
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021 1327

Chaotic Weights: A Novel Approach to Protect
Intellectual Property of Deep Neural Networks

Ning Lin , Graduate Student Member, IEEE, Xiaoming Chen , Member, IEEE, Hang Lu , Member, IEEE,

and Xiaowei Li , Senior Member, IEEE

Abstract—Despite the high accuracy achieved by the deep neu-
ral network (DNN) technique, there is still a lack of satisfying
methodologies to protect the intellectual property (IP) of DNNs,
which involves extensive valuable training data, abundant hard-
ware training resources, and fine-tuning skills of experienced
experts. Existing solutions based on watermarking cannot prevent
malicious/unauthorized users from using well-trained DNNs. This
paper proposes chaotic weights (ChaoWs), a novel framework
based on the Chaotic Map theory, to protect the IP of DNN
providers with very low overhead. Specifically, in order to alle-
viate the storage overhead and abridge the decryption time, our
method makes convolutional or fully connected kernels chaotic
by exchanging the weight positions to obtain a satisfying encryp-
tion effect, instead of using the conventional idea of encrypting
the weight values. Comprehensive experimental evaluations on
image classification, semantic segmentation, and name genera-
tion demonstrate that ChaoW can effectively protect the IP of
DNNs without damaging the inference accuracy, and the impact
on the inference speed is negligible.

Index Terms—Chaotic encryption, deep neural network (DNN),
intellectual property (IP) protection.

I. INTRODUCTION

MACHINE learning (ML) techniques, especially deep
neural networks (DNNs), have nowadays become a de

facto standard for a wide range of application domains, such as
self-driving vehicles, speech recognition, and natural language
processing (NLP) tasks. State-of-the-art DNNs usually involve

Manuscript received March 23, 2020; revised June 26, 2020; accepted
July 31, 2020. Date of publication August 20, 2020; date of current ver-
sion June 18, 2021. This work was supported in part by the National Key
Research and Development Program of China under Grant 2018YFA0701500;
in part by the Key Research Program of Frontier Sciences, CAS under Grant
ZDBS-LY-JSC012; in part by the Strategic Priority Research Program of
CAS under Grant XDB44000000; in part by the National Natural Science
Foundation of China under Grant 61804155 and Grant 61532017; in part by
the Youth Innovation Promotion Association CAS; in part by the Young Elite
Scientists Sponsorship Program by CAST under Grant 2018QNRC001; and in
part by the Beijing Academy of Artificial Intelligence. This article was rec-
ommended by Associate Editor R. S. Chakraborty. (Corresponding author:
Xiaoming Chen.)

Ning Lin, Hang Lu, and Xiaowei Li are with the State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese Academy
of Sciences, Beijing 100190, China, and also with the School of Computer
Science and Technology, University of Chinese Academy of Sciences,
Beijing 100049, China (e-mail: linning19b@ict.ac.cn; luhang@ict.ac.cn;
lxw@ict.ac.cn).

Xiaoming Chen is with the Center for Intelligent Computing Systems,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing
100190, China, and also with the School of Computer Science and
Technology, University of Chinese Academy of Sciences, Beijing 100049,
China (e-mail: chenxiaoming@ict.ac.cn).

Digital Object Identifier 10.1109/TCAD.2020.3018403

plenty of annotated data sets, powerful training resources (e.g.,
Google TPUs), and fine-tuning skills for hyper-parameters of
DNNs. The value of DNNs is therefore significantly increased
due to these requirements. For instance, the training service
cost of BERTLARGE [1], an extremely powerful language rep-
resentation DNN model that has 340 million parameters, is
about 16 (TPUs) × 4 (days) × 24 (h) × 4.5 (USD per hour) [2]
= 6912 USD. Without considering the cost of collecting train-
ing data and fine-tuning skills, the training service cost is
already considerably expensive. Such valuable DNNs are typ-
ically confidential for model providers. Therefore, protecting
the intellectual property (IP) of DNNs when designing and
deploying DNNs has become an urgent problem to be solved
in the ML area.

To protect valuable DNNs, one popular solution is neu-
ral network watermarking, which embeds a mechanism into
a DNN model such that the ownership can be verified by
model providers. Uchida et al. [3] and Nagai et al. [4] made
the first attempt to embed watermarks into DNNs, which
uses a regularizer to retrain the parameters. Although this
work does not impair the performance and inference speed of
DNN models on the CIFAR-10 dataset [5], it is assumed that
model providers can verify the parameters of a target DNN
in a white-box way. However, white-box verification is not
easy, and model providers can only access the input and out-
put interface of DNN models, but not the parameters. The
white-box method loses its effect as long as the parameters of
DNNs are not open, which leads to valuable DNN models to
be maliciously distributed and normally used free of charge.

To address the white-box limitations, Adi et al. [6] extended
the watermarking approach to support black-box mode veri-
fication, which only requires the input and output interface
to verify the ownership. Specifically, they trained a valu-
able DNN model on both the original dataset and a modified
dataset where each image is watermarked by the model
provider’s signature. The labels of the modified images are
elaborated and different from the original labels. To verify
the watermark, the model provider issues queries using the
signed images and tests whether the DNN model returns the
designated labels. Similar black-box watermarking methods
have been proposed in other studies [7]–[10]. However, these
black-box methods also have limitations. First, the size of
the watermark pattern of the input images has a paramount
influence on the result. If it is too large, it is easy to be
detected [11], [12], and if it is too small, the watermark effect
is poor. Second, the robustness is poor. It is reported that
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the signature can be detected and eliminated from the input
images by utilizing the auto-encoder technique [13]. Third,
a lot of retraining procedures are required to restore the
original accuracy of DNN models. At last, and even more
crucial, watermarking-based methods do not have the abil-
ity of preventing malicious/unauthorized users from using
well-trained DNNs. Therefore, existing neural network water-
marking methods cannot obtain a satisfying protection effect
of the DNN IP.

