high-performance and power-
efficient scenarios.

B. Leveraging the Sparsity Parallelism

Previous researches have proved that bit-level sparsity
is abundant. However, they only focus on exploring the
strategy of skipping zero bits inside a particular weight,
while none of them investigate the interweight sparsity,

Fig. 3. Sparsity parallelism. The X-axis indicates the bit significance of the
mantissa and each dot indicates the fraction of zeros on this bit lane across
all the weights of this kernel. It shows ∼ 50% bits are 0 s for all kernels. On
X-axis in the figure, the sparsity only entails the mantissa (23/10 bits for float
32/16), and seven significant bits excluding the sign bit for int8 precision.

that is, the sparsity parallelism based on which bit inter-
leaving may dramatically outperform the bit serial/parallel
prototypes.

As shown in Fig. 3, we trace the bit sparsity for different
convolution kernels and find that the weight sparsity at each
significance is uniform. For the two DNNs ResNet152 and
MobileNetV2, the first half of the mantissa (bit0−bit16)
shows obvious aggregation, which means the amount of 0 s
and 1 s that lie on this bit significance is nearly com-
parable. This provides an opportunity to load the weights
in parallel but compute the product in serial along each
bit lane. The independence of bit lanes helps to avoid
synchronization. As will be shown in Section V, the
computation of 64 MACs could be finished within one
cycle in our FPGA platform for most of the evaluated
DNNs.

Besides, from bit lane 17−23, the dots mostly overlap
at 100% on the Y-axis (the long tail in the fp32 figures),
which indicates most of the bits are 0. The floating-point
multiplier does not distinguish this suboptimal case, because
it is designed for covering any corner case of the operand,
which is also the fundamental reason that floating-point MAC
can hardly be accelerated. Whereas in our proposed Bitlet
accelerator, such abundant sparsity could be easily exploited
by bit interleaving. The details will be discussed in the
following section.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: GENERAL PURPOSE DEEP LEARNING ACCELERATOR BASED ON BIT INTERLEAVING 1473

(a) (b) (c)

Fig. 4. Core concept of “bit interleaving.” The fp32 weights are exemplified and preprocessed in step ❶. The weights are shifted and zero-padded according
to the maximum exponent (Emax) in step ❷. Note that exponential matching to the right-hand side is only allowed in the case of severe accuracy loss as
specified in the IEEE 754 Standard. Step ❸ handles bit distillation. Final three weights that are interleaved finally participated in the computation step in the
accelerator. (a) Step 1: Preprocessing the floating-point weights. (b) Step 2: Dynamic exponent matching. (c) Step 3: Bit distillation.

III. BIT INTERLEAVING

A. Theorem

Uniformly a floating-point operand can be splitted into three
parts: 1) signed bit (S); 2) mantissa (M); and 3) exponent (E),
following IEEE-754 [12]. We demonstrate the scenario of the
float-32 format (fp32 hereafter) computation first.The mantissa
contains 23 bits and the exponent occupies 8 bits with the last
bit for the sign. A floating-point operand fp could be expressed
as fp = (−1)s1.m × 2e−127, in which e is the actual position
of the “binary point” plus 127. We consider the scheme that
a series of fp32 MACs to compute one partial sum

N−1∑

i=0

Ai × Wi =
N−1∑

i=0

(−1)SWi Ai × MWi × 2EWi . (1)

Explain (1) first: we translate Wi into the normalized fp32
representation, in which MWi and EWi stands for 1.mWi and
eWi − 127 for simplified expressions. Note that, the MWi

is the fixed-width mantissa (24 bits), which includes the
hidden bit—the first bit “1” in the mantissa compiled with
IEEE-754 format. MWi can be further decomposed to get the
bit-represented partial sum

N−1∑

i=0

Ai × Wi =
N−1∑

i=0

−23∑

b=0

[
(−1)SWi Ai

]
× 2EWi+b × Mb

Wi
(2)

=
N−1∑

i=0

−23∑

b=0

[
(−1)SWi

⊕
SAi · MAi

]
× 2EWi+EAi+b × Mb

Wi
(3)

where Mb
Wi

is the bth bit of the binarized MWi . Replacing Ai
with IEEE-754 binary format, (2) could be rewritten as (3).
Furthermore, let Ei = EWi + EAi , then we can get

N−1∑

i=0

−23∑

b=0

[
(−1)SWi

⊕
SAi · MAi

]
× 2Ei−Emax × 2Emax+bMb

Wi
(4)

=
N−1∑

i=0

Ei−Emax−23∑

b=Ei−Emax

[
(−1)SWi

⊕
SAi ·

(
MAi × Mb

Wi

)]
× 2Emax+b.

(5)

In (5), we can infer that N number of fp32 MACs is equiv-
alent to a series of bit-level operations of the corresponding

mantissa. In specific, if Mb
Wi

= 1, then the summation of
N MACs is transformed into the summation of N signed
MAi(denoted by (−1)SWi

⊕
SAi) shifting 2Emax+b, contingent on

the significance bit b and the Emax.
We can conclude a fact from the above analysis that

the floating-point partial sum could be turned into bit-level
operations, with the sparsity which could be exploited at the
bit-level. The product is primarily formed by the mantissa
MAi , but whether it would actually contribute to the product
is decided by the single bit in corresponding weight Mb

Wi
in (5). The above bit sparsity could be also exploited in
bit interleaving. According to the previous sections, each bit
significance of weight in existing DNN models is composed of
a significant portion of 0 s, so if Mb

Wi
= 0 but another weight

Wj at the same significance b is an essential bit 1, we can allow
Mb

Wj
taking the place of Mb

Wi
, making different weight bits

interleaved in the same lane. In a hardware implementation,
it means the mantissa MAj and MAi could be contributed to
the final product in tandem accelerating the computations by
exploiting the sparsity.

The theorem also fits the fixed-point precision. In (5), the
impact of Emax and Ei − Emax could be skipped for fixed-
point numbers, because fixed-point values do not have an
exponent part. In other words, we just ignore the exponent
part in the equation and the others remain the same for the
calculation of the fixed-point numbers. Next, we describe how
bit interleaving can work for fp32 format, and in the next
section, we elaborate on the architecture of the proposed Bitlet
accelerator and how to support versatile precisions with the
concept of bit interleaving.

