
PowerTrader: Enforcing Autonomous Power
Management for Future Large-Scale

Many-Core Processors
Hang Lu , Guihai Yan ,Member, IEEE, Yinhe Han,Member, IEEE, and Xiaowei Li, Senior Member, IEEE

Abstract—Existing power management approaches for modern many-core processors resort to “centralized” design concept, aiming

to optimize chip performance under fixed power budget. Unfortunately, the centralized power management approach, which usually

relies on a dedicated on-chip power manager, faces various limitations such as poor scalability and high implementation overhead, and

hence cannot be deployed in future large-scale manycores. This article proposes PowerTrader, an autonomous power management

scheme. PowerTrader endows each core with self autonomy to issue the power control at any time to harvest the desirable power

quota through negotiating with vicinity cores. It does not incur the overheads introduced by power allocation and statistics collection

that are inevitable in centralized approaches, meanwhile chip power consumption could be well kept beneath the preset power budget.

This article also elaborates on the key design tradeoff in autonomous power management (i.e., Mean-Time-to-Stable versus

application power efficiency), and provides thorough design space exploration to justify the efficacy of the proposed approach.

Experimental results show that PowerTrader achieves substantial improvements in both performance and power, and exhibits superior

scalability compared with the state-of-the-arts.

Index Terms—Many-core architectures, power management, on-chip interconnection networks (NoC)

Ç

1 INTRODUCTION

ALONG with the rapid growth of chip integration, power
consumption has become a first-order design constraint

in modern many-core processors. Ever-growing power con-
sumption not only leads to increased energy and packaging
costs, but also results in high die temperatures that may, in
the worst case, jeopardize chip performance and reliability.
Therefore, modern many-core processors seek to exploit
dedicated power management schemes to carefully restrain
the overall chip power consumption to stay beneath a certain
power budget, and at the same time optimize performance,
a.k.a. boosting the power efficiency of manycores.

To reach the power efficiency frontier, existing power
management for manycores faces two grand challenges: the
first one comes from the scalability limitation. Most of the
solutions nails “centralized power management”, which is
initially designed for single-core or multi-core processors
where scalability problem is not that critical. In these
approaches, a centralized “power manager”, usually imple-
mented as an on-chip coprocessor [1] or firmware [2], [3], is
employed to account for the power budget allocation of
each core for the imminent control interval, with the help of

dedicated power allocation algorithms [4] or prediction
models [3], [5]. However, the complexity of these schemes,
though not an issue in multicores, increases drastically and
could not be simply ignored in manycores; for example, con-
figuring a 100-core processor in the central manager may
result in a temporal complexity of hundreds of seconds for
some recently proposed schemes [6], [7]. While commercial
trends have unveiled that future many-core processors
will feature 100+ (i.e., Tilera Mx100 [8], Ambric MPPA [9]),
or even 1,000+ (i.e., Adapteva-4096 [10]) number of cores,
the scalability problem will be further exacerbated.

The scalability problem is not merely manifested in con-
figuring optimal power state for the target cores. Runtime
statistics collection and transmission, as another major
bane, also stunts the deployment of the centralized
approach. Extra I/Os or buses must be implemented on-
chip, in addition to the already-existing data paths, for the
delivery of runtime statistics of interest such as cache misses
(i.e., MPKI) or core-level utilizations (i.e., IPC) back to the
manager; final power state decisions also need to be deliv-
ered, in return, to each voltage/frequency controller to
finalize the management. Such statistics and control infor-
mation turn-around, however, does not scale well either,
because the prolonged wires placed to facilitate the power
manager not only complicate chip layout, but also result in
an elevated data collection latency that will eventually lead
to stale power state adaptations for the target cores.

In this article, we propose a novel “autonomous” power
management approach, namely PowerTrader, to address
these challenges in tandem. We use the term “autonomous”
because PowerTrader no longer reports core runtime statistics

� The authors are with the Institute of Computing Technology, Chinese
Academy of Sciences, Kexueyuan South No. 6, Zhongguancun, Beijing
100190, China. E-mail: {luhang, yan, yinhes, lxw}@ict.ac.cn.

Manuscript received 5 Feb. 2017; revised 11 Apr. 2017; accepted 30 Apr. 2017.
Date of publication 5 May 2017; date of current version 13 Dec. 2017.
(Corresponding author: Hang Lu.)
Recommended for acceptance by S. Pasricha.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2017.2701795

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017 283

2332-7766� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0001-6233-3538
https://orcid.org/0000-0002-1254-3278
https://orcid.org/0000-0002-1254-3278
https://orcid.org/0000-0002-1254-3278
https://orcid.org/0000-0002-1254-3278
https://orcid.org/0000-0002-1254-3278
mailto:

back to the power manager, and then passively waits for
the turn-around decision, a commonly-exercised strategy in
centralized approach with poor scalability. Instead, each core
is endowed with per-core autonomy that allows to spontane-
ously “probe and acquire” the desirable power quota at any
time during manycore operation, and meanwhile chip power
budget is still well guaranteed. The per-core autonomy is
enforced by a dedicated autonomous agent. As key component
to implement PowerTrader, it is responsible for monitoring
core runtime power demand in different executing phases,
acquiring desirable power quota and eventually actuating
power control. Autonomous agents negotiate with each other
via on-chip interconnection network (NoC), broadcasting
power requests to the vicinity and then receiving, from vicin-
ity agents, the responses containing the “about-to-provide”
power quota. Core power state could only be upgraded if one
or multiple agents in the vicinity are able to fully provide the
requested power quota, or in otherwords, if chip power head-
room allows.

The major advantage of the proposed PowerTrader is
that it augments many-core power management with supe-
rior scalability and extremely low cost. The overheads as
for the statistics collection and algorithm complexity suffer-
ing centralized power manager no longer exists, replaced
with local inter-agent communications enclosed within
certain physical ranges, and most importantly, agnostic of
the actual scale of manycores.

2 BACKGROUND AND MOTIVATION

2.1 Scalability Limitation in Many-Core Power
Management

Previous studies mostly employ the so-called centralized
power manager, possibly a co-processor or firmware, for
capping peak power at chip-level or achieving power reduc-
tion for as much as possible. Hardware runtime statistics

(always of all the cores in processor chip) must be transmit-
ted back to the power manager for power control decision-
making, usually at a huge temporal overhead of millions of
cycles. The classic steps involve: (1) statistics monitoring
and collection, (2) statistics transmission back to the man-
ager, (3) power budget allocation for each core in the man-
ager, and (4) decision delivery to the actuator. Even though
we can use sophisticated hardware design to minimize the
overhead of (2) and (4), and neglect the overhead of (1),
power allocation, however, is still a huge barrier for many-
core power management due to poor scalability.

As evidence, Fig. 1 plots the complexity of various com-
monly used power allocation algorithms introduced in [6]
under 2 GHz processor frequency. It shows that even for a
O(n2) algorithm (n is number of cores) is hard to deploy in
reality. If we consider 1,000-core scale, the time penalty
could reach 500 ms, and even “hundreds of seconds” for O
(n3) algorithm. Unfortunately, most of the existing algo-
rithms in recently proposed centralized approaches have
worse complexity than O(n3). As one of the representatives,
Isci et al. [11] proposes MaxBIPS that uses exhaustive
searching (OðN !Þ complexity) to find appropriate combina-
tion of voltage/frequency (V/F settings) for each core. The
temporal overhead grows roughly more-than-exponentially
after the algorithm has finished traversing each core, so that
it is only workable in “multi-core” systems. Meng et al. [12]
introduces a global power saving strategy for multi-core
processor through calculation of power-performance esti-
mates for different power modes. The evaluation interval
for only 4 cores may exceed 600 ms as reported.

The increased time penalty inevitably results in increased
power control interval, as a way to cover the overhead of
power allocation; for example, if the allocation algorithm
costs 500 ms to accomplish for all the cores, the total control
interval would be 25 s, if we require the time penalty could
only occupy 2 percent of the total control interval. It means
power management can hardly work at fine granularity,
risking opportunities to reach optimal power efficiency for
the running application.