A promising solution to protect DNNs is parameter encryp-
tion, which makes the weights of DNNs unavailable to
malicious/unauthorized users. Even though the weights are
stolen or cloned (e.g., by side-channel attacks [14]–[17]), the
DNNs will deliberately yield wrong predictions if the weights
are not decrypted. A recent study [18] has shown that encrypt-
ing only 20 weight parameters per layer in ResNet-101 [19]
is capable of thwarting the confidentiality attacks to DNNs
parameters. Specifically, they make use of the fast gradient
sign method (FGSM) [20] to generate the adversarial pertur-
bations and then add the perturbations to the weights of DNNs
to achieve parameter encryption. The perturbation intensity in
their method has a vital influence on the encryption effect.
When the perturbation intensity is too large, the distribution
of weights will be changed, and the encrypted weights become
outliers which increases the risk of being detected. On the con-
trary, the encryption effect is poor if the perturbation intensity
is too small. Hence, selecting a proper perturbation inten-
sity requires rich experience. Besides, the method is devised
for computing-in-memory (CiM) systems. Therefore, there is
still a lot to be improved for practical general computing
platforms, such as graphics processing units (GPUs), field-
programmable gate arrays (FPGAs), and application-specific
integrated circuits (ASICs).

There are plenty of homomorphic encryption (HE)-
based methods, such as Gazelle [21], XONN [22], and
MiniONN [23], which enable third parties (e.g., Google’s
Cloud ML Engine [24]) to compute certain functions on
encrypted data without decrypting it. It is worth noting that
these HE-based methods are used to protect the privacy of
input data for model users in the privacy-preserving area,
rather than the IP of DNNs for model providers. Whereas the
goal of our paper is to protect the IP of DNNs, and we pri-
marily focus on protecting the parameters of DNNs, for which
HE is incompetent.

Consequently, searching for an efficient and effective IP pro-
tection approach for DNN providers has practical significance.
In this article, we propose an efficient and effective frame-
work Chaotic Weight (ChaoW), standing for ChaoWs, which
protects the IP of DNN providers with negligible overhead.
Different from watermarking-based approaches, our approach
is based on the scenario where users must purchase the secret
key to decrypt the model; otherwise, wrong prediction results
will be returned. Our framework does not need to retrain
the weights of DNNs, and only a subset of the validation
dataset is required to test the encryption effect using off-the-
shelf deep learning software tools, such as PyTorch [25] and
TensorFlow [26]. We do not modify the parameters to encrypt
the DNNs like [18]. Instead, we take advantage of advanced

TABLE I
QUALITATIVE COMPARISON BETWEEN CHAOW AND TWO

EXISTING METHODS

chaotic encryption algorithms to achieve our goal. Specifically,
we utilize a state-of-the-art chaotic encryption algorithm to
make convolutional and/or fully connected weights chaotic by
exchanging the weight positions. The weight distribution is
not changed so the encrypted DNNs cannot be cracked by
analyzing the weight statistics. The adopted chaotic encryp-
tion algorithm is very fast. Extensive experimental results on
computer vision and NLP tasks show that our method does
not impair the inference accuracy of DNNs, and the impact
on the inference speed is negligible.

II. RELATED WORK

In this section, we briefly summarize two existing DNN
protection methods, and also present a comparison between
our proposed method and the existing methods in Table I.

A. White-Box and Black-Box Watermarking

According to whether the DNN internal parameters need
to be accessed during the verification process, the water-
marking methods can be divided into two categories. One
is white-box watermarking, represented by the work proposed
by Uchida et al. [3] and Nagai et al. [4], which requires to
access DNNs’ internal parameters for verification. The other is
black-box watermarking [6]–[13] which only requires the input
and output interface of DNNs to conduct the verification. Both
watermarking methods need the training data to retrain/fine-
tune the DNNs’ parameters. These retrained parameters are
different from the previous ones, resulting in poor conceal-
ment. Currently, the watermarking methods only show fidelity
on small datasets, such as MNIST [27] and CIFAR-10 [5]
through retraining the DNN parameters, and there is no theory to
ensure the fidelity on large-scale datasets such as ImageNet [28]
in more realistic scenarios. Moreover, watermarking-based
methods can only verify the IP but cannot protect the IP.

B. Parameter Encryption

Unlike watermarking-based methods, which can only verify
the DNN IP, recently Cai et al. [18] utilized parameter encryp-
tion to prevent malicious users from using DNNs normally.
Through FGSM [20], parameter encryption can theoretically
ensure that the decrypted parameters are completely identi-
cal to the original ones, without causing loss of accuracy,
so it has good fidelity. From the concealment point of view,
although only very few parameters are selected for encryp-
tion, the parameter values will be changed as outliers which
may be detected, so the concealment is poor. For a qualitative
comparison, we list the characteristics of the two methods in
Table I.
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Fig. 1. General concept of ChaoW and threat model. The model provider
deploys the well-trained DNNs to local devices of the user, and the malicious
user may steal the DNNs. Our ChaoW framework can protect the IP of the
model provider.

III. CHAOTIC WEIGHTS FRAMEWORK

A. Problem Statement

We illustrate the problem statement and the general concept
of our proposed ChaoW framework in Fig. 1.

Model providers spend a great deal of time and money to
collect datasets, design the DNN architecture and train the
weights on GPU clusters. Thus, model providers would like
to monetize the DNNs on various platforms (e.g., GPUs and
ASICs). Owing to the privacy policy, the well-trained DNNs
are usually deployed on users’ local devices rather than cloud
platforms. Without any protection approach, the DNN with
the weights may be maliciously distributed and normally used
free of charge. Hence, the IP of model providers should be
protected.

Malicious users might extract the well-trained weights and
architectures of DNNs by some attack approaches (e.g., by
physical side-channel attacks [14]). If the weights are in the
form of plaintext, malicious users may redistribute and mon-
etize the plaintext DNNs without permission from model
providers, thus copyright infringement is caused.

