SIGOPS ChinaSys

中国计算机系统研讨会

第20届ChinaSys研讨会 (The 20th ChinaSys Workshop)

Distilling Bit-level Sparsity Parallelism for General Purpose Deep Learning Acceleration

路航¹,常亮²,李成龙²,竹子轩²,鲁圣健¹,刘艳欢¹,张明喆³

¹State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

²University of Electronic Science and Technology of China, Chengdu, China

³State Key Laboratory of Information Security, Institute of Information, CAS, Beijing, China

Executive Summary

The contribution of this work

- 1. Propose a novel philosophy of leveraging bit-level sparsity <u>bit</u> <u>interleaving</u>
- 2. Propose a specialized general-purpose accelerator <u>bitlet</u>, to mine the maximum potential of bit interleaving

Benefits:

② Multi-precision support

Floating point fp32/16, fixed point from 1b~24b

 $\ensuremath{\textcircled{3}}$ High performance and efficiency

Up to 15 \times and 81 \times speedup over GPUs

OUTLINE

The benefits of general purpose accelerators:

- to fit for various DL tasks
- that can be applied in both training and inference
- How to boost the performance leveraging the sparsity of the operands
 - Software-based pruning
 - Quantization-aware training

Quantization

The headroom of value-level sparsity is very limited.

However, bit-level sparsity is inherently fertile.

DenseNet121 4.84% 48.64%	
ResNet50 0.33% 48.64%	
ResNet152 0.75% 48.64%	
ResNext50_32x4d 0.37% 48.64%	
ResNext101_32x8d 3.43% 48.65%	
InceptionV3 0.05% 48.64%	
MNASNet0.5 0.00% 48.60%	
MNASNet1.0 8.07% 48.98%	
MobileNetV2 0.01% 48.67%	
ShuffleNetV2_x0_5 0.00% 48.36%	
ShuffleNetV2_x1_0 1.53% 48.63%	
SqueezeNet1_0 0.05% 48.64%	
SqueezeNet1_1 0.02% 48.64%	

Weight sparsity : the values below 10^{-5} over the total parameter size

Significantly
abundant

Bit sparsity : total bit 0s over the total "bit count" of the mantissas

Any state-of-the-art solutions?

Phil.	Design Sparsity Exploited		Precisions	Training Support
	Eyeriss, DaDianNao	N/A	16b	Νο
Bit parallel	Cambricon-S, EIE	A- / W- value	16b	Νο
	SCNN	A- & W- value	16b	Νο
	UNPU, Stripes	N/A	1~16b	Νο
	Bit Fusion	N/A	2,4,8,16b	Νο
Bit serial	Pragmatic	A- / W- bit	1~16b	Νο
	Bit Tactical	A- bit & W-value	1~16b	Νο
	Laconic	A- & W- bit	1~16b	Νο
Bit interleaving	Bitlet (<mark>Ours</mark>)	W- bit & W-value (or A- bit & A-value)	fp32/16, 1~24b	Yes

The weaknesses of such design philosophy:

None of them are general-purpose!

- Only use in inference $\ensuremath{\mathfrak{S}}$
- Only support fixed-point arithmetic 😕
- Sub-optimal sparsity utilization
 - Bit-parallel cannot leverage bit-level sparsity $\ensuremath{\mathfrak{S}}$
 - Bit-serial must incur synchronization, ie. Booth coding, look ahead synchronization

Motivation & Background – key observation #1

- High sparsity percentage at each bit significance
- The sparsity is nearly uniform in terms of :
 - Different precisions, including floating point, fixed point and integer
 - Different bit significances (for floating point, we focus on the mantissa)

Motivation & Background -- key observation - #2

Leveraging such parallelism is beneficial

- No synchronization is ever required.
- Bit-level arithmetic could be issued independently.