2.2 Autonomous Power Management

To tackle the scalability limitation, we employ an autono-
mous approach. In fact, as a general concept, a modeled
instance with “autonomous” property implies that it can do
self-adaptations without imposing restrictions to others.
There are many autonomous-style management routines
designed for various purposes. Some prior researches resort
to self-adaptive power management for kilo-core process-
ors; for example, [7] proposes using software-level agent for
each malleable application as a way to autonomously man-
age the power states of its resources (i.e., cores). Similar
technique is also shown in [13] which dynamic changes run-
time application parallelism by borrowing or lending idle
cores between each other to optimize overall system power
efficiency. These techniques work at software-level by allo-
cating each malleable application an autonomous agent,
responsible for collecting statistics from hardware monitor-
ing infrastructure and implement core expanding or shrink-
ing according to a game-theoretic approach. Sartori and
Kumar [14] also provides three techniques in operation sys-
tem level, by employing efficient task mapping and

Fig. 1. Complexity comparison for state-of-the-art power allocation
algorithms.1 For future large-scale many-core processors designed
for high performance computing, power management would be fatal if
using existing centralized approaches.

1. “Iteration” means basic operation that algorithm uses to calculate
power allocation for “one core”. In [6], one iteration is assumed to be
1,000 cycles under 2 GHz frequency, so allocating 1,000 cores under

OðnÞ complexity will hence cost 1;000 cores� 1;000 cycles
2 GHz ¼ 500 ms. We

also follow this assumption in plotting this figure.

284 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

minimizing search space of global power management, to
optimize performance under a fixed power budget. In [15],
an multi-agent auction model is proposed to serve the same
goal. It is a hierarchical globalized power management
dividing many-core chip into several clusters governed by a
global auctioneer, aiming at reducing execution time but
taxed with an unavoidable communication overhead and
complex agent state calculation, as stated in the paper.

Besides, researchers also employ autonomous manage-
ment style to address the on-chip thermal alerts (dynamic
thermal management, DTM). For example, [16] and [17]
present two verification methodologies to validate the effi-
cacy of distributed DTM schemes. [18] proposed a fully dis-
tributed agent-based DTM approach, focusing on evenly
distributing power and the resulting heat across amany-core
architecture. The approach leverages a classical supply/
demand model to proactively deal with potentially develop-
ing thermal hotspots. State-of-the-art researches also pro-
pose to use scalable ways to control power density and
thermal dissipation in dark silicon era, emerging in future
large-scale manycores. Shafique and Garg [19] lists the cur-
rent trends and research challenges in TDP-restrained com-
puting system. [20] and [21] both propose to use power
density/thermal-aware resource management for NoC-
based heterogeneous architectures in order to maintain peak
performance under fixed power/thermal budget.

While in this article, on top of the concept of autonomy,
we develop a novel hardware based, autonomous power
management approach for manycores and thoroughly vali-
date its superior scalability. Apart from [18] that power trad-
ing is achieved only between neighbors, our approach
allows regional agent interaction to harvest, in a wide range,
possible power quota to upgrade to a certain new power
state, with ignorable communication overhead. For the most
recent work, [22] proposes a scalable method to calculate the
desired power budget of each core, shortening the temporal
overhead dramatically. Our work does not calculate power
budget, but resorts to autonomous operation to automati-
cally “maintain” power budget. Compared with [7] and [13],
the instanced agent in our approach is purely hardware enti-
ties, responsible for monitoring/collecting runtime statistics
locally, calculating desirable power state and finally

controlling V/F regulators. Compared with software agent,
hardware based agent is not impacted by software execution
phases, i.e., thread scheduling, task mapping and synchroni-
zation, which means it can more conveniently observe core
operations via various performance counters, and more
timely coordinate its power state at a finer grain to effectively
accommodate application power demands.

3 ENFORCE AUTONOMOUS POWER

MANAGEMENT—POWERTRADER

3.1 General Concept

To illustrate the concept of PowerTrader, we take a tile-
organized manycore as an example, as shown in Fig. 2. The
processor is partitioned into multiple “autonomous agents”
in colored blocks, which could be an arbitrary combination
of on-chip hardware; for example, core with first and last
level caches, on-chip routers, etc. as long as the power con-
sumption could be individually tuned, but for simplicity,
we focus on core power only because it is the most power
consuming hardware in manycores, and each core serves as
an autonomous agent. In the rest of this article, we use
“core” and “agent” interchangeably.

Supposing core B is currently looking for available power
quota, it broadcasts the power request (REQ in the figure) to
its neighboring cores at certain timestamp. If any nearby
agent, i.e., core A, just has excessive power quota that could
satisfy the request imposed by core B, it acknowledges back
(ACK/NACK) to core B. Then, if core B accepts the offer from
A, its power state could be safely raised. As expected, the
total power consumption of the chip remains identical, but
the power state for A and B is reversed without the help of
any centralized manager. It’s just like power is directly
shifted to the target core autonomously, and the operation
is viable for each core across the entire chip. Hence, power
management is represented as some sort of handshake com-
munication between A and B, and that is also why we term
it “PowerTrader”. It is similar to commercial trade using
currencies to exchange products, but the difference is that
the “currency” here is actually the power tokens that travel
amongst agent instances, used for probing available power
quota and establishing power trading.

Obviously, PowerTrader has three major merits:

� superior scalability. Due to per-core autonomy, power
management is transformed into localized opera-
tions, agnostic of the actual scale of manycores;

� peak power guarantee. Autonomous power manage-
ment could work at power constrained scenario.
Boosting power state for an agent is only allowable
when chip power headroom allows, so the chip
power budget will not be violated;

� dynamic power adaptation. It can not only adapt to
“Turbo mode” that the overall power consumption
approaches the preset power budget, but also accom-
modate “low-power mode” in which most of the
cores are not craving for power. Most importantly,
no centralized manager is necessary at all.

Implementing such autonomous power management,
however, is challenging because an agent may encounter
unpredictable scenarios during interacting with vicinity

Fig. 2. Autonomous power management outline. In this figure, we pres-
ent an example of two autonomous agents trading power, through dedi-
cated power control packets (PCPs). The legend instructs the typical
format of PCP and possible state an agent might be.

LU ET AL.: POWERTRADER: ENFORCING AUTONOMOUS POWER MANAGEMENT FOR FUTURE LARGE-SCALE MANY-CORE PROCESSORS 285

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

agents. For example, receiving redundant requests, frictions
between power quota provided and requested, and unprac-
tical “scope” configuration all have non-negligible impacts.
In rest of this section, we elaborate the details of Power-
Trader and how it works to enforce autonomous power
management.

3.2 Inter-Agent PowerTrading

3.3 Agent States

Agent power state is used to depict the power demand
under different execution phases. Intuitively speaking, it
must involve the power requesting/providing phases, as
well as the state that an agent has no particular power
demand. Therefore, we define three states in PowerTrader
framework as defined in Fig. 2:

� Stable: this is the normal state for the agent, which
implies that the core is satisfied with the current
power state configuration and does not exhibit any
power control intention. The core neither requests
power nor has extra power quota that can provide to
other cores.

� Absorb: when a core requests more power, we call it
is in “absorb” state, which will go back to “stable” as
long as all the required power quota is provided by
other cores.

� Release: when the power state of a core turns out to be
over-provisioned, this state arises, and it will return to
“stable” as long as some other cores in “absorb” state
shift away all of its over-provisioned power quota.

3.3.1 Agent Communication

Major power control information is, unlike centralized
approach, communicated directly between agents. Power-
Trader employs dedicated power control packets (PCPs) to
aid each agent in advertising desired power quota and
receiving corresponding acknowledgements during trad-
ing. PCPs, like normal data packets, have identical payloads
like SRC (source agent sending this PCP), type (head/tail
flit label) etc., as shown in Fig. 2. Besides, it also includes
two unique payloads within PowerTrader context: p_type
indicates the control type of this PCP, which could be either
REQ, ACK or NACK; p_unit indicates the desired power
quota requested or to be provided. This field does not repre-
sent power quota in actual Watts; instead, it uses unified
power quota; for instance, if an agent requests 50 watts of
power, p_unit would be 5 units if we use 10 watts as one
power unit, simplifying the subsequent decoding in the
agent. Hence, a one-flit packet is adequate to convey all
power control information.