B. Procedures

Fig. 1(c) shows the computation step of bit interleaving
for the fixed-point MAC of 8-bit. But the MAC for floating-
point is not easy to be harnessed as its fixed-point counterpart,
because there is an exponent part residing in the binary
encoding, and different operands’ exponents usually differ. To
exploit the maximum potential of the sparsity, bit interleaving
shows three essential steps based on (5).

1) Step ❶ (Preprocessing): Fig. 4(a) illustrates as an exam-
ple of 6 fp32 weights arranged in rows, each with an arbitrary
exponent and mantissa. The triangle mark shows the real
location of the binary point. For simplicity, we use the more

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

1474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

iconic representations to express the value. For example, the
(0.01)2 with E5 = −2 hence stands for 0.25 in decimal (W5).
This step is similar to step ❶ in Fig. 1(c). The only difference
here is that this step organizes the fp32 weights in parallel
for interleaving. It preprocesses these binary weights so as
to obtain the exponent separately and then further identifies
the “maximum” exponent value (E6 in this example). The
mantissa is also interpreted and stored for the later MAC
operation. For readability, the rear bits (bit 9–23) of each
mantissa is omitted.

2) Step ❷ (Dynamic Exponent Matching): The exponent
part for a float-point number actually denotes the position of
the binary point. Conventionally in hardware implementation
of float-point calculations, it involves a step called “exponent
matching” to align the binary point of the operands. In
bit interleaving, we match the exponents according to the
maximum value (E6 in this example) of all exponents to align
a group of floats, instead of handling them in one pair and then
another. This step is called “dynamic exponent matching.”

Recalling (5), for hardware implementation, the two
∑

s
could be executed parallelly: 1) the outmost

∑
represent the

vertical dimension in Fig. 4(a), that is, N number of weights
with their associate activations and 2) the innermost

∑
shows

the horizontal dimension which represents different bit widths
of the mantissa. Therefore, the key concept of (5) is to compute
all the MAis with Mb

Wi
= 1, along the two dimensions in

Fig. 4(a).
The convolution operation, that we aim to accelerate, is to

compute
∑N−1

i=0 Ai×Wi, and it involves N number of activation
and weight MACs. Rather than an costly one-by-one match,
this step is intended to match all exponents to the maximum
each time. It can be seen in Fig. 4(b) that, the 6 weights are
all aligned to the maximum exponent–w6. For instance, w5
needs to shift 8-bit positions to the right to align with w6. As
an advantage, the exponent matching step is only issued once
in computing one partial sum which resulting in an efficient
hardware implementation.

3) Step ❸ (Essential Bit Distillation): Now is to take
advantage of the essential bits to obtain the proper result
of MACs and further, the satisfying inference speed. As the
sparsity parallelism mentioned in Section II, this step distills
the essential bits, which is exactly identical to the step ❷ in
Fig. 1(c).

As shown in Fig. 4(c), the computations could be totally
reduced significantly from 6-operand MACs to only 3 by
the effective distillation. Still using W6 for the example, its
exponent is 6 and the first bit (b = 0) is an essential 1. Inspired
by (5), the value of 2Emax+b for this bit equals 26, which
means this bit lies in the 7th position before the binary point.
For W1–W5, the 26 positions are all zeros after the exponent
matching step. If we ascend the first bit of W6 replacing the
same position in W1 in the same vertical lane, we are able
to compute A6 × 26 + A1 × 23 simultaneously. The essential
bits in other weights could be operated the same way, and the
distilled weights are finalized in Fig. 4(c).

As a summary, the above steps of the bit-interleaving
method accelerate fp32 MACs from two aspects: 1) it
eliminates the conventional one-by-one expensive exponent
matching operations by introducing the multipair exponent
dynamic matching mechanism and 2) it eliminates the ineffi-
cient computations caused by unnecessary bits by benefiting
from the parallel bit-level sparsity. In Section V, we will

demonstrate that on our accelerator platform, the fp32 MAC
can compute even faster than int8 or fixed-16 quantization.
Moreover, it could accelerate the original DNNs in various
precisions and support the other software algorithm in general-
purpose usage as well without hardware change.

IV. BITLET ACCELERATORS

To implement the bit-interleaving method in hardware, we
design a novel accelerator couple, including two members,
named Bitlet and Bitlet-X, respectively. In this section, we first
demonstrate the common key micro-architecture with versatile
precision support in both of them, as well as the Bitlet-X
specific micro-architecture, which optimizes power and the
inference speed compared with Bitlet. An efficient memory
system is also used for constructing the overall accelerator.

A. “Bitlet” Compute Engine

Key Module #1 (Preprocess): First, we design the prepro-
cessing module in order to accomplish the first two steps of the
bit interleaving theorem mentioned previously. For simplicity,
We define N as the maximum number of A/W pairs that
Bitlet is designed to handle as in Fig. 5. In Bitlet Compute
Engine (BCE hereafter), A0–AN−1 are the activations, while
W0 through WN−1 are the original weights which are needed to
be multiplied correspondingly. Proposed preprocessing module
decomposes each Wi and Ai pair into two parts: 1) mantissa
(including the sign information) and exponent and 2) then
sums up the EWi and EAi as the value Ei for each A/W pair. A
Compare Tree is designed to find the maximum value(Emax)

among all Ei. The Emax is then stored in the register and stays
the same during the subsequent dynamic matching phase. After
keep the value of Emax, MWi is shifted by Emax − Eii bits to
align its exponent to Emax. Recalling Fig. 4, Emax should be
E6 = 6 in W6, other weights are all aligned to E6, i.e., MW4

will be shifted by 6−0 = 6 positions to the right-hand side as
shown Fig. 5. The left shift position is automatically padded
with 0 s, and any subsequent bits beyond b = 23 are discarded
because the mantissa is 24 bits long.

Key Module #2 (Wire Orchestrator): After the dynamic
matching phase, a 24-bit shifted mantissa is obtained, which
is indicated by MWi[0]–MWi [23]. Then they are processed
by Wire Orchestrator in Fig. 5. According to the arith-
metic representation mentioned previously, the bits that share
the same bit significance in mantissa should be processed
sequentially later. So proposed Wire Orchestrator is used
to reorganize the preprocessed mantissa and aggregate the
same bit significance together from different pairs of mantissa.
Particularly the output of the Orchestrator is represented as
MW0 [b], MW1 [b], . . . , MWN−1 [b] in which b is in range 0–23.
This module contains no combinatorial or sequential logic
because it only assembles wires for the aligned mantissa in
the previous preprocessing step and performs the transpose
operation, so intuitively this module only introduces tiny
power consumption but to some extent increase the circuit
area. The actual influence of this module will be evaluated in
later Section V.