■bit parallel (N/A) ■bit parallel (A-value and W-value) ■bit serial (A-bit and W-bit) ■bit interleaved (W-bit and W-value)

Our solution – bit interleaving

Scan we obtain the benefits of them both? High TOPs/W 🙂

- Efficient utilization of the sparsity
- Avoid the complex synchronization procedures

Most importantly, design a general-purpose accelerator that can leverage the bit-level sparsity
High TFLOPS/W ③

OUTLINE

Methodology – theorem

Floating point MAC could be **Computing pattern analysis** transformed to pure shift and add Floating-point MAC decomposition: Sign **Exponent** $\sum_{i=0}^{N-1} A_i \times W_i = \sum_{i=0}^{N-1} (-1)^{S_{W_i}} A_i \times M_{W_i} \times 2^{E_{W_i}}$ How we embark mantissa **Detailed deduction is in Bit significance** the paper **Bit-level** arithmetic $N-1 E_i - E_{max} - 23$ $\sum_{i=0}^{max} \sum_{b=E_i-E_{max}}^{max} \left[(-1)^{S_{W_i} \bigoplus S_{A_i}} \cdot \left(M_{A_i} \times M_{W_i}^b \right) \right] \times 2^{E_{max}+b}$ **Exponent** matching **Final sign** Maximum

exponent

Methodology – bit interleaving

Operations:

- Dynamic exponent matching matching each exponent to Emax
- Bit distillation leveraging the sparsity!

Methodology – bitlet accelerator

Methodology – bitlet accelerator

Methodology – bitlet accelerator

- Overall accelerator design :
 - Each bitlet PE is composed of one bitlet CE and subsequent adder tree for accumulation.
 - DDR3 is used on our FPGA Virtex-7 SoC platform.

OUTLINE

Evaluation – Deep learning applications

We use various deep learning application datasets:

Models	Туре	Precision	Domain	Dataset	GFLOPS	Weights	W-bit Sparsity (%)
ResNet-50[18]	2D Convolution	8 bit	Image Classification	ILSVRC'12[3]	8.21	25.56M	70.15 (fixed point)
MobileNetV2[35]	2D Convolution	8 bit	Image Classification	ILSVRC'12[3]	0.615	3.49M	76.85 (fixed point)
YoloV3[34]	2D Convolution	8 bit	Object Detection	CoCo[1]	25.42	61.95M	77.78 (fixed point)
Multi-Pose[24]	2D Convolution	8 bit	Pose Estimation	CoCo[1]	97.55	59.59M	66.33 (fixed point)
lapSRN[25]	2D De- Convolution	16 bit	Image Super Resolution	SET14[4]	736.73	0.87 14	74.31 (fixed point)
DCPDNet[45]	Encoder -Decoder	16 bit	Deraining /Dehazing	NYU-Depth[38]	254.37	_66.9M	-75:00 (fixed point)
DenseNet-161[20]	2D Convolution	16 bit	Image Classification	ILSVRC'12[3]	15.56	28.68M	68.92 (fixed point)
FCOS[39]	Feature Pyramid	16 bit	Object Detection	CoCo[1]	80.14	32.02M	70.83 (fixed point)
CartoonGAN[11]	GAN	float 32	Style Transfer	flickr[2]	108.98	11.69M	48.49 (floating point)
Transformer[41]	Seq2Seq	float 32	Word Embedding	wmt'14[6]	10.6	176M	45.75 (floating point)
C3D[40]	3D Convolution	float 32	Video Understanding	UCF101[5]	38.57	78.41M	45.83 (floating point)
D3DNet[44]	3D Deformable	float 32	Video Super Resolution	Vimeo-90k[42]	408.82	2.58M	47.69 (floating point)

In order to prove the generalpurpose feature of bitlet, we use 12 domain-specific DL tasks with 8 of them quantized to 16bit and int8.

Evaluation – Specification

Overall accelerator Specs :

			1	Accelerator	ASICs		GPUs		
Chip	Eyeriss [14]	SCNN [32]	Stripes [22]	Laconic [36]	Bitlet (Ours)	Bitlet (Ours)		Titan Xp	Tegra X2
PEs/Cores	168	64	4096	192	32		5120	3840	256
Precision	16b	16b	1~16b	1~16b	fp32/16, 1~24b		fp32/16, 8b	fp32, 8b	fp32/16
Technology	65nm TSMC	16nm TSMC	65nm TSMC	65nm TSMC	28nm TSMC	65nm TSMC	12nm TSMC	16nm TSMC	16nm TSMC
Freq. (MHz)	250	1000	980	1000	1000		1455	1582	854
PEAK Performance (GOPs)	23.1	2000	_	-	204.8 (fp32) 372.35 (16b) 744.7 (8b)		14900 (fp32) 29800 (fp16)	12150 (fp32)	750.1(fp32) 1330 (fp16)
Power	278mW	_	_	_	570mW(fp32) 432mW(16b) 366mW(8b)	570mW(fp32)1829mW(fp32)432mW(16b)1390mW(16b)366mW(8b)1199mW(8b)		250W	15W
PEAK Power Efficiency (GOPs/W)	83.09	_	_	441 (16b) 805 (8b)	359.15 (fp32)111.97 (fp32)667.97(16b)267.87 (16b)1335.93 (8b)621.10 (8b)		59.6(fp32) 119.2(fp16)	48.6 (fp32)	50.0 (fp32) 88.7(fp16)
Area (mm ²)	12.25	7.9	122.1	1.59	1.54	5.80	-	-	-