ChaoW is a novel DNN IP protection framework for model
providers, which encrypts the weights of DNNs by employing
a state-of-the-art chaotic method. ChaoW does not change the
values of the weights but the encrypted weights cause a sharp
drop in the inference accuracy. Hence, even if the weights
are stolen by malicious users, the function of DNNs is com-
pletely lost, achieving the goal of DNN IP protection for model
providers.

B. Concrete Framework

Fig. 2 depicts the concrete encryption and decryption
procedure of our proposed method. The convolution kernel
dimension of layer l is C× N × k× k, where C and N corre-
spond to the number of input feature maps and output feature

Fig. 2. Concrete framework of ChaoW. C stands for the numbers of input
feature maps and N represents the numbers of convolution kernels for layer l.

Fig. 3. Sequential unraveling of ChaoW. The speed of encryption or decryp-
tion is very fast, thus the decryption is invoked during the execution of
inference procedure.

maps, respectively, and k is the size of the convolution kernel,
which is usually 3, 5, or 7. When k = 1, it can be regarded
as a fully connected layer. Assume that the feed-forward flow
of a DNN model is propagated to layer l where layer l keeps
encrypted. At this moment, if there is no secret key to decrypt
the encrypted layer l, the forward propagation will pass the
encrypted flow, and finally, the output of the DNN returns
erroneous results. In contrast, if layer l is decrypted at this
time, the forward propagation will pass the decrypted flow
and the output of the DNN will return the correct results. It
is worth noting that encryption and decryption are invoked
by rapidly exchanging the positions of weights, specifically,
in our implementation, by exchanging weight positions in the
first two dimensions—C × N.

To protect the IP of DNNs throughout the process, we
describe the invoked procedure of the encryption or decryption
in Fig. 3. If the encrypted DNN is decrypted before the infer-
ence procedure, the weights will remain in plaintext during all
the inference time. Therefore, plaintext DNNs are easily stolen
during the inference procedure. To avoid this, the decryption of
ChaoW is invoked during the execution of the inference pro-
cedure at the same time when the inference flow is executed
to the encrypted layer. Then, this layer restores the encryp-
tion quickly when the inference flow is finished. Specifically,
our experiment demonstrates that the decryption or encryp-
tion latency of ChaoW is about 40 us for one layer, which is
negligible compared with the inference time. In summary, the
advantages of ChaoW are listed as follows.

1) Great Fidelity: Previous techniques [3], [4], [6] require
lots of additional retraining procedures to fine-tune the weights
so as to ensure that the accuracy of DNNs is not degraded.
Whereas our method can completely restore the original
accuracy by just changing the positions of weights.

2) Low Hardware Overhead: Only the positions of the con-
volutional or fully connected kernels are exchanged to encrypt
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Algorithm 1 Key Search in ChaoW Framework
Input:

Set the initial random partial key: K = [L, {τ (l)|l ∈ L}]
Pre-trained DNN model: Fθ
Validation dataset: Dvalid
Expected accuracy loss: σe

Output:
Encrypted DNN model: FE(θ)

Fine-tuned secret key: Kft = [L, {τ (l), S(l)
opt|l ∈ L}]

1: function Encryption()
2: σ ← 0,D(L)

S ← ∅, DFE(θ)
← ∅

3: C(L), N(L) ← LayerShape(L)[:2]
4: D(L)

tmp ← Sample
(

C(L), N(L)
)

5: Ypred
Fθ
← Inference(Fθ , Dvalid)

6: for all S(L) ∈ D(L)
tmp do

7: // Eqs. (1) and (4)
8: FE(θ) ← Arnold(Fθ , k = [L, {τ (l), S(l)|l ∈ L}])
9: Ypred

FE(θ)
← Inference(FE(θ), Dvalid)

10: σ ← Ypred
Fθ
− Y

pred

FE(θ)

11: if σ ≥ σe do
12: D(L)

S ← D(L)
S ∪

{
S(L)

}
, DFE(θ)

← DFE(θ)
∪ FE(θ)

13: S(L)
opt , FE(θ) ← MinDecryptionTime(D(L)

S , DFE(θ)
)

14: return FE(θ), Kft

the weights, and the original positions can be quickly retrieved
according to the secret keys. The memory overhead to store the
secret keys can be ignored compared with conventional meth-
ods, which need store all modified weights and the related
indexes.

3) Perfect Concealment: Unlike previous
methods [3], [18], our method is sufficiently concealed
and does not change the distribution of the parameters at all.
This is achieved by utilizing an advanced chaotic encryption
algorithm. Hence, malicious users cannot crack encrypted
DNNs according to the statistics of the parameters.

4) Needless Retraining: Conventional methods require
massive training images to retrain the well-trained models
in order to get the effectiveness of the encrypted DNNs.
Nevertheless, fine-tuning DNNs consumes lots of hardware
resources and usually takes days or even weeks. Conversely,
ChaoW only uses the well-trained DNNs in the open-sourced
model zoo [29], [30] and requires a subset of the validation
images.

C. Solution Details

We adopt Arnold’s cat map (ACM) [31], [32] to encrypt
or decrypt the weights of DNNs. ACM is a chaotic map
which was first introduced by Vladimir Arnold in the 1960s.
Basically, ACM encrypts an image by making chaos, i.e., by
exchanging the positions of the pixels in a certain way. Though
the principle looks very simple, the encrypted image does
not have any visual feature—it looks like a television-static
of chaos and the correlation among adjacent pixels is dis-
turbed completely, achieving the same effect of conventional
data encryption algorithms. We will show that ACM is much
easier and faster to use, and has only a few functions (chaotic

Fig. 4. Fast encryption and decryption for convolution kernels by ACM.

maps) and some parameters (secret keys) to be stored, but the
attack complexity is still high.