Key Module #3 (RR-reg): The proposed RR-regi is designed
to distill the essence bit in the interleaved values and select
one output of BCE from the N activation mantissa. As
shown in Fig. 5, the pseudo-code shows how RR-reg works:
it concentrates the input bits of the same bit significance

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: GENERAL PURPOSE DEEP LEARNING ACCELERATOR BASED ON BIT INTERLEAVING 1475

Fig. 5. Microarchitecture of the core module—BCE. The green area contains the modules that could be clock gated for Bitlet-X.

from the orchestrator and distills one essential bit each cycle
in sequence. The “select” signal could inform the decoder
logic to configure the chosen activation path and output Oi,
which would be accumulated with other outputs later. RR-
reg activates the “fill 0” signal when there is no essential bit
detected, and the output Oi will be 0 as well. This “filling
0 s” operation is used to avoid the scheme of the input for
one RR-reg are 0 s, i.e., b = 1 or 2 in Fig. 4(c).

Discussions: We highlight three advantages of the BCE.
① The proposed architecture does not influence the infer-

ence accuracy, due to the reason that the dynamic exponent
matching mechanism mentioned in Section III-B2 is coinci-
dent with the float-point algorithm in IEEE 754, which is to
discard the rightmost outlier bits after shifting (“>> Emax−Ei”
in Fig. 5). These bits are insignificant in the calculation and
cause almost no effect, hence the result will not be changed
using this method.

② Unlike other sparsity-aware accelerators, our proposed
BCE does not need an extra and costly sparsity-aware
preprocessing method to finish its computation. Since the
preprocessing module in Fig. 5 is just used to distinguish
the mantissa/exponent part of each A/W pair. In our circuit
implementation, we instantiate a sliding window with limited
window size in each RR-reg to distill the essential bits to
avoid large area consumption. Benefiting from the sparsity
parallelism, the distillation of the essential MWi [b] could be
finished nearly in tandem in each RR-reg. Since it is the
fundamental module in the whole hardware design, the Bitlet
accelerator is with promising throughput and low-area cost as
demonstrated in Section V.

③ Except for the RR-reg, the BCE consists almost of
combinatorial circuits, but it does not involve complex wires
that could lead to extended critical path delays. Each RR-reg
spawns one output Oi per clock cycle, but from the system
level’s perspective, the cycle time spent on one partial sum
is greatly optimized compared to the traditional one-to-one
MAC in our later evaluation. N is the key design parameter in

BCE, and larger N has the ability to distill more bit 1s when
computing one partial sum. In Section V we will also study
the N′s influence on the inference speed and explain how we
choose the best N for the hardware design.

B. “Bitlet-X” Compute Engine

As previously mentioned, Bitlet is an accelerator couple.
Besides the above general-purpose BCE micro-architecture to
empower training and inference in one platform, an additional
prototype for inference-only optimization–Bitlet-X is also
proposed by updating the BCE micro-architecture.

As shown in Fig. 5, the major modification for Bitlet-X
resides in the wire interconnections within the BCE. It instan-
tiates a series of clock gating signals that traverse from each
shifting module (“>> Emax − Ei”) to the wire orchestrator
and finally some of the RR-regs. The clock-gated wires for
saving power are marked as green in the figure. For example,
Bitlet-X only reserves the most significant 8 bits in each weight
mantissa for shifting, and the wires of bit MWi[8]–MWi[23] are
clocked gated. Similarly, RR-regs[8] through RR-regs[23] are
also clock gated, only keeping the front 8 RR-regs alive for
the essential bit distillation. The final product only accounts
for O0–O7, so the O8–O23 could be kept idle and safely
deactivated to save power.

The core basis of this inference-only update stems from the
feature of DNNs, that is, the precision of weight/activation
operands can be compromised to get faster inference speed
in return, and meanwhile, the accuracy of the network is
also able to be maintained. The infrastructure of the BCE
naturally provides such an opportunity to approximately com-
pute the partial product but keep the final product intact. In
specific, the shifting module is responsible for shifting the
less significant bits, based on the quantitative relationship
between Emax and Ei, to the right-hand side and truncating
the bits beyond the certain range, i.e., for Bitlet we choose
23 RR-regs while for Bitlet-X we choose only 8. The truncated

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

1476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 6. Bitlet accelerator. To compute the partial sum, each Bitlet PE is
composed of one BCE and a adder tree. Bitlet is versatile: for the floating
point, Emax is dynamic, while for the fixed-point precisions, Emax is fixed
to the target precision (i.e., 16 or 8).

bits are undoubtedly harmless to the final accuracy because
they are too tiny in value. More convincingly, we have
proved in Section V-D that even more aggressive Bitlet-X
could achieve nearly identical performance on our benchmark
suite containing various famous deep learning tasks and the
associate evaluating metrics.

Besides, the merits of the manipulation are also twofold.
1) As an approximation optimization, Bitlet-X gracefully

reduces the wiring complexity, no matter for the
input preprocessing module, shifting, or for the wire
orchestrator and RR-regs, which means the power
and area could also be optimized accordingly (proved
in Section V-H). The benefit further spreads to the
simplified thermal management and shortened critical-
path delay.

2) Due to the truncation of the mantissa, the input operand
only has 8 bits that really matter instead of the original
24 bits in the standard float-32 mantissa. Therefore, we
could store lesser bits in the on-chip SRAM, from the
original 32 bits (1-bit sign, 8-bit exponent, 23-bit man-
tissa) to the current 16 bits (1-bit sign, 8-bit exponent,
7-bit mantissa, note that the first 1 in the mantissa is
always hidden), because Bitlet-X only takes the most
significant 8 bits into account. This benefit leads to the
storage reduction by 50%, or in other words, acquires
1× extra throughput improvement.

Finally, it is worth mentioning that Bitlet-X cannot be used
for training because such an approximation method does bring
precision variation, so the backpropagation during training is
also affected by unpredictable gradient descent. It is designed
for boosting the inference performance only (see Section V-C).

C. Accelerator Architecture

PEs: To build an accelerator with large throughput, we
call the combination of one BCE and the adder tree with
other post-processing logic as a PE. Each PE receives the
operands (weights and activations) simultaneously according
to the entire dataflow and spawns the output Oi of different
bit significance being the input of the adder tree. PEs are
connected and compose the whole Bitlet accelerator, as shown
in Fig. 6.