Compared with SOTA accelerators, bitlet supports floating-point arithmetic with higher efficiency (GOPs/W)

Evaluation – Speedup

We compare bitlet with fixed-point accelerators:

An interesting phenomenon is that bitlet-fp32 behaves even better than 16/8b fixed point accelerators!

Evaluation – Hardware Ablation Study

Instance	bare-m		bitlet	-fp32	
Parameter	N = 1	N =	= 32	N =	= 64
Ablation	w/o M	w/M	w/M	w/ M	w/M
Ablation	w/o D	w/o D	w/ D	w/o D	w/ D
CartoonGAN	0.012	0.209	0.269	0.244	0.352
Transformer	0.126	2.152	2.879	2.509	3.763
C3D	0.035	0.590	0.771	0.670	0.976
D3DNet	0.003	0.056	0.068	0.065	0.084
Instance	bare-m		Bitle	t-16b	
Parameter	N = 1	N = 32 $N = 64$			= 64
Ablation	w/o M	w/o M	w/o M	w/o M	w/o M
	w/o D	w/o D	w/D	w/o D	w/ D
lapSRN	0.004	0.033	0.040	0.038	0.046
DCPDNet	0.011	0.096	0.184	0.109	0.239
DenseNet-161	0.187	1.567	2.260	1.779	2.812
FCOS	0.036	0.304	0.455	0.345	0.556
Instance	bare-m		Bitle	et-8b	
Parameter	N = 1	N =	= 32	N =	= 64
Ablation	w/o M	w/o M	w/o M	w/o M	w/o M
Ablation	w/o D	w/o D	w/D	w/o D	w/ D
ResNet-50	0.354	2.970	4.598	3.371	5.793
MobileNetV2	4.730	39.644	60.001	45.001	73.189
YoloV3	0.114	0.959	1.640	1.089	2.066
Multi-Pose	0.030	0.250	0.346	0.284	0.416

- hardware components' contribution to the performance
 - w/ or w/o M: with or without exponent Matching
 - w/ or w/o D: with or without bit
 Distilation

Evaluation – Area at different tech. nodes

	Bitlet(f	loat 32)	Bitlet(16b)	Bitlet(8b)
Itom	Area	Power	Power	Power
Item	(mm^{2})	(mW)	(mW)	(mW)
Preprocess-	1.916	1208.5	1000.8	1000.8
ing Module	(33%)	(66.1%)	(71.9%)	(83.5%)
Wire Orch. &	2.327	164.1	111.4	55.7
Decoder	(40.1%)	(8.1%)	(8.0%)	(4.6%)
RR-Reg &	0.7	112.1	74.8	37.4
Check Win.	(12.0%)	(7.2%)	(5.3%)	(2.9%)
Adder Tree	0.7	293.3	195.5	97.8
Audel Hee	(12.0%)	(16.0%)	(14.1%)	(9.8%)
PostProcess-	0.2	48.5	7.4	7.4
ing Module	(2.9%)	(2.7%)	(0.5%)	(0.6%)
Total	5.8	1829.6	1390.0	1199.1