Encryption: We use ACM to exchange the positions of con-
volutional or fully connected kernels of DNNs. Specifically, as
shown in Figs. 2 and 4, the shape of a convolutional kernel is
C×N× k× k. Here, k is the size of the convolutional kernels,
which is typically 3, 5, and 7. ChaoW can also directly be
used for fully connected layers by setting k = 1. To adapt to
both convolutional and fully connected layers, we change the
positions of the weights in the first two dimensions. This 2-D
convolutional kernel encryption by ACM is formulated as[

x′
y′

]
= Aτ

[
x
y

]
(mod S), A =

[
1 p
q pq+1

]
(1)

where p and q are integers, and S is the encryption size (the
encryption range (ER) must be square, i.e., S×S). The original
position set of the convolution kernels is

I = {(x, y)|x= 1, 2, . . . , S, y= 1, 2, . . . , S}
where S must satisfy both S ≤ C and S ≤ N. After τ iterations,
we can get a new position (x′, y′) for each weight parameter in
the ER. Different layers have different encryption parameters
(i.e., p, q, τ, S). Therefore, the encryption layer set L and the
encryption parameters of the encrypted layers form the secret
key, which is

K =
[
L,

{
τ (l), S(l), p(l), q(l)|l ∈ L

}]
(2)

where the superscript(l) is the layer index.
Decryption: When we get the secret key and the encrypted

convolution kernels {(x′, y′)}, we can make use of the inverse
ACM to decrypt the weights so as to retrieve the original
positions of the convolution kernels. The decryption formula is[

x
y

]
= A−τ

[
x′
y′

]
(mod S). (3)

Fast Encryption and Decryption: In order to speed up the
encryption and decryption procedures, we set p = 1 and q = 1
in (2). In the following contents, p and q are removed from
the secret key. As a result, the parameter Aτ of ACM in (1)
can now be reformulated as

Aτ =
[

1 1
1 2

]τ

=
[

f2τ−1 f2τ

f2τ f2τ+1

]
(4)

where fτ is the Fibonacci number, i.e.,

f1 = 1, f2= 1, fτ+2 = fτ+1 + fτ , τ= 1, 2, . . . (5)
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Similarly, the decryption parameter A−τ of the inverse ACM
in (3) can be reformulated as

A−τ =
[

f2τ−1 −f 2τ

−f 2τ f2τ+1

]
. (6)

Finally, we can combine (4) and (6) with (1) and (3) to
fast encrypt or decrypt the weights. The Fibonacci series
has a general term formula so (4) and (6) can be calcu-
lated directly without any iterations. Specifically, Fig. 4 shows
a fast encryption and decryption example when τ = 1 and
S = 4. We can find that the positions of are changed after
encryption. For example, in this example, the first row, third
column kernel—(1, 3) is moved to the third row, first column
in encryption convolution kernels. The perturbed convolu-
tion kernels will affect the inference accuracy of DNNs, thus
completing the encryption without modifying the weights val-
ues. Finally, the inverse ACM is used to restore the original
positions of the convolutional or fully connected weights.

D. Secret Key Generation

We lay out our ChaoW framework to search for the optimal
key in Algorithm 1. In the encryption phase, we first randomly
set the initial partial key K which includes the encryption layer
set L and the ACM parameter τ of each layer. To fast encrypt
or decrypt DNNs, we set p = 1 and q = 1 in (1) and (3)
so that p and q are omitted. The minimal expected encryption
accuracy loss is σe, which equals the original accuracy minus
the accuracy after encryption. To test the encryption accuracy,
only a small portion of the validation dataset is used. Next,
we sample the S× S dimensions from the C × N dimensions
of each layer in L, which are the first two dimensions of the
weights of the layers in the layer set L. Then, we use the
fast encryption method in (4) to encrypt the DNN and save
the desired accuracy loss of the encrypted DNN. Finally, we
choose the encrypted model with the shortest decryption time,
and then the optimal key is obtained.

During the key search process, we use a validation dataset
to check if a candidate key satisfies the expected accu-
racy loss. The time to find a key is related to the time of
accomplishing a validation procedure T(Test). The larger the
validation dataset, the longer the validation time required. For
example, the ImageNet dataset contains 50 000 images with
a 224× 224 resolution, and its T(Test) is about 20 min on an
NVIDIA TITAN Xp GPU based on our experiments. T(Test)
of the smaller CIFAR-10 dataset is just about 3 min. In our
experiments, usually no more than 5 validations, or even with
only 1 validation, can already yield a satisfying secret key.
This stems from that the encrypted layers and the ERs of the
layers can be arbitrary in our solution, and more layers and
larger ERs can produce a satisfying encryption effect.

E. Attack Analysis

Brute-Force Attack: There are only two known attack meth-
ods to ACM, which are known-plaintext and chosen-plaintext
attacks [33], [34]. However, the two attack methods require
either the corresponding plaintext weights or access to the
encryption system to encrypt self-chosen weights, thus the

chosen-plaintext attack and known-plaintext cannot be real-
ized in the scenario of DNN IP protection for model providers,
as the attacker only has the encrypted weights and the DNN
architecture. As a result, the only possible algorithm-level
attack method is exhaustive search (i.e., brute-force attack).
According to the above analysis, since we can encrypt any
layer and any range of a layer, it is expected that the com-
plexity of a brute-force attack is extremely high. Therefore,
a brute-force attack to crack the secret key in (2) tends to
be impractical. For simplicity, we use p = 1 and q = 1
in (2). Then, the attack complexity will approach at least
O(2|L|) ∗ O(C2) ∗ O(N2) ∗ O(τ ). Assume that τ is very
small (say, 10). We further assume that the validation pro-
cedure is conducted at an extremely powerful computer like
IBM Summit supercomputer [35] and it takes 1 s to con-
duct a validation procedure. This is a conservative estimation
because in practice a validation procedure typically spends at
least a few minutes. A simple estimation shows that crack-
ing a 13-layer DNN encrypted by ChaoW takes about ten
million years. Taking VGG-16 as an example, where the
number of convolution layers is 13, and the average num-
ber of input and output channels of all convolution layers
is 305, cracking our proposed ChaoW will consume at least
O(213) × O(3052) × O(3052) × O(10) ∼= 6.8 ∗ 1014 s, which
is about 21 million years.