It finalizes the result by multiplying 2Emax+b for the cor-
rectness of the final result. It can be decomposed into a fixed
part b and a common part Emax for BCE output. The fixed
part of the exponent is calculated by shifting the fixed amount
of the wire connection operation in the physical circuit. As
regards the common component, Emax is then used to generate
a formatted result by applying the accumulator result in the

final packing module. Obtaining Oi only requires fixed-point
addition, instead of any multiplication, which also reduces
arithmetic complexity and power consumption.

Memory System: To improve the throughput, the Bitlet
accelerator provides separated DMA channels for the activa-
tion and weight data. As shown in Fig. 6, the data fetched from
DDR3 memory will be stored in the local buffer thus providing
adequate bandwidth for the accesses from the corresponding
Bitlet PEs. In the RTL implementation, the bandwidth could
achieve 12.8 GB/s per channel between the memory and the
local buffer, and the accelerator utilizes a total of 25.6 GB/s
to fetch the activation and weight data from the buffer.
Considering dataflow, Bitlet utilizes weight stationary (WS)
dataflow and activation broadcasting method [11] to minimize
the main memory accesses.

D. Versatility

The proposed 2 Bitlet accelerators is a versatile accelerator
couple, which can be manifested in two aspects.

For the Bitlet Prototype, It Better Balances the “Generality-
and-Efficiency” Tradeoff: It could be conveniently configured
into the fixed-point mode, showing enough flexibility in the
end scheme. For FXP16 (fixed point 16-bit) precision, we
could easily just power gate the processing module of the
function part that performs the exponent matching and shifting
(“� Emax − EWi ” in Fig. 5), and the input Wi can be directly
connected to the Wire Orchestrator. Bitlet is designed for
the 24-bit mantissa to support the multiprecision, in the case
when we just use FXP16 format, only RR-reg0 − RR-reg15
are involved in the practical computation. Other RR-reg could
be safely powered gated or left idle in static with trivial
power consumption. Similarly for int8 quantization and other
precision (i.e., int4, int9, etc.), Bitlet could handle it in the
same manner. Benefitting from this, the end users on our
platform do not have to change to use other precision-specific
accelerators due to different precision demands. They are free
to calibrate their DNNs on our platform to achieve accuracy
goals and power/performance tradeoffs.

For the Bitlet-X Prototype, It Tackles the “Speed-and-
Accuracy” Tradeoff (for Inference Only): By precisely
targeting the front 8 most significant bits in the mantissa,
it achieves even faster yet more accurate inference for the
DNN models. The two members of the couple are easily
configurable. The major components are highly identical
between the couple designs except for the clocking gating sig-
nals in Bitlet-X. The end users could balance the performance,
power, or efficiency of the training and inference procedure in
a more flexible way without much effort.

V. EVALUATION

In this section, our presented bit interleaving scheme and
the Bitlet accelerator will be evaluated.

A. Experimental Setup

DNN Models and Application Baselines: Bitlet is a general-
purpose accelerator which can support 1–24bit fixed-point and
floating-point precision. As listed in Table II, we select 12
DNNs applications with different network structures as DNNs
benchmarks. As for hardware comparison, we choose a series
of baselines:

1) GPUs, containing high-performance data center
devices—Titan V (volta) and Titan Xp (pascal),

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: GENERAL PURPOSE DEEP LEARNING ACCELERATOR BASED ON BIT INTERLEAVING 1477

TABLE II
DNNS BENCHMARK

and power-efficient edge-level device—Jetson TX2
(pascal).

2) Sparsity-agnostic accelerators, typical accelerator based
on the fixed-point MAC—Eyeriss [11], which utilizes
multipliers and adders both designed for fixed-16 values
without taking into account the sparsity; typical bit-serial
accelerators—Stripes [17].

3) Sparsity-aware accelerators, Laconic [29] and
SCNN [26] are adopted for its bit-sparsity and value-
sparsity design.

For Bitlet, we evaluate its flexible precisions, including 8-bit,
16-bit, and float 32. We select a number of common config-
urations (2, 4, 8, 16, 32, 64) for the crucial design parameter
N to assess its effect on the speedup. In addition, in order
to test the performance sensitivity of different modules in
Bitlet, we carry out a hardware ablation study. To get the best
performance, we set N = 64 as the default configuration in all
experiments.

FPGA and ASIC implementation: We first complete the
prototype verification based on Xilinx Virtex-7 Series FPGA.
Under the frequency of 200 MHz, we equipped the Bitlet
with 32 PEs. Based on the above configurations, post-synthesis
simulation is executed using the Vivado platform (v2018.2).
We record the runtime memory access data and send it to
the DRAMsys tool [18] to evaluate the energy consumption.
Moreover, at each run, the inference time is recorded in
frames per second (fps). For ASIC, we set the frequency to
1 GHz, and estimate the power and area under the TSMC
28 and 65-nm process technology based on Synopsys Design
Compiler (v2016). To record a detailed module-level area,
we decompose the Bitlet PE. The baseline data of the area
are directly provided from their publications, however, only
the total PE area is available. Note that the data for our
implementation is from the prelayout (or netlist level), while
the baselines use the post-layout estimation.

B. Specifics Comparison

We compare the specs of the SOTA GPUs and accelerator
prototypes with the Bitlet couple. For the “peak performance,”

we implement the Bitlet and Bitlet-X with Verilog and directly
collect the data from the literature for the baseline accelerators.
For some of the data not mentioned in the literature, we use a
dash “-” instead in Table III. Under the case of 32 PEs/BCEs,
Bitlet achieves a 744.7 GOPs, 372.35 GOPs, 204.8 GOPs peak
performance and 1335.93 GOPs/W, 667.97 GOPs/W, 359.15
GOPs/W peak efficiency under 28-nm process technology
(621.10 GOPs/W, 267.87 GOPs/W, 111.97 GOPs/W under
65-nm process technology) for the fixed-point 8b, 16b and
floating-point 32 precision, respectively. Bitlet-X updates its
BCE with clock gating for faster and power-efficient inference
under floating-point 32 precision. The peak performance in
GOPs remains the same, but the “peak power efficiency”
is effectively boosted to 467.58 GOPs/W, 1.3× higher than
the vanilla Bitlet under 28-nm technology. As indicated in
Table III, Titan V achieves the maximum performance, but its
efficiency is compromised by high power. Also, despite having
the fewest PEs, Bitlet achieves the best efficiency and area
under the 28-nm technology node, where the “PEs/Cores” is
the standard configuration, based on which the peak power
efficiency and performance are reported. To be fair, the same
number of PEs are employed with approximately comparable
processing resources for performance and energy evaluation.