Although PowerTrader enrolls additional PCP traffic, it
is unnecessary to dedicate additional channels to deliver
PCPs, considering the implementation overhead with
respect to chip area and power. The already-existing inter-
connect infrastructure, such as the Networks-on-Chip
(NoC) in modern many-core processors like Intel SCC [23]
or Tilera Gx/Mx Families [8], could be directly exploited for
the delivery of PCPs. In particular, we observe that normal
on-chip traffic, i.e., memory access or cache coherence, are

not burdened with PCP overlaid; their co-existence does not
degrade the responsiveness of PowerTrader either, so new
data channels for PCPs are not desirable at all. In Section
6.6, we will thoroughly investigate the impact of PCPs on
the worst-case latency of normal data packets.

Algorithm 1. Power Trading Mechnism

Input: Received PCP: p; Agent current state: cur state;
Power unit: cur unit

Output: Agent final state: state; Output PCP: pcp out;
/* Step 1: Interpret the received PCP */
1 type ¼ p� > type;
2 p unit ¼ p� > unit; // power quota requested/

provided

/* Step 2: determine state transition */
3 switch cur stateþ type do
4 case ABSORBþACK:
5 cur unit� ¼ p unit;// reduce the required quota

6 if cur unit ¼¼ 0 then
7 state ¼ STABLE; // having obtained

all quota

8 set freqðÞ;
9 end
10 pcp out ¼ ACKðp unitÞ; break;
11 case STABLE þACK:
12 pcp out ¼ NACKðp unitÞ; break;
13 case ACK SENT þNACK:
14 state ¼ RELEASE; break; // continue release

power

15 case ACK SENT þACK:
16 cur unit� ¼ p unit;
17 if cur unit ¼¼ 0 then
18 state ¼ STABLE; // having released all quota

19 else state ¼ RELEASE; break;
20 case RELEASE þREQ:
21 handle reqðÞ; break;
22 otherwise break;// meaningless

combinations, safely ignore if encountered

23 endsw

3.3.2 Power Trading Mechanisms

Multiple agents involved in power trading may act asyn-
chronously in dispersing different type of PCPs, maybe
REQs or (N)ACKs, across all agents in the vicinity, especially
during REQ broadcast from “absorb” agents, who may have
no prior knowledge of the locations of potential “release”
agents. Therefore, scenarios that a “release” agent receives
multiple REQs sourced in different “absorb” agents, or an
“absorb” agent receives multiple ACKs from different
“release” agents, may be frequently encountered. Each agent
must be able to react to these unpredictable scenarios auton-
omously, and in PowerTrader, dedicated power trading
mechanisms are introduced to fulfill this purpose.

Algorithm 1, as the key mechanism of PowerTrader, han-
dles various combinations of local agent state and received
PCPs. It first interprets type and unit information in line
1, followed the by the second state transition phase in line 3.
cur unit indicates the total power quota an agent intends to
request or provide, contingent to the current state of the
agent, whether “absorb” or “release”. In particular, if an
“absorb” agent receives an ACK, cur unitwill be subtracted

286 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

by the p� > unit in this ACK, and the agent will return to
“stable” as long as cur unit is reduced to 0, indicating the
requested power quota is successfully “absorbed” by vicin-
ity agents (line 4 ! line 10).

Handling Redundant Acknowledgements. For an “absorb”
agent receiving multiple ACKs after REQ broadcasting, the
“absorb” agent will only establish power trading with the
“release” agent indicated by the first-received ACK, while
send NACKs to the agents indicated by redundant ACKs,
as shown in Fig. 3. That is based on the consideration of
prompt power control responsiveness. The “release” agent
could behold and serve other “absorb” agents upon receiv-
ing NACK, as shown from line 11 ! line 12. “ACK_SENT”,
a transient state for the “release” agent after sending ACK,
could either turn to “stable” upon receiving ACK, or back to
“release” again if NACK is received (line 13! 19).

Bilateral/Multilateral Power Trading. The REQ broad-
casted, on the other hand, may encounter “release” agents
providing different amounts of power quota, maybe smaller
than the amount REQ asks. “Release” agent may thereby
have two choices: (1) just ignore this REQ, since other agents
may have “equal or larger” power quota serving this REQ; (2)
acknowledge this REQ, making the source agent, to some
extent, approach stable state. In PowerTrader, we render
this parameter configurable and implement two canonical
mechanisms, namely Bilateral Power Trading (BPT) and Mul-
tilateral Power Trading (MPT) to accommodate two circum-
stances respectively.

Fig. 4 exemplifies BPT and MPT. In Figs. 4a and 4b, agent
A is at “absorb”, both agent B and C are at “release”, hold-
ing available power quota. Following BPT strategy, only
agent B will respond to A because of the matched power
unit: agent A requires 2 units of power, while agent B can
provide exactly 2 units. Whereas in MPT, both B and C will
respond to agent A, so agent A will absorb 1 unit apiece,
from B and C, and leave B with 1 unit. handle reqðÞ subrou-
tine (Algorithm 2) formalizes the operation of BPT and
MPT, which is extremely light-weight, only including one
major judgement to decide if ACK will be sent or not,
according to the pre-set mode option.

BPT and MPT have respective pros and cons. Intuitively,
MPT is more positive in accepting any quota of power, and
thus more prone to obtain desired power quota, but it has
to maintain a dynamic power unit countdown and issue
handshakes with every contributive “release” agent, at the
cost of generating more PCPs. BPT, however, is relatively
simple to implement and results in less PCP traffic, but its

“picky” nature may undermine the opportunity to serve
more “absorb” agents. In Section 6, we will illustrate the
impact of BPT and MPT on both application performance
and power using multi-program workloads.

Algorithm 2. handle reqðÞ Subroutine
Input:Mode: mode; // BPT or MPT

Output: Agent final state: state; Output PCP: pcp out;
1 if cur unit � p� > unit then
2 state ¼ ACK SENT ; pcp out ¼ ACKðp unitÞ; //

respond this REQ

3 else
4 if mode ¼¼ BPT then

// just do nothing, with low implementation

cost

5 else if mode ¼¼ MPT then
6 state ¼ ACK SENT ; pcp out ¼ ACKðp unitÞ;
7 end
8 end

3.4 Key Design Tradeoff

Power trading, as regional operations across many-core
topology, cannot always be accomplished for an “absorb”
agent, as REQs are only broadcasted within its vicinity
where “release” agents cannot always be guaranteed to
exist. We call such broadcast range as the “scope” of PCPs,
defined as a region centred with an “absorb” agent, in
which the Manhattan Distance between any other agent and
the centred agent remains identical, as shown in Fig. 5.
Obviously, larger scope leads to larger opportunity to suc-
cessfully accomplish power trading for the centred “absorb”
agent; for example, “scope 4” is more beneficial than “scope
2” in Fig. 5. However, naively setting the scope excessively
large would be detrimental, because large scope inevitably
results in increased latency of power trading, and thus
degrades the responsiveness of power management. Thus,
we define a new metric, namely “Mean-Time-to-Stable
(MTTS)”, to represent such responsiveness, and quantita-
tively it exhibits the latency overhead to accomplish power
trading, that is, from “non-stable” state back to “stable” for
an “absorb” agent. MTTS entails the application power effi-
ciency, and usually we want MTTS as minimum as possible
by narrowing the broadcast scope. For example in Fig. 5,
“scope 2” apparently has a less MTTS than “scope 4”, but it
also sacrifices possibilities to meet more “release” agents as
mentioned above, so selecting a proper broadcast scope

Fig. 3. Scenario when receiving redundant ACKs from different “release”
agents.

Fig. 4. Two power trading mechanisms in PowerTrader.