Model Retraining or Fine-Tuning: According to the above
analysis, it is almost impossible to obtain the key by a brute-
force attack. Another possible attack method is to slightly
retrain or fine-tune the encrypted model to obtain acceptable
accuracy. A question is whether retraining or fine-tuning costs
a lot. Our answer is that retraining or fine-tuning cannot be
performed by attackers. Obviously, the three fundamental ele-
ments of DNNs are model architectures, computing resources
(such as GPUs and TPUs), and training data, which are indis-
pensable. Even if a malicious user has a model architecture and
computing resources, an acceptable accurate model cannot be
obtained without training data. There are three reasons for this.
First, training data is very valuable as it costs a great deal of
labor to collect and process. Second, privacy and confidential-
ity concerns legally prevent sharing training data (e.g., General
Data Protection Regulation [36]). Last and most importantly,
it is unnecessary to crack the encrypted model if a malicious
user has the training data, since a malicious user already has
the three fundamental elements of DNNs to obtain an accurate
model by himself. Therefore, it is reasonable to assume that
training data is not made public so that malicious users cannot
retrain or fine-tune the encrypted DNNs.

Secret Key Leak: Under this attack model, valuable DNN
models can be maliciously distributed to unauthorized users.
However, how to protect keys from being leaked is beyond
the scope of this article. It should be emphasized that modern
cryptography is built on the base that the only secret is key
(while encryption algorithms are completely public), knowns
as the Kerckhoffs’s Principle and Shannon’s Maxim [37].
If the key is leaked, any encryption is ineffective. How to
protect the key is another important topic that has been stud-
ied in other literature. Here, we just briefly provide some
possible solutions. For example, people can use physical
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Fig. 5. Sensitivity of different layers in VGG-16 and ResNet-18 versus the layer indexes. Three types of validation accuracy present the original accuracy,
the acceptable accuracy after encryption, and the accuracy after encryption, respectively.

unclonable functions (PUFs) [38] to generate per-chip keys, or
use a secure memory [39]–[41] to store the key. In addition,
like the conventional software authentication method, a model
provider can prevent malicious users from using the DNN
model illegally by checking users’ identifiers (e.g., physical
addresses).

Side-Channel Attack: Side-channel attack is an important
approach to obtain confidential data (e.g., key). Recently
there reports a side-channel attack approach [14] which reads
data through the processor-memory interface to steal the DNN
structure and weights. In DNN accelerators, typically layers
are processed one by one and the weights of the current run-
ning layer are stored in the on-chip storage (e.g., buffers and
registers). We only need to keep the decrypted weights on chip
without writing them back to the memory, ChaoW can effec-
tively defend against this attack [14] as the stolen weights are
encrypted. This is feasible since we can read the encrypted
weights from memory and then decrypt them on chip.

IV. EXPERIMENTAL RESULTS

ChaoW is essentially applicable to a variety of DNN models
which consist of convolutional and fully connected layers. In
this section, we evaluate our framework on three challenging
tasks, including two computer vision tasks: image classifica-
tion and semantic segmentation, and one NLP task: name gen-
eration with a character-level recurrent neural network (RNN)
on the GPU platform.

A. Experimental Setup

Our method is implemented using the PyTorch framework
on a TITAN Xp GPU with CUDA9.0 and CuDNN7.1 back-
ends. Several state-of-the-art DNNs, including VGG-16 [42],
ResNet-18 and -101 [19], and GoogLeNet [43] are evalu-
ated on the large-scale ImageNet ILSVRC-2012 dataset [28]
with a 224 × 224 resolution for image classification;
UNet [44] and LinkNet [45] are tested on the CamVid
dataset [46] with a 480 × 360 resolution for semantic seg-
mentation. A character-level RNN, which consists of three
fully connected layers, is used to generate names. We imple-
ment the ACM using C++ to quickly encrypt or decrypt the
DNN models, and all the decryption time of our method is

tested on an Intel Xeon E5-2650 v4 CPUs and a TITAN Xp
GPU.

B. Image Classification Application

To verify the availability of ChaoW, we first perform a sen-
sitivity analysis on the key parameters in (2). It is critical to
choose the suitable layer set L, parameter τ , and the ER S×S
of each layer to obtain a satisfying encryption effect.

1) Sensitivity Analysis of Encryption Layers: We first ana-
lyze the impact of different encryption layers on the accuracy
after encryption on VGG-16 and ResNet-18 in Fig. 5. There
are two conclusions can be drawn. First, the accuracy after
encryption of the first layer of all the tested DNNs is the worst,
which is higher than the acceptable accuracy after encryp-
tion. Specifically, the accuracy after encryption of the first
layer of VGG-16 is 69.29%, which is only 1.23% smaller
than the original accuracy. At the same time, 1.23% is far
less than our expected accuracy loss (i.e., 20%). Therefore, if
only one layer can be selected for encryption, we should not
choose the first layer of VGG-16 for encryption. The reason
for this phenomenon is that the first layer size of VGG-16 is
C×N = 3×64, and the maximum range that can be encrypted
is very small, which is S × S = 3 × 3. The smaller ER, the
higher the accuracy after encryption. The same phenomenon
also appears in ResNet-18. More details of the effect of the
ER on accuracy are explained in Section IV-B3.

Second, except a few layers with higher accuracy after
encryption, other layers can make the accuracy after encryp-
tion small enough to approach random guessing. For instance,
when any layer of the set {2, 4, 6, 7, 9, 10, 11, 12, 13} is
encrypted, the accuracy after encryption of VGG-16 is not
higher than 1%. The reason is that here we have encrypted
the maximum range of a layer, that is, S × S = C × N.
In contrast, when any layer in the set {3, 5, 8} is encrypted,
the accuracy after encryption of VGG-16 is relatively high
but less than the acceptable accuracy after encryption (i.e.,
50.59%). This high accuracy after encryption stems from that
C of any layer in {3, 5, 8} is not equal to N (C is half of N).
Therefore, only half of the maximum range is encrypted, that
is, S× S = C×N/2. For example, the size of the eighth layer
of VGG-16 is C × N = 256× 512, so S× S = 256× 256.
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Fig. 6. Differences between original weight values and encrypted weights values of VGG-16. Subgraphs (a), (c), (d), and (f) are the differences of the first
layer, the third layer, the fifth layer, and the eighth layer of VGG-16, respectively. Subgraphs (b) and (e) denote the differences of the second layer and the
seventh layer of VGG-16, respectively.