C. Speedup and Energy Efficiency

Speedup: As shown in Fig. 7, we use frames per second
(fps) measured on the FPGA to compare the speedup. For
instance, Bitlet can achieve 2.8 fps when running DenseNet-
161. However, the results are only 0.611 (4.6×), 0.426 (6.6×),
0.228 (12.33×), and 0.187 (15.03×) on other accelerator
baselines. Among them, Stripes, as the bit-serial accelerator,
enables layerwise configurable precision from 1–16b, verified
offline based on the least acceptable accuracy loss. SCNN fixes
the precision to 16b in our evaluation and highly relies on the
value sparsity. However, pruning is not implemented on our
benchmarks, therefore it performs worse than Stripes.

From Fig. 7, we discover that the fps result of Bitlet and
Bitlet-X in float-32 precision is even faster than all the fixed-
point baselines, where the bit-interleaving scheme causes the

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

1478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

TABLE III
ACCELERATORS BENCHMARK

Fig. 7. Speedup comparison. The upper row and bottom row indicate the 16b and 8b DNN benchmarks, respectively. For reference, we also run the float-32
version on Bitlet. All of the results are actual frames per second (fps) values, with more being better.

TABLE IV
QUANTITATIVE COMPARISON OF AVERAGE COMPUTATION PERFORMANCE (CYCLES/64-MACS)

reason. By distilling the sparsity in parallel rather than in
serial, the floating-point MAC also gains acceleration by
taking advantage of the bit-level sparsity. The fact that the
DNNs may directly obtain plentiful acceleration on Bitlet,
without the labor-intensive and time-consuming quantization
operations, is hence a more significant finding.

Table IV shows the performance of carrying out one MAC
operation. Bitlet represents 22–29 cycles/MAC between 16b
and 8b, and the 16b Bitlet acts almost comparably to the
8b Bitlet. That makes sense since, despite variations in bit
length, bit sparsity displays essentially uniform distribution at

each significance. This feature demonstrates that Bitlet may act
as a general-purpose accelerator and support any fixed-point
precision.

Energy Consumption: Fig. 8 demonstrates the energy
consumption, which is normalized to the “Bitlet (float 32).”
The biggest difference is shown at ResNet-50, which
consumes 24.31× more energy consumption. From the
experiment data, SCNN does not perform well. Due to the
value-level sparsity methodology in SCNN, the speedup is
only obvious when the sparsity of the value level is abundant.
However, the 12 applications do not go through sparse training

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: GENERAL PURPOSE DEEP LEARNING ACCELERATOR BASED ON BIT INTERLEAVING 1479

Fig. 8. Energy consumption. Also, we present the float-32 inference’s energy result, and all the fixed-point results are normalized to it.

TABLE V
TRAINING/INFERENCE EFFICIENCY IN THE FLOAT-POINT PRECISION.

NOTE THAT TX2 IS NOT USED FOR TRAINING

or pruning. Therefore, the accelerator designed for indexing
the sparsity for zero skipping cannot fully contribute to the
speedup improvement but still consumes a significant amount
of power. Bitlet (16b) has the lowest-energy consumption. For
Bitlet-X, the energy consumption is smaller than the vanilla
Bitlet due to the clock gating of most of the wires and RR-regs
in the BCE, and that leads to decreased power consumption
during inference.

Energy Breakdown: Fig. 9 shows the energy breakdown
in two aspects. As shown in Fig. 9(a), it presents the full-
system energy breakdown and the memory accesses dominate
the energy consumption. Especially for Transformer, the data
attains almost 99% while the PE computation energy uses only
1%. As shown in Fig. 9(b), the PE-only energy for each DNN
is further decomposed, which shows the domination of the
preprocessing module (63.2%). This is because it involves a
large number of buffers for the mantissa and the exponent.
For other modules, Wire Orchestrator and adder tree consume
14.7% and 6.27% energy on average, respectively.

Efficiency: Bitlet can support the 1–24b fixed-point and
floating-point precisions. Since the accelerator baselines can-
not support the floating-point arithmetic, we compare the
power efficiency of Bitlet with the GPU baselines. Table V
shows training and inference efficiency data, and Bitlet shows
81.16×, 4.72×, 1.80×, and 34.81× improvement over the
Titan V. Correspondingly, the inference efficiency improve-
ment is 12.9×, 15.29×, 3.21×, and 21.09×. We can find
an obvious efficiency gap between the training and inference,
where the reason is that the backward propagation in the
training cannot be accelerated by Bitlet.

Tables VI and VII show the inference efficiency comparison
with fixed-point accelerator baselines. For 16b precision, the

TABLE VI
INFERENCE EFFICIENCY IN THE 16B PRECISION

TABLE VII
INFERENCE EFFICIENCY IN THE 8B PRECISION

improvement over the most recent Laconic is 6.05×, 6.97×,
7.69×, and 3.67×. Even for the float 32 precision, both Bitlet
and Bitlet-X behave better than all baselines, which confirms
that bit interleaving is more effective than the bit-serial/parallel
philosophies. In this way, directly deploying the floating point
model on Bitlet will also bring satisfactory acceleration.

D. Accuracy

The accuracy of Bitlet is exactly the same as the pre-
trained model because this prototype strictly enforces float-32
precision in computation. The Bitlet-X however, aggressively
reserves the most significant 8 bits in the mantissa for the
sparsity-aware distillation, so it is imperative to evaluate
its impact on the final accuracy. In this experiment, we
will present data results in combination with the visual
comparison for some of the models, because visual com-
parison is also a common assessment method that directly
reflects the user experience. The data results are item-
ized in Table VIII. The inference on Bitlet-X demonstrates
around 0.1% and 0.6% Top-1 accuracy fluctuation for the
classification models—ResNet-50 and MobileNetV2. For the
video understanding model C3D, the Top-1 accuracy drops
very slightly from 97.31 to 97.27. Other benchmark models
also show competitive accuracy to some extent, in comparison

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

1480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

(a) (b)

Fig. 9. Energy breakdown. (a) Full system energy breakdown. (b) PE-only energy breakdown.