	Bitlet(float 32)		Bitlet(16b)	Bitlet(8b)
Itom	Area	Power	Power	Power
Item	(mm^{2})	(mW)	(mW)	(mW)
Preprocess-	0.553	356.8	296.598	296.598
ing Module	(35.8%)	(62.6%)	(68.6%)	(81.2%)
Wire Orch. &	0.570	63.857	40.28	20.651
Decoder	(35.9%)	(11.2%)	(9.73%)	(5.54%)
RR-Reg &	0.131	27.37	20.28	10.128
Check Win.	(9.6%)	(4.8%)	(4.56%)	(2.88%)
Adder Tree	0.244	107.424	71.616	35.808
Audel Hee	(15.8%)	(18.8%)	(16.6%)	(9.80%)
PostProcess-	0.044	14.88	2.304	2.304
ing Module	(2.9%)	(2.6%)	(0.53%)	(0.63%)
Total	1.542	570.15	432.08	365.49

TSMC 65nm

TSMC 28nm

OUTLINE

Recap

The contribution of this work

1. Propose a novel philosophy of leveraging bit-level sparsity – <u>bit</u> <u>interleaving</u>

2. Propose a specialized general-purpose accelerator – <u>bitlet</u>, to mine the maximum potential of bit interleaving

General purpose Leveraging the sparsity for accelerating both training and inference

2 Multi-precision support

Floating point fp32/16, fixed point from 1b~24b

③ High performance and efficiency

Up to $15 \times$ and $81 \times$ speedup over GPUs

Designed for General-purpose Deep Learning Applications, and what's more?

(1)

Redmon, J. & Farhadi, A., <u>YOLO9000: Better, Faster, Stronger</u>, CVPR 2

SIGOPS ChinaSys

中国计算机系统研讨会

第20届ChinaSys研讨会 (The 20th ChinaSys Workshop)

Thanks for listening! Q & A

路航¹,常亮²,李成龙²,竹子轩²,鲁圣健¹,刘艳欢¹,张明喆³

¹State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

²University of Electronic Science and Technology of China, Chengdu, China

³State Key Laboratory of Information Security, Institute of Information, CAS, Beijing, China

中國科学院信息工程研究所 INSTITUTE OF INFORMATION ENGINEERING, CAS

54th IEEE/ACM International Symposium on Microarchitecture®

Backup Slides

中國科学院信息工程研究所 INSTITUTE OF INFORMATION ENGINEERING, CAS

Evaluation – Efficiency

We compare bitlet with GPUs for both training and inference:

Due to the general-purpose characteristic, bitlet could also accelerate the forward propagation in training.

	Models						
GPU	(Train / Inference efficiency in GOPs/W)						
Baselines	Cartoon -GAN	Trans -former	C3D	D3DNet			
Titan V	0.27	4.09	1.82	0.06			
	/ 3.19	/ 21.80	/ 4.32	/ 4.67			
Titan Xn	0.20	3.03	1.35	0.04			
Пап Хр	/ 2.36	/ 16.13	/ 3.19	/ 3.46			
Letson TV2							
Jetson 172	/ 0.20	/ 1.39	/ 0.27	/ 0.30			
Bitlet (float 32)	9.40	7.36	8.59	4.87			
Differ (110at 52)	/ 67.29	/ 69.97	/ 66.04	/ 60.24			

Evaluation – Efficiency

For the accelerators, we only evaluate the fixed point quantized tasks

Accelerators	Infe	rence efficien	icy is in GOPs	s/W	Accelerators Inference efficiency			y is in GOPs/W	
Baselines	lapSRN	SRN DCPDNet DenseNet -161 FCOS Baselines	ResNet-50	Mobile -NetV2	YoloV3	Multi -Pose			
Eyeriss (16b)	9.92	9.42	9.79	9.71	Eyeriss (8b)	9.79	9.80	9.76	9.85
SCNN (16b)	24.29	20.96	19.49	23.77	SCNN (8b)	15.97	15.98	23.88	27.87
Stripes (16b)	25.06	21.34	15.03	19.63	Stripes (8b)	14.32	13.03	18.91	20.57
Laconic (16b)	46.04	39.32	31.27	36.64	Laconic (8b)	29.60	29.00	35.29	36.58
Bitlet (16b)	168.75	302.71	217.87	221.87	Bitlet (8b)	236.82	224.13	261.50	202.07
Bitlet (float 32)	44.64	55.82	69.03	50.33	Bitlet (float 32)	62.83	53.92	48.46	52.24

Evaluation – Sensitivity

- Number of simultaneous input of the bitlet compute engine -- N
- PE numbers