To explain the reason for accuracy changes after encryption,
we first expand the four-dimensional matrix C × N × k × k
of the convolution kernel into 2-D matrix—(C × k, N × k),
and then calculate the difference at each position between the
encrypted weight values and the original weight values of the
first layer, the third layer, the fifth layer and the eighth layer of
VGG-16 as shown in subgraphs (a), (c), (d), and (f) of Fig. 6.
At the same time, to compare with those layers which lead to
low accuracy loss after encryption, the second layer and the
seventh layer are randomly selected as shown in subgraphs (b)
and (e) in Fig. 6. It can be found through observation in
Fig. 6(a) that most weight values of the first layer of VGG-16
are 0, which implies that the encryption process changes the
weight values little, so the accuracy after encryption is not
significantly decreased (i.e., −1.23%). In contrast, most of
the weight differences of the second layer and the seventh
layer are not 0 in Fig. 6(b) and (e), indicating that almost all
the weight values are changed after encryption, either larger or
smaller, thus causing a great loss of the original accuracy (i.e.,
−71.33% and −71.43%, respectively). Finally, in Fig. 6(c),
(d), and (f), half of the weight differences are 0, which means
that only half of the weight values are changed, thus the accu-
racy after encryption of these layers are between the accuracies
after encryption of Fig. 6(a) and (b) and (e).

In summary, except for that the first layer of a DNN does not
need to be encrypted, ChaoW can work well on other layers
for encryption. In most cases, only encrypting one layer of
DNNs can make the accuracy after encryption sufficiently low,
which is obviously better than the recently proposed parameter
encryption approach [18], which requires to encrypt more than
20 layers of a DNN.

TABLE II
EXPERIMENT SETUP

Fig. 7. Top-1 accuracy versus parameter τ (1, 5, 18, 43, 156) on four DNNs.

2) Sensitivity Analysis of τ : We randomly select the layers
of four state-of-the-art DNN models and fix the ER S × S in
Table II. To illustrate the effect of τ to the encrypted model, we
randomly set τ to 1, 5, 18, 43, and 156, respectively. In Fig. 7,
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TABLE III
SENSITIVITY ANALYSIS OF S FOR RESNET-18, AND WE SET τ TO 43 AND σe TO 20%. THE ORIGINAL TOP-1 ACCURACY OF RESNET-18 IS 69.76%.
N/A MEANS THAT THE ER IS BEYOND THE LAYER SHAPE N , C. THE DECRYPTION TIME IS TESTED ON AN INTEL XEON E5-2650 V4 CPU. BOLD

NUMBERS STAND FOR OPTIMAL ENCRYPTION ACCURACY ACCORDING TO ALGORITHM 1

we can observe a very important conclusion that the parameter
τ has a significant encryption effect on all DNNs, no mat-
ter how parameter τ changes. Specifically, for shallow DNN
models, e.g., VGG-16 or ResNet-18, the top-1 accuracy after
encryption is very low, which is the same as random guess
probability from 1000 classes (i.e., 0.1%); and for deep DNN
models, such as ResNet-101 and GoogLeNet, the encryption
effect is also obvious, showing at least 40% accuracy drop. In
addition, recall that we use (4) and (6) to quickly calculate the
parameters A−τ and Aτ , thus τ does not affect the encryption
or decryption time. Therefore, the change of τ does not affect
the validity of encryption and we can directly specify τ in
practice.

3) Sensitivity Analysis of Encryption Range: In Table III,
ResNet-18 is experimented to illustrate how the change of
the ER S × S affects the encryption and decryption time.
Parameter τ is randomly set to 43. An important conclu-
sion has been made that the effect of encryption is degraded
as S is decreased. For instance, layer4[1].con2 is a deep
layer of ResNet-18 and the first two dimensions’ shape is
512 × 512. If we encrypt all weights of this layer, i.e.,
S × S = 512 × 512, the encryption effect is the best where
the top-1 accuracy of encrypted ResNet-18 is 0.196%. When
we encrypt a quarter of the weights (i.e., S× S = 256× 256),
the accuracy of the encrypted model rises to 61.494%, which
implies a poor encryption effect. The similar experimental
phenomenon also appears in layer3[1].conv1, layer2[1].conv1,
and layer1[0].conv1 of ResNet-18. For this reason, to get
a satisfying encryption effect, a large ER should be selected.

Another conclusion is that the larger ER S × S, the longer
decryption time it takes, and a smaller ER should be selected
to reduce the decryption time. Therefore, we use the proposed
algorithm 1 to get a suitable ER S × S to achieve the above
two goals at the same time. Specifically, if we set the expected
accuracy loss σe to 20%, which means that the top-1 accuracy
of encrypted ResNet-18 should be less than 49.76% (orig-
inal: 69.76%). In Table III, if we encrypt layer4[1].conv2,
the ER that can be selected is 384 × 384, 448 × 448, and
512 × 512 according to the top-1 accuracy. The decryption
time is the shortest −4.88 ms when S× S is set to 384× 384.

So, according to (2), the applicable key of layer4[1].conv2 is
K = [layer4[1].conv2, {43, 384}]. To simplify, we express it
as K = [4.1.2, {43, 384}].