LU ET AL.: POWERTRADER: ENFORCING AUTONOMOUS POWER MANAGEMENT FOR FUTURE LARGE-SCALE MANY-CORE PROCESSORS 287

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

configuration is very important to the efficacy of power
trading mechanism, for both BPT and MPT mechanisms.

System Convergence & Stability. Even if we could provide
enlarged opportunity for “absorb” agents to attain “stable”
state, through configuring a proper broadcast scope, we still
cannot, however, guarantee every “absorb” agent could be
served, especially when workload demonstrates oscillated
behavior in different executing phases, manifested in fre-
quent and uniform oscillation of agent power demand.
When this case happens, the broadcast scope of an “absorb”
agent may mostly involve “absorb” agents and barely has
matched “release” agents for establishing power trading, so
the “absorb” agents may keep waiting, staying starving to
be served. Similarly, it is possible that “release” agents can-
not meet any REQ requesting power quota. Such oscillation
may cause autonomous power management to sink into
instability and fail to converge. To tackle this worst case,
PowerTrader enrolls a pre-set timer, associated with each
agent, which starts counting when the agent transforms
from “stable” state to “absorb” or “release”. When timer
expires and the agent still does not meet matched agents, it
will be compulsorily turned to “stable”, so that it has oppor-
tunity to proceed subsequent power state adaptation opera-
tions. In Section 6.5, we will demonstrate that this corner
case barely happens under various timer settings. Many-
core system will not incur instability or divergence, but
even if it happens, PowerTrader manages to maintain stabil-
ity as well. Besides, we will thoroughly study the MTTS
tradeoff and conclude that a 6-hop scope is even adequate
for achieving both high trading possibilities and a con-
verged-and-stable many-core system.

4 IMPLEMENTATION IN MANYCORES

4.1 Application Runtime Demand

As mentioned in Section 3, each agent may exhibit three
possible states. Upon system initialization, the state is set to
“stable” for each agent. The transition from “stable” to
“absorb”, or “release”, depends highly on application phase
changes. In order to satisfy each core on the fly, we allow

the power state transition being triggered based on its own
power demand, which is reflected by the variation of hard-
ware events. Therefore, we enroll a classic metric, called
“CMI” (Computation versus Memory Intensity, extended
from [24]) to denote application (or more specifically,
thread) affinity to computation or memory during execu-
tion, as defined in Eq. (1). Cyclescomputation is the actual time
(in cycles) that the target core spent on executing instruc-
tions, while Cyclesmemory is the time that the core pipeline is
stalled due to the accesses of the entire memory system,
including last level cache and main memory. The final cal-
culated CMIn hence reflects the computation or memory
intensity of the running thread at interval n

CMIn ¼ Cyclescomputation

Cyclesmemory
ðinterval nÞ (1)

CMRn ¼ CMIn
CMIn�1

ðinterval nÞ (2)

agent state ¼
stable ! absorb : CMRn > a

stable ! release : CMRn < b

remain stable : CMRn 2 ½b;a�:

8
<

:
(3)

The quotient of two consecutive CMIs, namely CMR as
defined in Eq. (2), thus represents the affinity variation or
application phase changes at runtime, and we take CMR as
the trigger of agent state transition: either switched from
“stable” to “absorb” or “release”. This metric denotes the
variability of computation intensity versus memory inten-
sity; for instance, CMR larger than 1 indicates an increasing
trend towards computation intensive phase, and vice versa.
As shown in Fig. 6, each agent will frequently access core-
level performance counters to obtain pipeline status and cal-
culate CMR, but note that it is different from centralized
approaches using fixed control interval [3], [4], [25]; in
PowerTrader, state switching is only necessary when CMR
increases or decreases to certain thresholds (a, b in Eq. (3)),
so each control interval possibly does not have the same
length. For example at time tn�1, CMR has increased
beyond the threshold, so the current power state could be
upgraded to “absorb”; otherwise, the power state will be
degraded to “release”.

The idea behind selecting thismetric stems from the adap-
tation of application runtime demand, which could be con-
veyed if observed in a finer granularity, but we also believe
that other methods (i.e., [26]) also fit in PowerTrader frame-
work as long as it could precisely reflect compute/memory

Fig. 5. Tradeoff of “broadcast scope” versus “MTTS”. Obviously, the
larger the broadcast scope, the more opportunities that “Absorb Agent”
will meet “Release Agent”; however, it inevitably enlarges the latency
(round trip cycles of PCP) to return to “Stable” state.

Fig. 6. Triggering a state transition, maybe from “stable” to “absorb” or
“release” for an agent.

288 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

intensity and make right decisions to control agent state
transition.

4.2 Hardware Agent

PowerTrader also requires dedicated on-chip hardware in
charge of power state transition and PCP interaction. How-
ever, the implementation is much simpler compared with
centralized approaches. As shown in Fig. 7, several registers
and threemodules are just enough to achieve full functionali-
ties of PowerTrader: “state controller” is responsible for the
PCP interaction and the execution of Algorithm 1; core-level
performance counters, stored in the counter register, is used
to calculate CMR; the final state decision is made in the
“comparator” based on the current CMR and the preset
thresholds a and b, and state controller will be then man-
dated to change from “stable” to “release” or “absorb” upon
receiving the decision from the comparator. The REQswill be
broadcasted as soon as the agent state is shifted to “absorb”.

In order to estimate the area overhead of PowerTrader
hardware, we use Synopsis Design Compiler [27] under
SMIC90 technology library. The registers are all configured
to 32 bits, capable of representing gigabytes magnitude of
data. The synthesis reports only 0:0023 mm2 area overhead
in total. To approximate the power consumption, we
assume these registers similar to the pipeline registers in
NoC routers, which only consumes 0:0015 W in total when
fully utilized (0.86 percent of the whole NoC power con-
sumption), and could be safely ignored since the tiny power
consumption will not outweigh total power savings. These
facts also render PowerTrader a light-weighted power man-
agement approach for on-chip implementation in manycore
processors.

4.3 Tackling Thermal Alerts

On-chip thermal management is also a widely-used tech-
nique, designed to keep system below a safe operating tem-
perature. PowerTrader is designed as a power management
technique, but that does not mean it cripples serving the
purpose of on-chip thermal management. Quite on the

contrary, PowerTrader could be an effective addon to solve
thermal hotspots in manycores. That is because, as a
regional scheme, it intrinsically considers the heat-specific
factors such as the spatial distribution of power across the
chip, and is capable of transferring power from thermal hot-
spots to other cooler areas. For example, if one thermal hot-
spot is detected, hardware agent could compulsorily turns
its power state immediately into “release” and let other
agents fetch its excessive power quota. Such Power shifting
can maintain the nearly uniform distribution of chip heat,
and at the same time preserve time/performance con-
straints of critical applications. While in this article, we only
focus on its efficacy in managing power.

5 FULL SYSTEM SIMULATION SETUP

5.1 Platform

We use Graphite [28], a full system simulator for manycores
as our basic simulation framework. We use a Tiled-like
manycore architecture with 64 single issue, in-order cores.
L1 I/D cache is privately occupied and last level cache is
shared by all the cores. In particular, we augment the simu-
lator with Algorithm 1 as well as the associated trading
mechanisms BPT and MPT . We run multiprogrammed
workloads selected from Parsec-3.0 [29] and Splash-2 [30]
benchmark suite. We categorize 17 benchmarks based on
their respective cache miss rate, obtained using prior profil-
ing knowledge, classify them into Computation inten-

sive and Memory intensive, and then create “bundles”
that include a variety of mixed workloads. The multipro-
gram workload mixes are organized from high computation
intensive to high memory intensive, so each bundle should
exhibit distinct CMR behavior. Since we use 4 benchmarks as
a bundle, we allocate 16 threads for each of them and con-
sider one-to-one mapping, which means one core only exe-
cutes one thread and the threads in total occupy all the
cores in a 64-core processor.