TABLE VIII
BITLET-X ACCURACY COMPARED WITH EACH PRETRAINED MODEL.

COMPARATIVE OR HIGHER RESULTS FOR Bitlet-X ARE MARKED AS Bold

Fig. 10. Visual comparison for CartoonGAN. For the original image on
Bitlet and Bitlet-X, respectively, we apply the style transfer. The outcomes
demonstrate that Bitlet-X was able to infer conclusions more quickly while
maintaining the quality of the output.

with the pretrained value. For example, DCPDNet, FCOS,
DenseNet-161, and D3DNet apiece show the exactly equiv-
alent accuracy (no accuracy loss), and more promisingly,
Transformer on Bitlet-X even shows 0.09 higher-BLEU4
result; YoloV3 also shows 0.002 higher mAP (0.5:0.95).

We carry out two visual comparisons of the image gener-
ation tasks—LapSRN and CartoonGan. Fig. 10 compares the
cartoon style transfer on Bitlet and Bitlet-X and the results
are nearly equal, demonstrating Bitlet-X is a better choice
for balancing the tradeoff between accuracy and speed in the

Fig. 11. Visual comparison for lapSRN. Zoom in for a better view. To the
original image, 4× super-resolution is applied. The findings for Bitlet and
Bitlet-X are essentially identical, demonstrating their lossless accuracy but
faster inference time.

situation of inference only. A similar result is also shown in
Fig. 11 for LapSRN.

Discussion: As the well-publicized feature, deep learning
models are prone to “over-fitting,” because the parameter
update during back propagation only aims to learn the distribu-
tion of the “training” dataset. The over-fitting problem reflects
on the actual parameter value after training. Bitlet-X however,
changes the distribution of the post-training parameter set,
which also counteracts the negative impact of the over-fitting.
Therefore, the accuracy even has the chance to increase. This
extra bonus also suggests that the end users could feel free
to leverage Bitlet-X for faster but safe inference for many
different deep learning tasks.

E. Hardware Ablation Study

To explore the impact of each hardware module on the fps,
we execute an ablation study, where the target modules contain
the preprocessing module that carries out dynamic exponent
matching (termed as “M”) and the RR-reg with check window
that carries out bit distillation (termed as “D”). As shown in
Table IX, we have 4 cases in total.

1) If we remove “M” and “D” in tandem (w/o M, w/o D) in
Bitlet, it is a bare-metal design which is the same as
setting N to 1. This case can be configured in both
floating- and fixed-point Bitlet.

2) If we reserve “M” and remove “D” (w/ M, w/o D),
it degenerates from the sparsity-aware to the sparsity-
agnostic design, because the distillation phase is disabled
and the ineffectual zero bits are still involved in the
computation. This case only occurs in the floating-point
Bitlet.

3) If we remove “M” and reserve “D” (w/o M, w/ D),
Bitlet can only work at the fixed-point mode since it does
not need exponent matching (no exponent in fixed-point
values).

4) If we reserve “M” and “D” in tandem (w/ M, w/ D), it
is the standard prototype of the floating-point Bitlet.

We emphasize two observations in the ablation results.
On the one hand, all Bitlet instances perform better than

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: GENERAL PURPOSE DEEP LEARNING ACCELERATOR BASED ON BIT INTERLEAVING 1481

TABLE IX
HARDWARE ABLATION STUDY. “BARE-M” INDICATES “BARE-METAL,”

“M” INDICATES DYNAMIC EXPONENT “MATCHING,” AND “D”
INDICATES ESSENTIAL BIT “DISTILLATION.” THE RESULTS

ARE IN “FPS,” AND HIGHER IS BETTER

bare-metal. For instance, the speedup of Bitlet (float 32, w/ M
w/ D) is 29.33× (N = 64) and 22.41× (N = 32) for
CartoonGAN. Similar to Bitlet (8b, w/ M w/ D), it presents
15.47× (N = 64) and 12.69× (N = 32) speedup. On the
other hand, within Bitlet instances, regardless of whether “D”
is set or not, bigger N always yields higher-frame rates. Taking
DCPDNet as the example, the speedup of N = 64 over N = 32
is 1.14× and 1.30× for w/o D and w/ D, respectively. While
in the same N configuration, the w/D over w/o D is 2.19×
and 1.92× for N = 64 and N = 32, respectively. Therefore,
we can conclude that larger N and setting up “D” will both
bolster the inference speed, but bit distillation (“D”) is the
major drive across all the applications and precision studied.

F. Sensitivity of Key Design Parameters

From the ablation study, we find that larger N leads to
better fps results. N determines the stride that weights could
be interleaved in Fig. 4(c). If we set N as large as possible,
the number of weights that are simultaneously assimilated
by BCE is also increased. Additionally, it also provides a
larger possibility for distilling the essential bits. As illustrated
in Fig. 12, we record the inference time for each N scaling
from 2 to 64 (power of 2 at each step), the performance
increases nearly exponentially for some of the applications,
i.e., transformer, YoloV3, and DCPDNet, and linearly for
lapSRN, ResNet-50, and Multipose. Another observation is
about the behaviors of the Bitlet couple. From the Y-axis in
the upper two figures, it is obvious that Bitlet-X performs
much better than Bitlet. This is reasonable because as for the
inference, Bitlet-X only takes the front 8 bits into account. The
essential bits probed by the front 8 RR-regs might be fewer,
so the inference time is much shorter.

Besides, a larger N will not increase power consumption.
Increasing N does not result in an enlargement of the on-chip
local buffer because N simply determines how many MACs
may be executed simultaneously by single PE. A higher N is

Fig. 12. Sensitivity study for the key design parameter N.

Fig. 13. Sensitivity study to the PE array scale.

preferable if the memory access throughput can commendably
match the PE calculation throughput. For this reason, the
default configuration was set to N = 64.

G. Scalability

By increasing the number of PE from 8, 16, and 32 in
accordance with the performance of the accelerator, we run
a scalability analysis, as shown in Fig. 13. Transformer is
memory intensive, therefore its performance scales 2.41×
when using float-32 precision. In addition, other DNNs in
the benchmark are computation intensive, therefore more PEs
are advantageous for performance improvement. For instance,
ResNet50 achieves 3.85× speedup for 32 PEs with 8b
precision. Minimized data precision is beneficial to decrease
memory accesses, so fixed-precision DNNs possibly exhibit
higher performance when PE scales larger.