4) Speed and Accuracy: Fig. 8 shows the inference speed
and accuracy comparisons using different keys on four DNN
models. We set the expected accuracy loss σe to 20%, which
can generate satisfying encryption effect. As expected, all
encrypted models meet the expected accuracy loss require-
ment regardless of how the key changes. However, different
keys have a large impact on the inference speed. For instance,
the inference speed of key-1 for VGG-16 is 208.33 fps
[Fig. 8 (a)], which is almost equal to the original infer-
ence speed 211.86 fps. Whereas the inference of key-4 is
104.17 fps, and the speed overhead accounts for nearly half of
the original speed. The fundamental reason is that the deeper
the layer, the more difficulty the encryption. In Table III, when
the ER S× S is set to 96× 96, the accuracy after encryption
of layer2[1].conv1 is 33.88%, which is 35.06% better than
layer4[1].conv2. When the ER is increased to 384× 384, the
encryption effect of layer4[1].conv2 can be close to that of
layer2[1].conv1. Thus, a large ER is needed to encrypt deep
layers of DNN models, but a large ER also increases the over-
head of decryption. Therefore, we can encrypt shallow layers
of DNN models for fast decryption in practice. In conclusion,
our method is still valid regardless of the key, as the speed
of all image classification models is faster than the real-time
inference speed requirement, which is typically 30 fps.

To illustrate the impact of multilayer encryption on the infer-
ence and accuracy after encryption, we encrypt two layers and
three layers of GoogLeNet as shown in Fig. 8(e) and (f). Two
conclusions can be drawn.

1 The more encryption layers in DNNs, the lower the
accuracy after encryption. Specifically, the accuracy
after encryption of key-3 in Fig. 8(d) is 38.27%, which is
31.51% smaller than the original accuracy (i.e., 69.78%).
When the number of encrypted layers is increased by
one, as shown in Fig. 8(e), the accuracy after encryp-
tion of key-3 is decreased to 4.76% when the accuracy
after encryption is low enough to meet the encryption
requirements. When the number of encrypted layers is
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Inference speed (fps) and top-1 accuracy (%) of four DNNs, and inference speed is tested on a TITAN Xp GPU. We set σe as 20% and the format of
key is expressed according to (2) in Section II-C. Taking key-1 of VGG-16 as an example, first, the encryption layer we randomly choose is feature[2].conv and
set τ to 5. Then, S is calculated as 48 according to Algorithm 1. Finally, key-1 of VGG-16 is K = [feature[2].conv, {5, 48}]. We write it as K = [2, {5, 48}].
(a) VGG-16 (|L| = 1). (b) ResNet-18 (|L| = 1). (c) ResNet-101 (|L| = 1). (d) GoogLeNet (|L| = 1). (e) GoogLeNet (|L| = 2). (f) GoogLeNet (|L| = 3).

increased to 3, the accuracy after encryption of key-3 is
decreased to 0.58%, which is approximately equal to the
probability of 1000-class random guess (i.e., 0.1%).

2 Although the number of encrypted layers is increased,
the practical inference speed of DNNs is hardly changed,
and the decryption takes far less time than the inference
of DNNs. Taking key-3 as an example, the infer-
ence speed of the two-layer and three-layer encryption
in Fig. 8(e) and (f) is only 1.32 and 1.69 frames/s,
respectively, less than inference speed of the one-layer
encryption in Fig. 8(d). This low-speed overhead stems
from our proposed Algorithm 1, which chooses an ER
S×S corresponding to the minimum decryption time of
each layer as a part as the key-3.

C. Semantic Segmentation Application

The CamVid dataset [46] is a good standard for the verifi-
cation of semantic segmentation of urban streets. This dataset
contains 701 images extracted from high-resolution video
sequences, which is divided into 367 100 and 233 images for
training, validation and testing, and each pixel is annotated
to one of 11 semantic classes. We evaluate four state-of-
the-art segmentation models of open-sourced cars segmen-
tation experiments [47] to verify the effectiveness of our
method. For comparison, the commonly employed metric—
mean intersection-over-union (mIoU) is used to calculate the
accuracy results, and all results of the inference speed are eval-
uated on a TITAN Xp GPU. The expected accuracy loss σe is
20%, which is consistent with the setup in image classification.

As Table IV implies, ChaoW still obtains satisfying encryp-
tion accuracy and inference speed for four segmentation
models. When the models are decrypted, the inference speed
meets the need of real-time speed (i.e., 30 fps). Specifically,
when the secret key K is [2,{3,48}], the encrypted mIoU

(E.mIoU) of ChaoW is 40.96%, which is 33.53% lower than
that of UNet-VGG16. And the inference speed is 90.25 fps,
which is almost the same as the original UNet-VGG16 speed
of 90.9 fps. The similar experimental results also appear in
UNet-ResNet34, LinkNet-VGG16, and LinkNet-ResNet34.

In addition, to compare the effect of encryption accuracy
on segmentation models, we demonstrate the input images,
ground truth labels, the predictions of original models, and
the predictions of our proposed ChaoW models of UNet-
VGG16 in Fig. 9. The comparisons are agreed with the secret
keys of UNet-VGG16 in Table IV. Two conclusions can be
drawn from the figure.

1) Compared with the original models, the predictions
of ChaoW differ greatly from the ground truth. For
instance, the E.mIoU of K = [2, {3, 48}] produces
40.96% accuracy and the prediction of ChaoW loses
the far car in Fig. 9(a). To make matters worse, when
K = [14,{4, 192}] and the accuracy after encryption is
4.48%, no car can be predicted in Fig. 9(c). This is what
we expect—even if the segmentation model is stolen by
a malicious user, it will not work normally.

2) The lower the accuracy of the encryption, the worse the
prediction will be, which can be obtained by observing
the predictions of ChaoW at the last column of Fig. 9.
Therefore, our ChaoW framework is able to protect the
IP of the semantic segmentation models.

D. Generating Names With Character-Level RNN

Because our framework can directly be applied to fully
connected layers by setting k = 1, RNN or long short-term
memory (LSTM), which is principally comprised of fully
connected layers, frequently used in NLP tasks, can also be
protected by ChaoW. Here, we use an open-sourced RNN con-
sisting of three fully connected layers [48] to illustrate the

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 11,2021 at 10:57:57 UTC from IEEE Xplore.  Restrictions apply. 