5.2 Baselines

We use four baselines to prove the efficacy of PowerTrader:
(1) the first one is a traditional manycore configuration with
no power management involved, referred to as “No_PM”;
the results are normalized to this baseline for comparison;
(2) the second one is a state-of-the-art approach, referred to
as “FreqPar” [3]. This technique is a hierarchical power man-
agement approach, which aims at allocating pre-set power
budget to each core “level-by-level” based on the estimated
power and performance. We implement the detailed fre-
quency partitioning method and various prediction models
associated with this baseline, and prove the benefit of our
autonomous PowerTrader in both performance and power;
(3) the third baseline is an ideal case, referred to as “PT-
Ideal”, implemented within PowerTrader context, but the
difference is that it does not involve PCP interaction
between agents. An “absorb” agent is “assumed” to have
already located “release” agents within its broadcast scope,
so power trading could start up directly, excluding MTTS
overhead. This baseline could be regarded as the theoreti-
cal upper bound of the benefits PowerTrader might
achieve; (4) we employ and modify LinOpt [31] as the last
baseline, referred to as “Global-opt.”, because it uses linear

Fig. 7. Hardware required to implement PowerTrader.

LU ET AL.: POWERTRADER: ENFORCING AUTONOMOUS POWER MANAGEMENT FOR FUTURE LARGE-SCALE MANY-CORE PROCESSORS 289

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

programming in an attempt to attain global optimum in a
centralized manner, but differed from its raw technique,
that is, using Simplex method to solve linear programming
problem at a per-10 ms basis so as to cover polynomial
time complexity, usually estimated at Oðn4Þ level [6]. We
ideally and intentionally eliminate this overhead to make it
work at finer granularity that is on par with PowerTrader.
But note that we do not take process variation issues that
LinOpt initially aims to tackle into account, because our
evaluation platform is not able to model precise variations
in frequency and voltage. We herein only intend to explore
how much design space PowerTrader leaves compared
with the global optimum in theory.

5.3 Power Control Actuation

To finalize power control, we resort to existing dynamic
voltage and frequency scaling (DVFS) infrastructure,
already provided in our Graphite platform. We assume that
each core can be independently voltage-and-frequency
scaled (per-core DVFS) via on-chip voltage regulators (VR),
which complies with many prior commercial products [23],
[32] and research studies [3], [33]. Observed from our evalu-
ation platform, total chip power consumption is around
11 watts when each core is configured at 1 GHz and no
DVFS is applied. So we use the value as our chip-level
power budget. We then select 4 frequency levels under
32 nm technology node: 0.6, 0.79, 1, 1:35 GHz by referring to
McPAT with CACTI [34]. This configuration is also similar
to many commercial many-core processors like Intel SCC
[23] (125 MHz ! 1:3 GHz) and Tile64 [35] (500 MHz ! 866
MHz). Furthermore, we observed that the power quota
needed to upgrade a V/F level is nearly equal at each DVFS
operating point (slightly different for our evaluated bench-
marks), so we can simply take this value as the unit power
quota (1 unit) in PCP transmission. For example, if an agent
intends to vary its frequency level from 0.6 to 1 GHz, the
power that needs to be absorbed is hence 2 units. But also
note that in today’s technology, more frequency steps are
also possible. Power impact of a frequency change differs
per core (i.e., due to process variability), and power con-
sumption is application-dependent due to extensive clock-
and power-gating. PowerTrader embraces these fine
grained frequency levels, we only make this conservative
assumption in this article, uninfluential to demonstrate key
functionalities of PowerTrader.

DVFS Actuation Overhead. Since we assume on-chip VR as
the DVFS actuator for each core, DVFS actuation overhead,
as reported in recent studies, could be decreased to tens of
nanoseconds [36], so we take 250 ns as the DVFS actuation
overhead in evaluating PowerTrader [3]; this value is also
assumed in our “FreqPar” baseline for the purpose of fair-
ness in comparison. Graphite does not model this overhead,
so we manually added it after each “absorb” agent has
obtained the power quota, but before the power state, repre-
sented by V/F level, is finally altered.

Control Interval Setting. Effective power management
requires that DVFS actuation overhead, though unavoid-
able, is minimized as much as possible, possibly covered by
appropriate setting of control interval. PowerTrader, how-
ever, is an autonomous power management approach,
whose control interval or the duration between two

consecutive state transitions is never fixed, but is deter-
mined by CMR threshold settings: a and b. Therefore, we
evaluate CMR distributions for our selected benchmarks, as
shown in Fig. 8. We found that CMR exhibits obvious distri-
butions (0 � 5) at a granularity of tens of microseconds, so it
indicates that the DVFS actuation overhead (250 ns as
assumed) only occupies less than 1 percent of the duration
between two continuous state transitions. Besides, we found
that most CMRs scatter around the innermost circles
(0:5 � 1:5), so without losing generality, we choose a ¼ 1:4
(marked with red circle) and b ¼ 0:9 (marked with blue cir-
cle) in our subsequent evaluations, just enough to cover the
DVFS plus MTTS overhead, but note that the chosen thresh-
olds are both empirical values; other settings are also possi-
ble, contingent to the actual DVFS actuator overhead and
CMI variation granularity.

For our centralized baseline “FreqPar”, control interval
setting also needs to consider the overhead of power alloca-
tion algorithm, which has an OðnÞ complexity as reported

in the paper [3]. As expected, for our 64-core platform, it

costs 64 cores� 1;000 cycles
1 GHz ¼ 64 ms, for the algorithm to

accomplish power allocation for all 64 cores, if we assume
1 GHz operating frequency in the power manager. If we
also require that the total overheads (DVFS+power alloca-
tion) can only occupy up to 1 percent of the total control
interval (to be in line with PowerTrader), the control inter-
val should be set to ð64 msþ 250 nsÞ=1% � 6:4 ms as
reported in literature [3]. While for our idealized baseline
“Global-opt.”, we do not set such large control interval;
instead, we want the control interval to be comparable with
PowerTrader as a way to evaluate its headroom below
global optimum, so we set 1ms interval (average MTTS
+DVFS overhead in PowerTrader) to invoke this scheme
each time. In realistic operating scenario, it is impossible to
implement power control in such tiny control interval,
because linear programming in LinOpt occupies nearly as
large as 13.3 percent runtime of total control interval for 64-
core platform as reported in literature [6] due to its high-
order polynomial complexity, so its normal control interval
is usually set larger than 10 ms [31]. That is also why we call
it idealized baseline within our evaluation environment.
Besides, control interval setting for these two baselines do
not include the statistics transmission overhead that we are
not able to estimate in our platform (though it actually
exists); however, these overheads are not necessary at all in
PowerTrader.

Fig. 8. CMR distributions for selected parsec-3.0 and splash2 bench-
marks. The figure is plotted using “polar” scale because it could clearly
demonstrate the distribution of CMRs. For example, values smaller than
2 are all enclosed by circle “2”. The ticks on the outmost circle indicate
CMR evaluation intervals. We plot each CMR value every 50 ms.

290 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

6 RESULTS AND ANALYSIS

6.1 Application Performance

In this set of experiment, we evaluate PowerTrader in terms
of the performance of all workload mixes, under fixed
power budget. We use the metric “Weight-speedup (WS)”
to evaluate instruction throughput [4], [37], [38], [39], as
representative of the performance of various mixes. The
weighted-speedup for n applications is defined as:

Weighted speedup ¼ Pn
i¼1

IPSi
scheme

IPSi
alone

Þ, where IPSi
scheme is the

“Instruction per Second” achieved by the employed scheme
(i.e., PT-BPT or PT-MPT) for application i, and IPSi

alone is
the measured IPS when the application i is executed alone
without any power management schemes. We use this met-
ric instead of IPS alone because researchers in recent litera-
tures claim that weighted speedup more accurately
captures the multi-program throughput performance by
equalizing the contribution of each program in the work-
load mix through normalizing its multiprogram IPS with its
single-program IPS [38], [40], [41].