H. Area and Power Breakdown

In the 28-nm TSMC technology node, the area of Bitlet
equipped with 32 PEs in float 32 mode is 1.542 mm2.
Correspondingly, the area is 5.802 mm2 under the 65-nm
technology node. Table III compares the area of the SOTA
accelerators, and Bitlet occupies the smallest circuit area.
From Table X, we can find the “Wire Orchestrator and
Decoder” module in BCE occupies the largest area (40.1%),
because the decoder and some of the wires reorganized are
inevitably prolonged to avoid intersection. However, it is not
the largest power consumer (only 11.2%), because there is
not a complicated computation circuit in this module. The
“preprocessing module” costs the largest power quota (62.6%)

followed by the “adder tree” (18.8%). By comparing the
power of preprocessing module, processing floating-point data
uses less power than the fixed-point data, but the portion
over total power increases from 62.6% to 81.2%. For the
Wire Orchestrator, lower precision consumes less power as
well. Due to the effective clock gating in Bitlet-X, the power

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

1482 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

TABLE X
AREA AND POWER BREAKDOWN FOR THE Bitlet ACCELERATOR INSTANCES

consumed by the “Wire Orch.,” “RR-reg,” and “Adder Tree” is
much lower than Bitlet. Adding them in total, it shows only
438.26-mW power consumption for 32 PEs. The point we
want to highlight is that Bitlet’s power consumption continues
to decrease from float-32 to 16b and 8b, demonstrating how
highly scalable the architecture is in terms of power.

VI. DISCUSSION

Range of Applications for Bitlet: It mainly accelerates the
DNNs forward inference. However, since forward propagation
is included in DNNs training. Therefore, the Bitlet can also
support acceleration in training.

Significance of Versatile Precision Support: The emphasis of
Bitlet is to accelerate a variety of DNNs applications generally.
However, diverse data types and precision support are needed
for different applications (see Table II). As a result, it is
critical to offer multiprecision support in a single accelerator,
including fixed-point 1b–24b and fp32/16.

VII. CONCLUSION

In this article, we propose an effective bit-level technique
called “bit interleaving” and the related accelerator design,
namely, “Bitlet” for general-purpose deep learning accelera-
tion. It leverages the sparsity parallelism in the parameters and
implements “dynamic exponent matching” and “essential bit
distillation” to avoid the pointless computations that could pos-
sibly slow down the inference performance. Bitlet is flexible
by supporting both the fixed-point (1–24b) and floating-point
(fp32/fp16) precision. Users could investigate the optimum
accuracy/speedup/power tradeoff by testing their models at any
precision, saving time and allowing for quicker deployment.
We believe that the proposed techniques can provide new
chances for researchers to explore novel applications in deep
learning and even algorithms beyond AI. We also hope it
stimulates fresh thoughts regarding the design of deep learning
accelerators, by applying the same concept in conjunction
with some optimization techniques like pruning, and on other
hardware platforms (i.e., GPGPUs) in the future.

REFERENCES

[1] “COCO Dataset.” Accessed: Jan. 2023. [Online]. Available: https://
cocodataset.org/#download

[2] “Flickr image dataset.” Accessed: Jan. 2023. [Online]. Available: https://
www.kaggle.com/hsankesara/flickr-image-dataset

[3] “ImageNet large scale visual recognition challenge.” Accessed:
Jan. 2023. [Online]. Available: http://www.image-net.org/challenges/
LSVRC

[4] “Set 14.” Accessed: Jan. 2023. [Online]. Available: https://github.com/
jbhuang0604/SelfExSR

[5] “UCF101—Action recognition data set.” Accessed: Jan. 2023. [Online].
Available: https://www.crcv.ucf.edu/research/data-sets/ucf101

[6] “WMT Dataset.” Accessed: Jan. 2023. [Online]. Available: http://data.
statmt.org

[7] J. Albericio et al., “Bit-pragmatic deep neural network computing,” in
Proc. MICRO, 2017, pp. 382–394.

[8] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.

[9] Y. Chen, Y. Lai, and Y. Liu, “CartoonGAN: Generative adversarial
networks for photo cartoonization,” in Proc. CVPR, 2018, pp. 1–10.

[10] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. MICRO, 2014, pp. 609–622.

[11] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
ISCA, 2016, pp. 367–379.

[12] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2019,
2019.

[13] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ISCA, 2016, pp. 1–12.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[15] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. CVPR, 2017, pp. 1–9.

[16] S. Hurkat and J. F. Martínez, “VIP: A versatile inference processor,” in
Proc. HPCA, 2019, pp. 345–358.

[17] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in Proc. MICRO,
2016, pp. 1–12.

[18] M. Jung, C. Weis, and N. Wehn, “Dramsys: A flexible dram subsystem
design space exploration framework,” IPSJ Trans. Syst. LSI Design
Methodol., vol. 8, pp. 63–74, Feb. 2015.

[19] M. Kocabas, S. Karagoz, and E. Akbas, “MultiPoseNet: Fast multi-
person pose estimation using pose residual network,” in Proc. ECCV,
2018, pp. 1–17.

[20] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. CVPR,
2017, pp. 5835–5843.

[21] A. D. Lascorz et al., “Bit-tactical: A software/hardware approach to
exploiting value and bit sparsity in neural networks,” in Proc. ASPLOS,
2019, pp. 749–763.

[22] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173–185, Jan. 2019.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” 2016, arXiv:1608.08710.

[24] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proc.
ICCV, 2017, pp. 1–10.

[25] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” 2016,
arXiv:1611.06440.

[26] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. ISCA, 2017, pp. 1–14.

[27] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
in Proc. Comput. Vis. Pattern Recognit., 2018, pp. 1–6.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
CVPR, 2018, pp. 1–14.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: GENERAL PURPOSE DEEP LEARNING ACCELERATOR BASED ON BIT INTERLEAVING 1483

[29] S. Sharify et al., “Laconic deep learning inference acceleration,” in Proc.
ISCA, 2019, pp. 304–317.

[30] H. Sharma et al., “Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural network,” in Proc. ISCA, 2018,
pp. 764–775.

[31] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from RGBD images,” in Proc. ECCV, 2012,
pp. 746–760.

[32] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional
one-stage object detection,” in Proc. ICCV, 2019, pp. 1–10.

[33] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc. ICCV,
2015, pp. 1–16.