1336 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 7, JULY 2021

TABLE IV
SEGMENTATION EXPERIMENT. THE INFERENCE SPEED IS TESTED ON A TITAN XP GPU. THE KEY FORMAT IS SIMPLIFIED AS ONLY ONE LAYER IS

ENCRYPTED IN THESE CASES

Fig. 9. Prediction comparison between ground truth, original model, and ChaoW model of UNet-VGG16. (a) Secret key of ChaoW is K = [2,{3, 48}].
(b) Secret key of ChaoW is K = [7,{15, 96}]. (c) Secret key of ChaoW is K = [14,{4, 192}].

effectiveness of ChaoW in Table V. Compared with the origi-
nal RNN, the encrypted RNN by ChaoW can make the names
generation results far from the original ones. Specifically,
when only FC-1 is encrypted, and the ER is 128 × 128, the
generated names from the encrypted RNN have no meaning at
all. This stems from that the ER is large and the accuracy of the
encrypted RNN is reduced. When the ER of FC-1 gradually
decreases, the number of characters predicted by the encrypted
RNN tends to be consistent with the original RNN, but the cor-
rect result cannot be completely restored. In addition, since
the range that can be encrypted of FC-2 or FC-3 is relatively

small, the encryption effect is weakened but the results are
still incorrect. As a summary, ChaoW can protect the IP of
NLP tasks due to the ability to encrypt fully connected layers.

E. Tradeoff Between Speed and Accuracy

In fact, the ChaoW framework is able to obtain a satis-
fying accuracy after encryption if only the selected layers
are encrypted, and the corresponding secret key in (2) is
calculated based on Algorithm 1. Due to the satisfying accu-
racy after encryption, the number of layers to be encrypted
is small, so the decryption time in the inference of DNNs
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TABLE V
EFFECTIVENESS OF CHAOW FOR A CHARACTER-LEVEL RNN, WHICH CONSISTS OF THREE FULLY CONNECTED LAYERS, NAMED FC-1, FC-2, AND

FC-3, RESPECTIVELY

(a)

(b)

Fig. 10. Tradeoff between speed and accuracy after encryption. The inference
time is measured on a NVIDIA TITAN Xp GPU. “ACC” represents the accu-
racy after encryption, and “SPEED” denotes the inference time. (a) VGG-16.
(b) ResNet-18.

is little affected. Here, we analyze the tradeoff between the
inference speed and the accuracy after encryption when the
secret key is fixed. Fig. 10 explains this tradeoff on VGG-16
and ResNet-18 with three types of secret keys, which means
the ER S × S is full range (FR) (i.e., S × S = C × N),
half range (HR) (i.e., S × S = C/2 × N/2), and quarter
range (QR) (i.e., S × S = C/4 × N/4) of each layer, respec-
tively. FR_ACC denotes the accuracy after encryption of FR
encryption, and FR_SPEED represents the inference time con-
sumed by FR encryption. HR_ACC, HR_SPEED, QR_ACC,
and QR_SPEED have the similar meanings for HR and QR
encryptions.

TABLE VI
EFFECTIVENESS OF CHAOW FOR LENET NETWORK. THE ORIGINAL

ACCURACY OF LENET ON CIFAR-10 IS 70.82%

As we expect, the accuracy after encryption decreases as the
number of layers increases. Although the accuracy of some
layers is slightly increased, such as the accuracy after encryp-
tion of HR_ACC when 5 layers are encrypted, as shown in
Fig. 10(a), there is no rebound to the original accuracy. The
inference time becomes longer as the number of encrypted
layers increases, and it increases faster as it goes to the back
of DNNs as shown in Fig. 10(a). This is because the num-
ber of channels in deep layers is large. For example, there
are 512 channels in the eighth layer to the thirteenth layer of
VGG16, so the decryption overhead will be larger.

In addition, compared with HR_ACC and QR_ACC, the
accuracy after encryption of FR_ACC decreases faster. For
instance, the FR_ACC of ResNet-18 is 0.23% when the num-
ber of encrypted layer is 2. And when the number of encrypted
layers is 4, the accuracy after encryption of HR_ACC is
1.21%. When all layers are encrypted, the accuracy after
encryption of QR_ACC drops to 8.8%. The reason for this
phenomenon is that the ER of FR_ACC is the largest, and it
encrypts all the weights of the second layer of VGG-16 and
ResNet-18.

F. Effectiveness on Small Networks: Example of LeNet-5

In fact, the DNN models in the commercial field that are
worth protecting IP are often deep models with a huge amount
of parameters. However, for small networks, ChaoW is also
effective. Here, we evaluate the effectiveness of ChaoW on
LeNet-5 [27] which has only five layers, including two convo-
lutional layers (Conv-1 and Conv-2) and three fully connected
layers (FC-1, FC-2, and FC-3) on the CIFAR-10 dataset [5].
We show the encryption result of each single layer of LeNet-5
in Table VI. Regardless of whether it is a convolutional layer or
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Fig. 11. Impact of different ERs for FC-1 and FC-2 of LeNet.

a fully connected layer, ChaoW can achieve a good encryption
effect. For example, the accuracy after encryption of FC-1 is
39.97%, which is 30.85% lower than the original accuracy
(70.82%). In addition, in Fig. 11, we show the influence of
different ERs on the inference accuracy, which is consistent
with the previous conclusion (see Section IV-B). The larger
ER, the better the encryption effect. Therefore, ChaoW can
also achieve good encryption for shallow DNN models.

V. CONCLUSION

In this article, we introduce a novel DNN IP protec-
tion framework ChaoW, which can economize the hardware
resources. Different from traditional encryption approaches,
our method encrypts or decrypts the weights by making
weights chaotic, i.e., by exchanging the positions of weights
via utilizing chaotic encryption algorithms. Therefore, our
method is applicable to all DNNs which are made up of convo-
lutional and fully connected layers, targeting at various tasks
including but not limited to image classification, semantic seg-
mentation, and names generation. To protect the IP of DNN
models all the time, our method decrypts the encrypted param-
eters during the inference procedure. Extensive experimental
evaluations demonstrate that the ChaoW framework can pro-
tect the IP of the model provider efficiently without damaging
the original accuracy, and the impact on the inference speed
is negligible.
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