Discussion. As shown in Fig. 9, two items of PowerTrader
show higher weighted-speedup than FreqPar by 12.1 and
12.2 percent apiece (Note that weighted speedup are all raw
values). The benefit stems from the finer-grained power adap-
tation of PowerTrader that could timely respond the applica-
tion runtime demand, rather than waiting for the arrival of
each control interval. The “FreqPar”, on the other hand, must
go through the statistics collection, power quota allocation to
finalize power state adaptation. This tedious centralized style
makes it fail to capture application phase changes in time,
and hence undermines powermanagement efficiency.

The figure also demonstrates that the performance of BPT
is on par with that of MPT: for some mixes like MIX6, MIX7,
MIX8 and MIX9, MPT exhibits close or even higher WS than
BPT; on the contrary, some mixes like MIX1 and MIX5 etc.,
exhibit a higher WS for BPT than MPT. This behavior abides
by the previous analysis of two trading mechanisms in
Section 3, that is, BPT andMPT have their respective pros and
cons: some mixes benefit from faster trading establishment,
while others may prefer less PCP traffic and short packet
latency thereof. The difference of averageWS improvement is
hardly recognizable for BPT and MPT as shown in the figure,
so the two tradingmechanisms could be dynamically selected
according toworkload real-time necessities.

Comparison with Theoretical and Global Optimum. Power-
Trader is still suboptimal, 7.5 percent lower WS for BPT,
compared with its theoretical upper bound (“PT-Ideal”)
because of its PCP interaction overhead (MTTS), and in the

following sections, we will show how the tradeoff between
PCP broadcast scope and MTTS affects workload power
and performance efficiency, by thoroughly investigating
MTTS curve dynamically changing with broadcast scope.
Furthermore, two instances of PowerTrader also demon-
strate 13.2 percent lower WS compared with our idealized
centralized approach achieving global optimum. This set of
results instruct that PowerTrader, although to some extent
improves scalability and performance, still lacks of suffi-
cient superiority to attain global optimality. As a localized
operation, limitation of regional PCP interactions will not
cover power requests imposed by all agents and handle
them as a whole. However in realistic power management,
no centralized approach is able to attain such optimum
either, if taken the costly allocation overhead into consider-
ation, PowerTrader could provide both satisfied perfor-
mance and scalability, at the same time.

6.2 Fairness

In addition to the weighted-speedup metric, as a direct mea-
sure of application performance, we use another metric
“Harmonic Mean (H-mean)” to further evaluate the balance
between fairness and instruction throughput for various
workload mixes [38]. The definition of H-mean is as follows:
H mean ¼ n

Pn

i¼1

IPSi
alone

IPSi
scheme

Þ
. From Fig. 10, we observe that:

(1) BPT exhibits obvious improvement compared with Freq-
Par (16.8 percent more); (2) MPT is hardly fairer than Freq-
Par (0.8654 0.8749 respectively).

Discussion. This is due to two reasons: (1) FreqPar always
assigns highest priority to the critical thread of an application
during power quota allocation, so the thread dictates more
power each time while others always stay starving. By sharp
contrast, PowerTrader is intrinsically a fair mechanism
regarding each “absorb” agent equally, does not bias any
application or internal thread. Each agent has fair opportu-
nity to procure their share of power quota under the same
power budget. (2) the long power control interval also harms
fairness. As mentioned above, FreqPar works at a control
interval of 6:4 ms [3]. The criticality of a thread varies enor-
mously upon such coarse granularity, rendering FreqPar
failed to accommodate all possible critical threads in the con-
trol interval. PowerTrader fairly tends to satisfy each
“absorb” agent that may exist at each possible spot; hence for
PT-BPT, “absorb” agents are given timely IPS speedup so
that it yields higher H-mean values [38]. Nonetheless for
MPT, not each agent could be fully fed with power quota it
requested; thus, one or more workloads will incur lower and

Fig. 9. Instruction throughput evaluation, represented by weighted-
speedup metric.

Fig. 10. Multiprogram fairness, represented by Harmonic Mean (H-
mean).

LU ET AL.: POWERTRADER: ENFORCING AUTONOMOUS POWER MANAGEMENT FOR FUTURE LARGE-SCALE MANY-CORE PROCESSORS 291

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

slower IPS speedup that leads to lowerH-mean values, but is
also on par with our centralized baseline.

6.3 Overall Power Consumption

In order to explore the power adaptation of PowerTrader,
we evaluate power consumption and power/performance
efficiency in this set of experiment. First, we show the over-
all power consumption of our employed application mixes
in Fig. 11. We decompose the overall power into several
portions as core/NoC dynamic/static power, because we
use NoC as the backbone to carry the PCP traffic whose
power consumption also needs to be considered. As can be
seen, for workload MIX6 and MIX7, NoC power is slightly
increased due to the overlayed PCP traffic but the core
dynamic power reduction still outweighs the increment of
NoC power. In total, PowerTrader could reduce overall
power consumption by 6.2 and 6.3 percent compared with
FreqPar, for BPT and MPT, respectively.

Discussion. Our baseline FreqPar, only capable of capping
peak power, could not work at low-power mode, so even if

the running workload mix does not need to much power, it
still has to allocate all of the power quota to each core.
Whereas for BPT andMPT, twomodes could be both detected
and dynamically switched, and that’s also why PowerTrader
could reduce power consumptionwhile FreqPar cannot.

6.4 Tradeoff between Broadcast Scope and MTTS

Although it may happen that as far as 14-hop scope is
required in the worst case for an “absorb” agent to finally
couple with a “release” agent, it is not necessary to design
PowerTraderwith 14-hop scope. That is because a broadened
scope also enlargesMTTS, which undermines the power con-
trol responsiveness. As shown in Figs. 12a and 12b, we evalu-
ate MTTS at different scope configurations. MTTS climbs
almost linearly with scope scaled from 0 to 14. MPT is rela-
tively less sensitive that MTTS starts to increase obviously at
scope 7 for most of the benchmarks. Intuitively speaking,
such increment ofMTTS inevitably harms the responsiveness
of PowerTrader and further impacts the power efficiency.
Fig. 13 proves this notion. It shows the normalized

Fig. 11. Total power consumption, decomposed into CORE and NoC dynamic/static portions.

Fig. 12. Tradeoff between “broadcast scope” and “MTTS”: Although larger scope enforces larger opportunities to attain stable, MTTS is also enlarged
that is harmful to the PowerTrader responsiveness.

Fig. 13. The tradeoff impact to application power efficiency: Setting the scope too large or too small is both harmful to application power efficiency.

292 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

application power efficiency (performance per watt) under
different scope configurations. All of the applications enjoy
the boost in performance with the scope enlarged initially,
due to increasing power trading opportunities. However, the
efficiency drops significantly when the scope goes beyond
some point; for example, 8 ! 10 hops for BPT and 5 ! 7
hops for MPT. This “hump” behavior is because the large
round-trip latency (MTTS) may lead to a hysteresis effect,
which means the application behavior may have already
changed before stable state is attained. Generally, we find 6-
hop is a balanced choice and that is also why we use this
value in the previous performance evaluation, but the actual
decision could be made at design time considering different
many-core configurations and runningworkloads.

6.5 Convergence Analysis

Intuitively speaking, not all the agents in certain power state
could be served in its broadcast scope, which dominates
overall stability of power management in many-core chip,
because the imbalance of “absorb” and “release” agents will
lead to system deadlock, reflected by the infinite waiting to
be served for “absorb” agents, and waiting to serve for
“release” agents. To explore this scenario, we evaluate the
successful rate of power trading for each benchmark, that is,
the percentage of agents successfully turned from “absorb”
to “stable” state versus overall number of “absorb” agents
that emerged during execution. In the experiment, we set a
timer ranged from 600 ns to 1 ms, which means if an
“absorb” agent still cannot find a matched “release” agent to
serve itself when the timer expires, wemanually transform it
back to stable state. We stat the MTTS values of all “absorb”
agents and found, in Fig. 14, that the successful rate could
reach more than 92.7 percent within 600 ns timer setting. In
other words, only 7 percent “absorb” agents cannot find
matched “release” agents. If we go a step farther by setting
the timer to 1 ms, more than 98 percent agents could be
served, which means the many-core system always main-
tains stable and barely incurs instability or divergence, but

even if several agents really starve and keep waiting, we
could turn them back to stable state when timer expires, in
order to let them proceed subsequent power state adapta-
tions, so as to avoid system instability andmake it converge.