[34] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 1–15.

[35] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video enhance-
ment with task-oriented flow,” Int. J. Comput. Vis., vol. 127, no. 8,
pp. 1106–1125, 2019.

[36] L. Yang, Z. He, and D. Fan, “Harmonious coexistence of structured
weight pruning and ternarization for deep neural networks,” in Proc.
AAAI, 2020, pp. 6623–6630.

[37] X. Ying, L. Wang, Y. Wang, W. Sheng, W. An, and Y. Guo, “Deformable
3D convolution for video super-resolution,” IEEE Signal Process. Lett.,
vol. 27, pp. 1500–1504, 2020.

[38] H. Zhang and V. M. Patel, “Densely connected pyramid dehazing
network,” in Proc. CVPR, 2018, pp. 3194–3203.

[39] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. MICRO, 2016, pp. 1–12.

[40] X. Zhou et al., “Cambricon-S: Addressing irregularity in sparse neural
networks through a cooperative software/hardware approach,” in Proc.
MICRO, 2018, pp. 15–28 .

Liang Chang (Member, IEEE) received the dual
B.S. degrees from the Chengdu University of
Information and Technology, Chengdu, China, and
the University of Electronic Science and Technology
of China, Chengdu, in 2011, and the Ph.D. and M.S.
degrees from Beihang University, Beijing, China, in
2019 and 2014, respectively.

He was an Engineer and a Senior Engineer with
China Glorun Technology, Beijing, and Advanced
Micro Devices, Beijing, China, from 2012 to 2015.
Since 2020, he has been an Associate Professor

with the School of Information and Communication Engineering, University
of Electronic Science and Technology of China. From 2022, he was a
Visiting Scholar with The Hong Kong University of Science and Technology,
Hong Kong. He has coauthored over 50 scientific papers, including IEEE
International Solid-State Circuits Conference (2021, 2023, and 2024), Micro
in 2021, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART I—
REGULAR PAPERS from 2020 to 2024, IEEE TRANSACTIONS ON VERY

LARGE SCALE INTEGRATION in 2019 and 2024, IEEE TRANSACTIONS ON

COMPUTERS in 2019, and IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. His research interests
include computing in emerging nonvolatile memory, advanced memory-centric
computer architecture, and AI processors for intelligent detection.

Dr. Chang is the Regular Reviewer of the IEEE JOURNAL OF SOLID-
STATE CIRCUITS, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS PART

I/II, IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS,
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, and
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION.

Hang Lu (Member, IEEE) received the B.S. and
M.S. degrees in electronic and information engi-
neering from Beihang University, Beijing, China, in
2008 and 2011 respectively, and the Ph.D in com-
puter architecture from the University of Chinese
Acedemy of Sciences, Beijing, in 2015.

He is currently an Associate Professor and
a Master Tutor with the State Key Laboratory
of Processors, Institute of Computing Technology
(ICT), Chinese Academy of Sciences (CAS),
Beijing, China. He is also an Associate Professor

with Zhongguancun Laboratory, Beijing, and Shanghai Innovation Center
for Processor Technologies, Shanghai, China. His research interests include
power-efficient computing platforms, AI chip design, and deep learning
algorithm optimization.

Dr. Lu is a member of the Youth Innovation Promotion Association of CAS
and the New Best Star of ICT.

Chenglong Li received the B.Eng. degree from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2020, where he is
currently pursuing the M.Eng. degree under the
guidance of Prof Liang Chang and Shuisheng Lin.

His research interests are high-performance circuit
design and computing-in-memory architecture.

Xin Zhao (Graduate Student Member, IEEE)
received the B.E. degree in electronic engineer-
ing from the China University of Mining and
Technology, Xuzhou, China, in 2021. He is currently
pursuing the M.S. degree under the guidance of
Prof Liang Chang from the Department of Internet
of Things Engineering, School of information
and Communication Engineering, University of
Electronic Science and Technology of China,
Chengdu, China.

His research interest contains computing-in-
memory architecture and super-resolution hardware architecture.

Zhicheng Hu received the B.E. degree in
microelectronics from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2022, where he is pursuing the M.S. degree
under the guidance of Prof Liang Chang with the
Department of Internet of Things Engineering,
School of Information and Communication
Engineering.

His current research interests include
energy-efficient deep-neural-network architec-
tures/accelerators especially for image processing

region and efficient deep learning-based algorithm for hardware processing.

Jun Zhou (Senior Member, IEEE) received the
dual B.S. degree in communication engineering and
microelectronics from the University of Electronic
Science and Technology of China (UESTC),
Chengdu, China, in 2004, and the Ph.D. degree
in microelectronics system design from Newcastle
University, Tyne, U.K., in 2008.

He was a Research Scientist with IMEC
Netherlands, Eindhoven, The Netherlands, in 2008,
and was on the energy-efficient processor design for
intelligent sensing in collaboration with companies,

such as Philips, Suzhou, China, and NXP, Eindhoven. In 2011, he was with the
Institute of Microelectronics, Agency for Science, Technology, and Research,
Singapore, where he led projects and supervises Ph.D. students on energy-
efficient processor design for intelligent sensing. In 2017, he was a Professor
with UESTC and is currently leading the Research Group of Smart ICs and
Systems for IoT Applications. His major research interests are processor and
algorithm co-design for intelligent sensing. He has published more than 80
papers in prestigious conferences and journals, including ISSCC, JSSC, DAC,
and CICC.

Xiaowei Li (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees in computer science
from the Hefei University of Technology, Hefei,
China, in 1985 and 1988, respectively, and the Ph.D.
degree in computer science from the Institute of
Computing Technology (ICT), Chinese Academy of
Sciences (CAS), Beijing, China, in 1991.

He was an Associate Professor with the
Department of Computer Science and Technology,
Peking University, Beijing, from 1991 to 2000. He is
currently a Professor with the State Key Laboratory

of Processors, ICT, CAS. He was also the Deputy Director of the State Key
Laboratory of Computer Architecture, ICT, CAS. He has coauthored over 280
papers in journals and international conferences, and he holds 60 patents and
30 software copyrights. His current research interests include VLSI testing,
design for testability, design verification, dependable computing, and wireless
sensor networks.

Prof. Li serves as an Associate Editor for the Journal of Computer Science
and Technology, the Journal of Low Power Electronics, the Journal of
Electronic Testing: Theory and Applications, and the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on May 03,2024 at 12:01:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

