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Executive Summary

The contribution of  this work

1. Propose a novel philosophy of leveraging bit-level sparsity – bit 
interleaving

2. Propose a specialized general-purpose accelerator – bitlet, to mine the 
maximum potential of bit interleaving

Leveraging the sparsity for accelerating both training and inference General purpose 

 Multi-precision support

 High performance and efficiency

Floating point fp32/16, fixed point from 1b~24b

Up to 15× and 81× speedup over GPUs

Benefits: 
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Motivation & Background

The benefits of  general purpose accelerators:
to fit for various DL tasks
that can be applied in both training and inference

How to boost the performance - leveraging the sparsity of  the operands
Software-based pruning
Quantization-aware training

+1/-1 weights, Courbariaux 2016

Quantization

Ternary, Li 2016

INQ, Zhou 2017

……

Bineray, Courbariaux 2015 2~3 days sparse training 

3~4 days retraining / fine-tuning 

Time-consuming!YoloV3

network slimming 
(ICCV’17)

Requires tedious re-training 
Suffering from accuracy loss 

Not precision tunable 

Weakness
Weakness



Motivation & Background

Model Weight Sparity Bit Sparity

DenseNet121 4.84% 48.64%

ResNet50 0.33% 48.64%

ResNet152 0.75% 48.64%

ResNext50_32x4d 0.37% 48.64%

ResNext101_32x8d 3.43% 48.65%

InceptionV3 0.05% 48.64%

MNASNet0.5 0.00% 48.60%

MNASNet1.0 8.07% 48.98%

MobileNetV2 0.01% 48.67%

ShuffleNetV2_x0_5 0.00% 48.36%

ShuffleNetV2_x1_0 1.53% 48.63%

SqueezeNet1_0 0.05% 48.64%

SqueezeNet1_1 0.02% 48.64%

Weight sparsity : the values below 10−5 over the 
total parameter size

Bit sparsity : total bit 0s over the total “bit count” 
of  the mantissas

Significantly 
abundant

Very limited 
headroom

The headroom of  value-level sparsity is very limited.
However, bit-level sparsity is inherently fertile.



Motivation & Background

Any state-of-the-art solutions?

Phil. Design Sparsity Exploited Precisions
Training 
Support

Bit parallel

Eyeriss,
DaDianNao

N/A 16b No

Cambricon-S, EIE A- / W- value 16b No

SCNN A- & W- value 16b No

Bit serial

UNPU, Stripes N/A 1~16b No

Bit Fusion N/A 2,4,8,16b No

Pragmatic A- / W- bit 1~16b No

Bit Tactical A- bit & W-value 1~16b No

Laconic A- & W- bit 1~16b No

Bit interleaving
Bitlet
(Ours)

W- bit & W-value
(or A- bit & A-value)

fp32/16, 1~24b Yes



Motivation & Background

The weaknesses of  such design philosophy:
None of  them are general-purpose!

• Only use in inference 
• Only support fixed-point arithmetic 

Sub-optimal sparsity utilization
• Bit-parallel cannot leverage bit-level sparsity 

• Bit-serial must incur synchronization, ie. Booth coding, look ahead synchronization 
etc. 

Step 1 - organize the 
operand in parallel

Step 1 - oganize the 
operand in serial

Step 2 - synchronize
bit significance 

Step 3 - performing 
MACs bit-serially

Step 2 - performing 
MACs also in parallel



Motivation & Background – key observation #1

High sparsity percentage at 
each bit significance 
The sparsity is nearly 
uniform in terms of  :

• Different precisions, including 
floating point, fixed point and 
integer

• Different bit significances (for 
floating point, we focus on the 
mantissa)

sparsity parallelism sparsity parallelism



Motivation & Background -- key observation – #2

Leveraging such parallelism is beneficial
• No synchronization is ever required.
• Bit-level arithmetic could be issued independently.



Motivation & Background

Our solution – bit interleaving
Can we obtain the benefits of  them both?

• Efficient utilization of  the sparsity
• Avoid the complex synchronization procedures

Most importantly, design a general-purpose accelerator that 
can leverage the bit-level sparsity

High TOPs/W

High TFLOPS/W

bit interleaving

Step 1 - Organize the 
operand in parallel

Step 2 - . performing 
MACs in serial
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Methodology – theorem

Computing pattern analysis
Floating-point MAC decomposition:

Sign

mantissa

Exponent 

Floating point MAC could be 
transformed to pure shift and add

How we embark

Bit significance

Maximum 
exponent

Final sign

Bit-level 
arithmetic

Detailed deduction is in 
the paper

Exponent 
matching



Methodology – bit interleaving

Operations:
Dynamic exponent matching – matching each exponent to Emax
Bit distillation – leveraging the sparsity!



Methodology – bitlet accelerator

High level example

Dynamic exponent 
matching: Emax is 
the maximum 
exponent, i.e. E6 in 
the above high 
level example



Methodology – bitlet accelerator

Essential bit 
distillation: RR-reg
is responsible for 
this operation, but 
the logic is very 
simple!



Methodology – bitlet accelerator

Bitlet PE 
organization and 
the memory 
accesses. All the 
PEs share the 
bandwidth

Overall accelerator design :
Each bitlet PE is composed of  one bitlet CE and subsequent adder 
tree for accumulation.
DDR3 is used on our FPGA Virtex-7 SoC platform.
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Evaluation – Deep learning applications

In order to prove 
the general-
purpose feature of  
bitlet, we use 12 
domain-specific DL 
tasks with 8 of  
them quantized to 
16bit and int8.

We use various deep learning application datasets:



Evaluation – Specification

Overall accelerator Specs :

Compared with SOTA accelerators, bitlet supports floating-point 
arithmetic with higher efficiency (GOPs/W)



Evaluation – Speedup

We compare bitlet with fixed-point accelerators:
An interesting phenomenon is that bitlet-fp32 behaves even better 
than 16/8b fixed point accelerators!



Evaluation – Hardware Ablation Study

hardware components’ 
contribution to the 
performance

w/ or w/o M: with or without 
exponent Matching
w/ or w/o D: with or without bit 
Distilation



Evaluation – Area at different tech. nodes

TSMC 65nm TSMC 28nm
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Recap
The contribution of  this work

1. Propose a novel philosophy of leveraging bit-level sparsity – bit 
interleaving
2. Propose a specialized general-purpose accelerator – bitlet, to mine the 
maximum potential of bit interleaving

Leveraging the sparsity for accelerating both training and inference General purpose 

 Multi-precision support

 High performance and efficiency

Floating point fp32/16, fixed point from 1b~24b

Up to 15× and 81× speedup over GPUs

Designed for General-purpose Deep Learning Applications, and what’s more?
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Thanks for listening!
Q & A
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Evaluation – Efficiency

We compare bitlet with GPUs for both training and inference:
Due to the general-purpose characteristic, bitlet could also 
accelerate the forward propagation in training.



Evaluation – Efficiency

For the accelerators, we only evaluate the fixed point quantized 
tasks



Evaluation – Sensitivity

Two design parameters are 
evaluated

Number of  simultaneous input of  
the bitlet compute engine -- N
PE numbers
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