Thread Balance Analysis. Additionally, we investigate
thread balance under the same context after system warm-
up. Thread imbalance happens when certain threads or pro-
grams are always got accelerated or starved in power man-
agement. To survey this problem on the fly, we observe
runtime “absorb to stable” failures as shown in Fig. 15. We
use surfplot and the spikes and ebbs in the waveform could
conveniently demonstrate if starvation or power monopoli-
zation happens. As can be seen, the percentage at each time
interval for 64 agents in the mix mildly fluctuates at around
8 to 10 percent for 600 ns surfplot, while below 6 percent for
800 ns case. Such failures are nearly uniformly distributed
along with executing in both cases, so this result confirms
that, in accordance with above conclusion, threads in our
multiprogram mixes are stable and balanced indeed.

6.6 Overhead Analysis

Communication Overhead. Since PowerTrader uses NoC as
the backbone to carry PCPs, the “extra traffic” which never
shows up in prior schemes may burden the applications
traffic condition. The impact could be reflected by the varia-
tion of average and worst-case flit latency of normal data
communication, as shown in Fig. 16. The result shows that
normal flit latency only increases no more than 2 percent
when PCPs overlaid in both the average and worst case.
This is because PCP is very light-weighted with limited pay-
load which, compared to normal data packets, is negligible
in volume. Also, we found the worst-case flit latency is
insensitive to the broadcast scope of PCPs. This experiment
proves that PCPs won’t degrade the latency of normal data
communication, and hence should not be viewed as a key over-
head of PowerTrader.

Mechanism Overhead. PowerTrader is an autonomous
power management scheme, so we compare its mechanism
overhead to the centralized algorithm with OðnÞ complexity
(as claimed in our baseline “FreqPar” [3]). We trace the exe-
cution time of the OðnÞ algorithm and PowerTrader under
different scale of manycores, as shown in Fig. 17. We found

Fig. 14. Convergence and stability analysis. We tested three timer con-
figurations: 600 ns, 800 ns, and 1 us.

Fig. 15. Thread balance analysis (using workload MIX5 in MPT): We use
surfplot to observe dynamic variations of “absorb to stable failures”
under different converge timer+scope combinations. Each x-tick is 1 ms
time interval, and the percentage is calculated as “timeout absorb
requests” over all “absorb to stable requests”. We use the data collected
within 50 ms right after system warm-up.

Fig. 16. Worst-case/average flit latency of normal data communication,
with/without PCPs overlaid.

LU ET AL.: POWERTRADER: ENFORCING AUTONOMOUS POWER MANAGEMENT FOR FUTURE LARGE-SCALE MANY-CORE PROCESSORS 293

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

that OðnÞ algorithm starts to increase dramatically with
many-core scaling. By sharp contrast, as regional operations
restrained by the scope, the overhead of BPT and MPT both
increase mildly, insensitive to the scale of manycores. The
maximum execution time is only 1;221 ns for BPT. Note that
we do not adopt the statistics collection and transmission
overhead inherited in the centralized OðnÞ baseline, but
only account for the overhead of power allocation algo-
rithm, so the real-world execution time in Fig. 17 may grow
even steeper for the OðnÞ approach. Therefore, for future
ultra large-scale manycore architectures, PowerTrader is
undoubtedly applicable which is even beyond reach for
existing centralized approaches.

7 CONCLUSION

This article proposes PowerTrader, an autonomous power
management approach targeting manycores. It abandons
classic centralized approaches; instead, power could be freely
traded between modeled autonomous agents, without violat-
ing chip power budget. To govern the trading process, two
power trading mechanisms (BPT and MPT) are proposed
with different behaviors on power control packet (PCP) inter-
action. We also analyze the key design tradeoff, that is, the
broadcast scope andMTTS, and its impact on application per-
formance and power under BPT and MPT. Without a global
centralized manager, PowerTrader exhibits superior scalabil-
ity and improves application power efficiency substantially
compared with state-of-the-art baseline. We thus believe that
PowerTrader is a promising powermanagement technique to
be deployed in future large-scalemanycore processors.

ACKNOWLEDGMENTS

Thiswork is supported in part by theNational Nature Science
Foundation of China (NSFC) under grant No. (61602442,
61572470, 61532017, 61522406, 61432017, 61376043), in part by
the Open Project Program of the State Key Laboratory of
Mathematical Engineering and Advanced Computing under
grant No. 2016A08, in part by the Youth Innovation Promo-
tion Association of CAS under grant No.Y404441000 and in
part by the State Key Laboratory of Computer Architecture
with the Institute of Computing Technology (ICT) under
grant No. CARCH2603.

REFERENCES

[1] IBM, “Power8 processor user’s manual for the single-chip mod-
ule,” version 1.3, Mar. 16, 2016.

[2] S. Damaraju, et al., “A 22nm IA multi-CPU and GPU system-on-
chip,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers,
2012, pp. 56–57.

[3] M. Kai, L. Xue, C. Ming, and W. Xiaorui, “Scalable power
control for many-core architectures running multi-threaded
applications,” in Proc. 38th Annu. Int. Symp. Comput. Archit., 2011,
pp. 449–460.

[4] A. Sharifi, A. K. Mishra, S. Srikantaiah, M. Kandemir, and
C. R. Das, “PEPON: Performance-aware hierarchical power budg-
eting for NoC based multicores,” in Proc. 21st Int. Conf. Parallel
Archit. Compilation Techn., 2012, pp. 65–74.

[5] Q. Deng, D.Meisner, A. Bhattacharjee, T.Wenisch, and R. Bianchini,
“CoScale: Coordinating CPU and memory system DVFS in server
systems,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2012, pp. 143–154.

[6] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable
thread scheduling and global power management for heteroge-
neous many-core architectures,” in Proc. 19th Int. Conf. Parallel
Archit. Compilation Techn., 2010, pp. 29–40.

[7] M. Shafique and J. Henkel, “Agent-based distributed power
management for kilo-core processors: Special session: Keeping
kilo-core chips cool: New directions and emerging solutions,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2013,
pp. 153–160.

[8] Tilera, “Tile-Gx series cloud processor,” 2013. [Online]. Available:
http://www.tilera.com/products/processors/tile-gx_family

[9] Ambric, “Ambric Am2045 many-core processor,” 2008. [Online].
Available: https://en.wikipedia.org/wiki/ambric

[10] Adapteva, “Adapteva epiphany-iv series,” [2014]. [Online]. Avail-
able: http://www.tomshardware.com/news/apateva-epiphany-
4096-core-multicore-threaded,15064.html

[11] C. Isci, A. Buyuktosunoglu, C.-Y. Chen, P. Bose, andM.Martonosi,
“An analysis of efficient multi-core global power management
policies: Maximizing performance for a given power budget,” in
Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchitecture, Dec. 2006,
pp. 347–358.

[12] E. Rotem, A. Mendelson, R. Ginosar, and U. Weiser, “Multiple
clock and voltage domains for chipmulti processors,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp.Microarchitecture, 2009, pp. 459–468.

[13] M. Shafique, A. Ivanov, B. Vogel, and J. Henkel, “Scalable power
management for on-chip systems with malleable applications,”
IEEE Trans. Comput., vol. 65, no. 11, pp. 3398–3412, Nov. 2016.

[14] J. Sartori and R. Kumar, “Three scalable approaches to improving
many-core throughput for a given peak power budget,” in Proc.
Int. Conf. High Perform. Comput., 2009, pp. 89–98.

[15] X. Wang, et al., “Adaptive power allocation for many-core sys-
tems inspired from multiagent auction model,” in Proc. Des.
Autom. Test Eur. Conf. Exhib., 2014, pp. 1–4.

[16] M. Ismail, O. Hasan, T. Ebi, M. Shafique, and J. Henkel,
“Formal verification of distributed dynamic thermal man-
agement,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2013,
pp. 248–255.

[17] S. Iqtedar, O. Hasan, M. Shafique, and J. Henkel, “Formal probabi-
listic analysis of distributed dynamic thermal management,” in
Proc. Des. Autom. Test Eur. Conf. Exhib., 2015, pp. 1221–1224.

[18] T. Ebi, M. Faruque, and J. Henkel, “TAPE: Thermal-aware agent-
based power econom multi/many-core architectures,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des.-Dig. Tech. Papers, 2009,
pp. 302–309.

[19] M. Shafique and S. Garg, “Computing in the dark silicon era: Cur-
rent trends and research challenges,” IEEE Des. Test, vol. 34, no. 2,
pp. 8–23, Apr. 2017.

[20] H. Khdr, et al., “Power density-aware resource management for
heterogeneous tiled multicores,” IEEE Trans. Comput., vol. 66,
no. 3, pp. 488–501, Mar. 2017.

[21] G. Kornaros and D. Pnevmatikatos, “Dynamic power and thermal
management of NoC-based heterogeneous MPSoCs,” ACM Trans.
Reconfigurable Technol. Syst., vol. 7, no. 1, pp. 1:1–1:26, Feb. 2014.

[22] A. Pathania, H. Khdr, M. Shafique, T. Mitra, and J. Henkel,
“Scalable probabilistic power budgeting for many-cores,” in Proc.
IEEE/ACM 20th Des. Autom. Test Eur. Conf., 2017, pp. 1–6.

[23] Intel, “Intel single-chip cloud computer,” 2012. [Online]. Available:
http://www.intel.com/content/www/us/en/research/intel-
labs-single-chip-cloud-computer.html

[24] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson,
“Characterizing the impact of different memory-intensity levels,”
in Proc. IEEE Int.WorkshopWorkload Characterization, 2004, pp. 3–10.

Fig. 17. Scalability evaluation of PowerTrader and a centralized power
allocation algorithm with OðnÞ complexity.

294 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 3, NO. 4, OCTOBER-DECEMBER 2017

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

http://www.tilera.com/products/processors/tile-gx_family
https://en.wikipedia.org/wiki/ambric
http://www.tomshardware.com/news/apateva-epiphany-4096-core-multicore-threaded,15064.html
http://www.tomshardware.com/news/apateva-epiphany-4096-core-multicore-threaded,15064.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html

[25] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based
application-driven hierarchical power management on the single-
chip cloud computer,” in Proc. Int. Conf. Parallel Archit. Compilation
Techn., 2011, pp. 131–142.

[26] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors
for dynamic performance, power, and resource management in
chip multiprocessors,” in Proc. 36th Annu. Int. Symp. Comput.
Archit., 2009, pp. 290–301.

[27] Synopsis, “Design compiler, version d-2010.03-sp2,” 2010.
[28] J. Miller, et al., “Graphite: A distributed parallel simulator for

multicores,” in Proc. IEEE 16th Int. Symp. High Perform. Comput.
Archit., 2010, pp. 1–12.

[29] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proc.
17th Int. Conf. Parallel Archit. Compilation Techn., 2008, pp. 72–81.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodological consid-
erations,” in Proc. 22nd Annu. Int. Symp. Comput. Archit., 1995,
pp. 24–36.

[31] R. Teodorescu and J. Torrellas, “Variation-aware application
scheduling and power management for chip multiprocessors,” in
Proc. Int. Symp. Comput. Archit., 2008, pp. 363–374.

[32] AMD, “AMD opteron processor family,” 2013. [Online]. Avail-
able: http://www.amd.com/en-us/products/server/opteron

[33] D.-C. Juan and D. Marculescu, “Power-aware performance
increase via core/uncore reinforcement control for chip-multi-
processors,” in Proc. ACM/IEEE Int. Symp. Low Power Electron.
Des., 2012, pp. 97–102.

[34] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D.M. Tullsen, andN. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore andmanycore architectures,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp.Microarchitecture, 2009, pp. 469–480.

[35] S. Bell, et al., “TILE64-processor: A 64-core SoC with mesh inter-
connect,” inProc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 88–598.

[36] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analy-
sis of fast, per-core DVFS using on-chip switching regulators,” in
Proc. IEEE 14th Int. Symp. High Perform. Comput. Archit., 2008,
pp. 123–134.

[37] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput
and fairness in SMT processors,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., 2001, pp. 164–171.

[38] S. Eyerman and L. Eeckhout, “System-level performance metrics
for multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–
53, May/Jun. 2008.

[39] S. Eyerman, P. Michaud, andW. Rogiest, “Multiprogram through-
put metrics: A systematic approach,” ACM Trans. Archit. Code
Optimization, vol. 11, no. 3, pp. 34:1–34:26, 2014.

[40] A. Snavely andD.M. Tullsen, “Symbiotic jobscheduling for a simul-
taneousmultithreaded processor,” in Proc. 9th Int. Conf. Archit. Sup-
port Program. Languages Operating Syst., 2000, pp. 234–244.

[41] A. R. Alameldeen and D. A. Wood, “IPC considered harmful for
multiprocessor workloads,” IEEE Micro, vol. 26, no. 4, pp. 8–17,
Jul./Aug. 2006.

Hang Lu received the PhD degree from the Uni-
versity of Chinese Academy of Sciences (UCAS),
in 2015. He is currently an assistant professor in
the State Key Lab. of Computer Architecture,
Institute of Computing Technology (ICT), Chi-
nese Academy of Sciences (CAS). His research
interests include high performance Networks-on-
Chip (NoC), power efficient manycore architec-
tures, scale-out processors, etc.

Guihai Yan (M’11) received the BSc degree in
electronics and software engineering (dual-
degree) from Peking University, Beijing, China, in
2005 and the PhD degree in computer science
from the Institute of Computing Technology
(ICT), Chinese Academy of Sciences, Beijing,
China, in 2011. He is currently an associate pro-
fessor in the Institute of Computing Technology,
Chinese Academy of Sciences. His research
interests include computer architecture, domain-
specific microsystems, and energy-efficient com-
puting. He is a member of the IEEE.

Yinhe Han (M’06) received the BEng degree
from the Nanjing University of Aeronautics and
Astronautics, China, in 2001, and the MEng and
PhD degrees in computer science from the Insti-
tute of Computing Technology (ICT), Chinese
Academy of Sciences (CAS), China, in 2003 and
2006, respectively. He is currently a professor in
the State Key Lab. of Computer Architecture,
ICT, CAS. His research interests include com-
puter architecture, especially on fault-tolerant
and low power architecture and VLSI design and
test. He is a member of the IEEE.

Xiaowei Li received the BEng and MEng
degrees in computer science from the Hefei Uni-
versity of Technology (China), in 1985 and 1988,
respectively, and the PhD degree in computer
science from the Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sciences (CAS),
in 1991. Currently, he is a professor and deputy
director of the Key Laboratory of Computer Sys-
tem and Architecture, ICT, CAS. His research
interests include VLSI testing and design verifica-
tion, dependable computing, and wireless sensor

networks. He is an associate editor-in-chief of the Journal of Computer
Science and Technology, and a member of the editorial board of the
Journal of Electronic Testing, and the Journal of Low Power Electronics.
In addition, he serves on the Technical Program Committees of multiple
IEEE and ACM conferences, including VTS, DATE, ASP-DAC, PRDC,
etc. He was also the program co-chair of the IEEE Asian Test Sympo-
sium (ATS) in 2003, and general co-chair of ATS’07. He is a senior
member of IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LU ET AL.: POWERTRADER: ENFORCING AUTONOMOUS POWER MANAGEMENT FOR FUTURE LARGE-SCALE MANY-CORE PROCESSORS 295

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 07,2020 at 05:02:31 UTC from IEEE Xplore. Restrictions apply.

http://www.amd.com/en-us/products/server/opteron

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

